Review Article

胞葬作用和代谢综合征:叙述性回顾

卷 24, 期 6, 2024

发表于: 10 July, 2023

页: [751 - 757] 页: 7

弟呕挨: 10.2174/1566524023666230710120438

价格: $65

摘要

代谢综合征(MetS)以同时存在高血糖、血脂异常、高血压和中心性肥胖为特征,是心血管疾病(cvd)、死亡率和疾病负担的关键危险因素。细胞凋亡在人体内每秒消灭大约一百万个细胞,保持体内平衡并调节生物体的生命周期。在生理状态下,凋亡细胞通过一个多步骤的过程内化到吞噬细胞,称为胞葬作用。对这些凋亡细胞清除的任何损害都会导致与慢性炎症相关的疾病,如肥胖、糖尿病和血脂异常。另一方面,胰岛素抵抗和MetS可干扰胞葬作用过程。由于没有研究调查胞葬作用和MetS之间的关系,我们决定探索胞葬作用的不同步骤,并描述低效的死细胞清除与MetS进展的关系。

关键词: 胞葬作用,代谢综合征,血脂异常,高血糖,肥胖胞葬作用,肥胖。

[1]
Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 2018; 392(10152): 1072-88.
[http://dx.doi.org/10.1016/S0140-6736(18)31992-5] [PMID: 30264707]
[2]
Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome. Circulation 2009; 120(16): 1640-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[3]
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12-2.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[4]
Kerr JFR. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002; 181-182: 471-4.
[http://dx.doi.org/10.1016/S0300-483X(02)00457-2] [PMID: 12505355]
[5]
Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol 2020; 20(4): 254-67.
[http://dx.doi.org/10.1038/s41577-019-0240-6] [PMID: 31822793]
[6]
Ge Y, Huang M, Yao Y. Efferocytosis and its role in inflammatory disorders. Front Cell Dev Biol 2022; 10: 839248.
[http://dx.doi.org/10.3389/fcell.2022.839248] [PMID: 35281078]
[7]
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21(7): 398-414.
[http://dx.doi.org/10.1038/s41580-020-0232-1] [PMID: 32251387]
[8]
Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461(7261): 282-6.
[http://dx.doi.org/10.1038/nature08296] [PMID: 19741708]
[9]
Lauber K, Bohn E, Kröber SM, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003; 113(6): 717-30.
[http://dx.doi.org/10.1016/S0092-8674(03)00422-7] [PMID: 12809603]
[10]
Gude DR, Alvarez SE, Paugh SW, et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J 2008; 22(8): 2629-38.
[http://dx.doi.org/10.1096/fj.08-107169] [PMID: 18362204]
[11]
Luo B, Gan W, Liu Z, et al. Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 2016; 44(2): 287-302.
[http://dx.doi.org/10.1016/j.immuni.2016.01.002] [PMID: 26872696]
[12]
Segawa K, Nagata S. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends Cell Biol 2015; 25(11): 639-50.
[http://dx.doi.org/10.1016/j.tcb.2015.08.003] [PMID: 26437594]
[13]
Akakura S, Singh S, Spataro M, et al. The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 2004; 292(2): 403-16.
[http://dx.doi.org/10.1016/j.yexcr.2003.09.011] [PMID: 14697347]
[14]
Freire-de-Lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem 2006; 281(50): 38376-84.
[http://dx.doi.org/10.1074/jbc.M605146200] [PMID: 17056601]
[15]
Rosales C, Uribe-Querol E. Phagocytosis: A fundamental process in immunity. Biomed Res Int 2017; 2017: 9042851.
[http://dx.doi.org/10.1155/2017/9042851]
[16]
Ma Z, Thomas KS, Webb DJ, et al. Regulation of Rac1 activation by the low density lipoprotein receptor–related protein. J Cell Biol 2002; 159(6): 1061-70.
[http://dx.doi.org/10.1083/jcb.200207070] [PMID: 12499359]
[17]
Park D, Tosello-Trampont AC, Elliott MR, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450(7168): 430-4.
[http://dx.doi.org/10.1038/nature06329] [PMID: 17960134]
[18]
van Buul JD, Geerts D, Huveneers S. Rho GAPs and GEFs. Cell Adhes Migr 2014; 8(2): 108-24.
[http://dx.doi.org/10.4161/cam.27599] [PMID: 24622613]
[19]
Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122(5): 735-49.
[http://dx.doi.org/10.1016/j.cell.2005.06.043] [PMID: 16143105]
[20]
Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and macrophages as protagonists in vascular complications of diabetes. Front Cardiovasc Med 2020; 7: 10-0.
[http://dx.doi.org/10.3389/fcvm.2020.00010] [PMID: 32118048]
[21]
Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. Diabetes Res Clin Pract 2007; 77(1): 47-57.
[http://dx.doi.org/10.1016/j.diabres.2006.10.007] [PMID: 17112620]
[22]
Han S, Liang CP, DeVries-Seimon T, et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 2006; 3(4): 257-66.
[http://dx.doi.org/10.1016/j.cmet.2006.02.008] [PMID: 16581003]
[23]
Cash JG, Kuhel DG, Basford JE, et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem 2012; 287(33): 27876-84.
[http://dx.doi.org/10.1074/jbc.M112.377549] [PMID: 22730380]
[24]
Achari A, Jain S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18(6): 1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[25]
Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 2003; 278(41): 40352-63.
[http://dx.doi.org/10.1074/jbc.M300365200] [PMID: 12878598]
[26]
Abdolmaleki F, Kovanen PT, Mardani R, Gheibi-hayat SM, Bo S, Sahebkar A. Resolvins: Emerging players in autoimmune and inflammatory diseases. Clin Rev Allergy Immunol 2020; 58(1): 82-91.
[http://dx.doi.org/10.1007/s12016-019-08754-9] [PMID: 31267470]
[27]
Bathina S, Das UN. Resolvin D1 decreases severity of streptozotocin-induced type 1 diabetes mellitus by enhancing BDNF levels, reducing oxidative stress, and suppressing inflammation. Int J Mol Sci 2021; 22(4): 1516.
[http://dx.doi.org/10.3390/ijms22041516] [PMID: 33546300]
[28]
Iqbal J, Al Qarni A, Hawwari A, Alghanem AF, Ahmed G. Metabolic syndrome, dyslipidemia and regulation of lipoprotein metabolism. Curr Diabetes Rev 2018; 14(5): 427-33.
[http://dx.doi.org/10.2174/1573399813666170705161039] [PMID: 28677496]
[29]
Jackson WD, Weinrich TW, Woollard KJ. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci Rep 2016; 6(1): 20038.
[http://dx.doi.org/10.1038/srep20038] [PMID: 26821597]
[30]
Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res 2010; 51(7): 1719-28.
[http://dx.doi.org/10.1194/jlr.M003525] [PMID: 19965614]
[31]
Mauldin JP, Nagelin MH, Wojcik AJ, et al. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation 2008; 117(21): 2785-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741314] [PMID: 18490524]
[32]
Griffin E, Re A, Hamel N, et al. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med 2001; 7(7): 840-6.
[http://dx.doi.org/10.1038/89969] [PMID: 11433350]
[33]
Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 2013; 17(5): 695-708.
[http://dx.doi.org/10.1016/j.cmet.2013.04.001] [PMID: 23663738]
[34]
Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328(5986): 1689-93.
[http://dx.doi.org/10.1126/science.1189731] [PMID: 20488992]
[35]
Rahman K, Vengrenyuk Y, Ramsey SA, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest 2017; 127(8): 2904-15.
[http://dx.doi.org/10.1172/JCI75005] [PMID: 28650342]
[36]
Wang H, Ye J. Regulation of energy balance by inflammation: Common theme in physiology and pathology. Rev Endocr Metab Disord 2015; 16(1): 47-54.
[http://dx.doi.org/10.1007/s11154-014-9306-8] [PMID: 25526866]
[37]
Fernandez-Boyanapalli R, Goleva E, Kolakowski C, et al. Obesity impairs apoptotic cell clearance in asthma. J Allergy Clin Immunol 2013; 131: 1041-7.
[http://dx.doi.org/10.1016/j.jaci.2012.09.028]
[38]
Luo B, Wang Z, Zhang Z, Shen Z, Zhang Z. The deficiency of macrophage erythropoietin signaling contributes to delayed acute inflammation resolution in diet-induced obese mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865(2): 339-49.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.005] [PMID: 30292638]
[39]
Moon MH, Jeong JK, Park SY. Activation of S1P2 receptor, a possible mechanism of inhibition of adipogenic differentiation by sphingosine 1-phosphate. Mol Med Rep 2015; 11(2): 1031-6.
[http://dx.doi.org/10.3892/mmr.2014.2810] [PMID: 25351259]
[40]
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5: 532.
[http://dx.doi.org/10.3389/fimmu.2014.00532] [PMID: 25386178]
[41]
Takemura Y, Ouchi N, Shibata R, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor–dependent clearance of early apoptotic bodies. J Clin Invest 2007; 117(2): 375-86.
[http://dx.doi.org/10.1172/JCI29709] [PMID: 17256056]
[42]
Galvan MD, Hulsebus H, Heitker T, Zeng E, Bohlson SS. Complement protein C1q and adiponectin stimulate Mer tyrosine kinase-dependent engulfment of apoptotic cells through a shared pathway. J Innate Immun 2014; 6(6): 780-92.
[http://dx.doi.org/10.1159/000363295] [PMID: 24942043]
[43]
Apovian CM, Bigornia S, Mott M, et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008; 28(9): 1654-9.
[http://dx.doi.org/10.1161/ATVBAHA.108.170316] [PMID: 18566296]
[44]
Huang ZH, Manickam B, Ryvkin V, et al. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity. J Clin Endocrinol Metab 2013; 98(1): E17-24.
[http://dx.doi.org/10.1210/jc.2012-2697] [PMID: 23118428]
[45]
Yvan-Charvet L, Pagler TA, Seimon TA, et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res 2010; 106(12): 1861-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217281] [PMID: 20431058]
[46]
Bojic LA, Sawyez CG, Telford DE, Edwards JY, Hegele RA, Huff MW. Activation of peroxisome proliferator-activated receptor δ inhibits human macrophage foam cell formation and the inflammatory response induced by very low-density lipoprotein. Arterioscler Thromb Vasc Biol 2012; 32(12): 2919-28.
[http://dx.doi.org/10.1161/ATVBAHA.112.255208] [PMID: 23023367]
[47]
Palomer X, Barroso E, Pizarro-Delgado J, et al. PPARβ/δ: A key therapeutic target in metabolic disorders. Int J Mol Sci 2018; 19(3): 913.
[http://dx.doi.org/10.3390/ijms19030913] [PMID: 29558390]
[48]
Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017; 591(19): 2978-91.
[http://dx.doi.org/10.1002/1873-3468.12702] [PMID: 28555747]
[49]
Wilkinson IB, Prasad K, Hall IR, et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002; 39(6): 1005-11.
[http://dx.doi.org/10.1016/S0735-1097(02)01723-0] [PMID: 11897443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy