Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications

Author(s): Vasanti Suvarna, Rashmi Mallya, Kajal Deshmukh, Bhakti Sawant, Tabassum Asif Khan* and Abdelwahab Omri*

Volume 21, Issue 7, 2024

Published on: 24 August, 2023

Page: [961 - 977] Pages: 17

DOI: 10.2174/1567201820666230707161206

Price: $65

Abstract

The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.

Keywords: Bilosomes, bile salts, liposomes, vesicular carriers, transdermal, dermal.

Graphical Abstract
[1]
Jeong, W.Y.; Kwon, M.; Choi, H.E.; Kim, K.S. Recent advances in transdermal drug delivery systems: A review. Biomater. Res., 2021, 25(1), 24.
[http://dx.doi.org/10.1186/s40824-021-00226-6] [PMID: 34321111]
[2]
Pucek, A.; Tokarek, B.; Waglewska, E.; Bazylińska, U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics, 2020, 12(6), 587.
[http://dx.doi.org/10.3390/pharmaceutics12060587] [PMID: 32599791]
[3]
Thiruppathi, R.; Mishra, S.; Ganapathy, M.; Padmanabhan, P.; Gulyás, B. Nanoparticle functionalization and its potentials for molecular imaging. Adv. Sci., 2017, 4(3), 1600279.
[http://dx.doi.org/10.1002/advs.201600279] [PMID: 28331783]
[4]
Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2539-2544.
[http://dx.doi.org/10.1039/c2cs15294k] [PMID: 22310807]
[5]
Ahmad, J.; Singhal, M.; Amin, S.; Rizwanullah, M.; Akhter, S.; Kamal, M.A.; Haider, N.; Midoux, P.; Pichon, C. Bile salt stabilized vesicles (Bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr. Pharm. Des., 2017, 23(11), 1575-1588.
[http://dx.doi.org/10.2174/1381612823666170124111142] [PMID: 28120725]
[6]
Parashar, P.; Rana, P.; Dwivedi, M.; Saraf, S.A. Dextrose modified bilosomes for peroral delivery: Improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J. Liposome Res., 2019, 29(3), 251-263.
[http://dx.doi.org/10.1080/08982104.2018.1551408] [PMID: 30501440]
[7]
Rajput, T.; Chauhan, M.K. Bilosome: A bile salt based novel carrier system gaining interest in pharmaceutical research. J. Drug Deliv. Ther., 2017, 7(5), 4-16.
[http://dx.doi.org/10.22270/jddt.v7i5.1479]
[8]
Conacher, M.; Alexander, J.; Brewer, J.M. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine, 2001, 19(20-22), 2965-2974.
[http://dx.doi.org/10.1016/S0264-410X(00)00537-5] [PMID: 11282208]
[9]
Myschik, J.; Rades, T.; Hook, S. Advances in lipid-based subunit vaccine formulations. Curr. Immunol. Rev., 2009, 5(1), 42-48.
[http://dx.doi.org/10.2174/157339509787314378]
[10]
Palekar-Shanbhag, P.; Lande, S.; Chandra, R.; Rane, D. Bilosomes: Superior vesicular carriers. Curr. Drug Ther., 2020, 15(4), 312-320.
[http://dx.doi.org/10.2174/1574885514666190917145510]
[11]
Kumar, D.; Sharma, D.; Singh, G.; Singh, M.; Rathore, M.S. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN Pharm., 2012, 2012, 1-14.
[http://dx.doi.org/10.5402/2012/474830] [PMID: 22888455]
[12]
Shukla, A.; Mishra, V.; Kesharwani, P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov. Today, 2016, 21(6), 888-899.
[http://dx.doi.org/10.1016/j.drudis.2016.03.013] [PMID: 27038539]
[13]
Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf. B Biointerfaces, 2020, 195, 111262.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[14]
Aburahma, M.H. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2014, 1-21.
[http://dx.doi.org/10.3109/10717544.2014.976892] [PMID: 25390191]
[15]
Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics, 2020, 12(7), 684.
[http://dx.doi.org/10.3390/pharmaceutics12070684] [PMID: 32698388]
[16]
Valenta, C.; Nowack, E.; Bernkop-Schnürch, A. Deoxycholate-hydrogels: Novel drug carrier systems for topical use. Int. J. Pharm., 1999, 185(1), 103-111.
[http://dx.doi.org/10.1016/S0378-5173(99)00170-2] [PMID: 10425370]
[17]
Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules, 2015, 20(8), 14451-14473.
[http://dx.doi.org/10.3390/molecules200814451] [PMID: 26266402]
[18]
Gouri, J.M. Bilosomes  A novel vesicular carrier for drug delivery - a review. Indo Am. J. Pharm. Sci., 2022, 09(7), 528-534.
[19]
Teaima, M.H.; Alsofany, J.M.; El-Nabarawi, M.A.; el Nabarawi, A. Clove oil endorsed transdermal flux of dronedarone hydrochloride loaded bilosomal nanogel: Factorial design, in vitro evaluation and ex vivo permeation. AAPS PharmSciTech, 2022, 23(6), 182.
[http://dx.doi.org/10.1208/s12249-022-02337-2] [PMID: 35773361]
[20]
Saifi, Z.; Rizwanullah, M.; Mir, S.R.; Amin, S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: A complete characterization through in vitro, ex-vivo and in vivo assessment. J. Drug Deliv. Sci. Technol., 2020, 57, 101634.
[http://dx.doi.org/10.1016/j.jddst.2020.101634]
[21]
Salem, H.F.; Nafady, M.M.; Ali, A.A.; Khalil, N.M.; Elsisi, A.A. Evaluation of metformin hydrochloride tailoring bilosomes as an effective transdermal nanocarrier. Int. J. Nanomedicine, 2022, 17, 1185-1201.
[http://dx.doi.org/10.2147/IJN.S345505] [PMID: 35330695]
[22]
Imam, S.S.; Alshehri, S.; Altamimi, M.A.; Almalki, R.K.H.; Hussain, A.; Bukhari, S.I.; Mahdi, W.A.; Qamar, W. Formulation of chitosan-coated apigenin bilosomes: In vitro characterization, antimicrobial and cytotoxicity assessment. Polymers, 2022, 14(5), 921.
[http://dx.doi.org/10.3390/polym14050921] [PMID: 35267744]
[23]
Mohsen, A.M.; Salama, A.; Kassem, A.A. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2020, 59, 101910. [Internet].
[http://dx.doi.org/10.1016/j.jddst.2020.101910]
[24]
Wilkhu, J.S.; McNeil, S.E.; Anderson, D.E.; Perrie, Y. Characterization and optimization of bilosomes for oral vaccine delivery. J. Drug Target., 2013, 21(3), 291-299.
[http://dx.doi.org/10.3109/1061186X.2012.747528] [PMID: 30952177]
[25]
Dai, Y.; Zhou, R.; Liu, L.; Lu, Y.; Qi, J.; Wu, W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): In vitro characterization and improved corneal permeation. Int. J. Nanomedicine, 2013, 8, 1921-1933.
[PMID: 23690687]
[26]
Guan, P.; Lu, Y.; Qi, J.; Niu, M.; Lian, R.; Hu, F.; Wu, W. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. Int. J. Nanomedicine, 2011, 6, 965-974.
[PMID: 21720508]
[27]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[28]
Chen, M.; Liu, X.; Fahr, A. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. Int. J. Pharm., 2011, 408(1-2), 223-234.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.006] [PMID: 21316430]
[29]
Gonzalez, J.P.; Todd, P.A. Tenoxicam: A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs, 1987, 34(3), 289-310.
[http://dx.doi.org/10.2165/00003495-198734030-00001]
[30]
Negi, L.M.; Chauhan, M.; Garg, A.K. Nano-appended transdermal gel of Tenoxicam via ultradeformable drug carrier system. J. Exp. Nanosci., 2013, 8(5), 657-669.
[http://dx.doi.org/10.1080/17458080.2011.597441]
[31]
Gwak, H.S.; Chun, K.; In, K.C. In vitro percutaneous absorption of tenoxicam from pressure-sensitive adhesive matrices across the hairless mouse skin. Arch. Pharm. Res., 2001, 24(6), 578-583.
[http://dx.doi.org/10.1007/BF02975169] [PMID: 11794539]
[32]
Al-mahallawi, A.M.; Abdelbary, A.A.; Aburahma, M.H. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int. J. Pharm., 2015, 485(1-2), 329-340.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.033] [PMID: 25796122]
[33]
Joseph, J.; B N, V.H.; D, R.D. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci., 2018, 112, 38-51.
[http://dx.doi.org/10.1016/j.ejps.2017.10.032] [PMID: 29111151]
[34]
Ahmed, S.; Kassem, M.A.; Sayed, S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int. J. Nanomedicine, 2020, 15, 9783-9798.
[http://dx.doi.org/10.2147/IJN.S278688] [PMID: 33324052]
[35]
Elkomy, M.H.; Alruwaili, N.K.; Elmowafy, M.; Shalaby, K.; Zafar, A.; Ahmad, N.; Alsalahat, I.; Ghoneim, M.M.; Eissa, E.M.; Eid, H.M. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics, 2022, 14(3), 563.
[http://dx.doi.org/10.3390/pharmaceutics14030563] [PMID: 35335939]
[36]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[37]
Verbruggen, G. Chondroprotective drugs in degenerative joint diseases. Rheumatology, 2006, 45(2), 129-138.
[http://dx.doi.org/10.1093/rheumatology/kei171] [PMID: 16278282]
[38]
Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J. Liposome Res., 2019, 29(1), 73-85.
[http://dx.doi.org/10.1080/08982104.2018.1430831] [PMID: 29355060]
[39]
Abbas, H.; El Sayed, N.S.; Ali, M.E.; Elsheikh, M.A. Integrated lecithin-bile salt nanovesicles as a promising approach for effective skin delivery of luteolin to improve UV-induced skin damage in Wistar Albino rats. Colloids Surf. B Biointerfaces, 2022, 211, 112299.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112299] [PMID: 34953364]
[40]
Jain, S.K.; Gupta, A. Development of gelucire 43/01 beads of metformin hydrochloride for floating delivery. AAPS PharmSciTech, 2009, 10(4), 1128-1136.
[http://dx.doi.org/10.1208/s12249-009-9302-6] [PMID: 19830579]
[41]
Khalil, R.M.; Abdelbary, A.; Kocova El-Arini, S.; Basha, M.; El-Hashemy, H.A. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: In vitro and ex vivo optimization. J. Liposome Res., 2019, 29(2), 171-182.
[http://dx.doi.org/10.1080/08982104.2018.1524482] [PMID: 30221568]
[42]
Carpéné, C.; Les, F.; Cásedas, G.; Peiro, C.; Fontaine, J.; Chaplin, A.; Mercader, J.; López, V. Resveratrol anti-obesity effects: Rapid inhibition of adipocyte glucose utilization. Antioxidants, 2019, 8(3), 74.
[http://dx.doi.org/10.3390/antiox8030074] [PMID: 30917543]
[43]
Ornelas-Hernández, L.F.; Garduno-Robles, A.; Zepeda-Moreno, A. A brief review of carbon dots-silica nanoparticles synthesis and their potential use as biosensing and theragnostic applications. Nanoscale Res. Lett., 2022, 17(1), 56.
[http://dx.doi.org/10.1186/s11671-022-03691-7] [PMID: 35661270]
[44]
Ammar, H.O.; Mohamed, M.I.; Tadros, M.I.; Fouly, A.A. Transdermal delivery of ondansetron hydrochloride via bilosomal systems: In vitro, ex vivo, and in vivo characterization studies. AAPS PharmSciTech, 2018, 19(5), 2276-2287.
[http://dx.doi.org/10.1208/s12249-018-1019-y] [PMID: 29845503]
[45]
Ammar, H.O.; Mohamed, M.I.; Tadros, M.I.; Fouly, A.A. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. J. Pharm. Investig., 2020, 50(6), 613-624.
[http://dx.doi.org/10.1007/s40005-020-00491-y]
[46]
Albash, R.; El-Nabarawi, M.A.; Refai, H.; Abdelbary, A.A. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: In-vitro characterization, ex-vivo permeation and in-vivo assessment. Int. J. Nanomedicine, 2019, 14, 6555-6574.
[http://dx.doi.org/10.2147/IJN.S213613] [PMID: 31616143]
[47]
Zafar, A.; Imam, S.S.; Alruwaili, N.K.; Yasir, M.; Alsaidan, O.A.; Alshehri, S.; Ghoneim, M.M.; Khalid, M.; Alquraini, A.; Alharthi, S.S. Formulation and evaluation of topical nano-lipid-based delivery of butenafine: in vitro characterization and antifungal activity. Gels, 2022, 8(2), 133.
[http://dx.doi.org/10.3390/gels8020133] [PMID: 35200513]
[48]
Wang, R.; Li, Q.; He, Y.; Yang, Y.; Ma, Q.; Li, C. miR‐29c‐3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson’s disease. Genes Cells, 2020, 25(6), 364-374.
[http://dx.doi.org/10.1111/gtc.12764] [PMID: 32160394]
[49]
Dong, Y.; Xiong, J.; Ji, L.; Xue, X. MiR-421 aggravates neurotoxicity and promotes cell death in parkinson’s disease models by directly targeting MEF2D. Neurochem. Res., 2021, 46(2), 299-308.
[http://dx.doi.org/10.1007/s11064-020-03166-0] [PMID: 33179210]
[50]
El Menshawe, S.F.; Aboud, H.M.; Elkomy, M.H.; Kharshoum, R.M.; Abdeltwab, A.M. A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: Artificial neural network optimization, in vitro characterization and in vivo evaluation. Drug Deliv. Transl. Res., 2020, 10(2), 471-485.
[http://dx.doi.org/10.1007/s13346-019-00688-1] [PMID: 31677149]
[51]
Abdelalim, L.R.; Abdallah, O.Y.; Elnaggar, Y.S.R. High efficacy, rapid onset nanobiolosomes of sildenafil as a topical therapy for erectile dysfunction in aged rats. Int. J. Pharm., 2020, 591, 119978.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119978] [PMID: 33122159]
[52]
Zhang, Y.; Zhang, S.; Tan, B.; Guo, L.; Li, H. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution. J. Colloid Interface Sci., 2021, 604, 1-14.
[http://dx.doi.org/10.1016/j.jcis.2021.07.034] [PMID: 34261015]
[53]
Sharma, A.; Das, J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnology, 2019, 17(1), 92.
[http://dx.doi.org/10.1186/s12951-019-0525-8] [PMID: 31451110]
[54]
Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Fabrication of novel elastosomes for boosting the transdermal delivery of diacerein: Statistical optimization, ex-vivo permeation, in-vivo skin deposition and pharmacokinetic assessment compared to oral formulation. Drug Deliv., 2018, 25(1), 815-826.
[http://dx.doi.org/10.1080/10717544.2018.1451572] [PMID: 29557244]
[55]
Chilkawar, R.N.; Labs, M.; Nanjwade, B.K.; Life, T.; Pvt, S.; Idris, S. Bilosomes based drug delivery system. J Chem. App., 2015, 2(1)
[56]
Elnaggar, Y. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomedicine, 2015, 10, 3955-3971.
[http://dx.doi.org/10.2147/IJN.S82558] [PMID: 26109855]
[57]
Elnaggar, Y.S.R.; El-Refaie, W.M.; El-Massik, M.A.; Abdallah, O.Y. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J. Control. Release, 2014, 180(1), 10-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.004] [PMID: 24531009]
[58]
El-Nabarawi, M.A.; Shamma, R.N.; Farouk, F.; Nasralla, S.M. Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: Preparation, characterization and in vivo skin deposition assay. J. Liposome Res., 2020, 30(1), 1-11.
[http://dx.doi.org/10.1080/08982104.2019.1577256] [PMID: 31010357]
[59]
Berwal, D.; Kumar, S. Development of leishmania donova niantigen loaded mannosylated bilosomesto target m-cells: In vitro characterization. World J. Pharm. Pharm. Sci., 2014, 3, 1983-1999.
[60]
Waglewska, E.; Pucek-Kaczmarek, A.; Bazylińska, U. Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials, 2020, 10(12), 2472.
[http://dx.doi.org/10.3390/nano10122472] [PMID: 33321762]
[61]
Elnaggar, Y.S.R.; Omran, S.; Hazzah, H.A.; Abdallah, O.Y. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int. J. Pharm., 2019, 564, 410-425.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.069] [PMID: 31029657]
[62]
Shukla, A.; Singh, B.; Katare, O.P. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano‐bilosomes. Br. J. Pharmacol., 2011, 164(2b), 820-827.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01452.x] [PMID: 21506959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy