Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Brain-targeted Nano-architectures for Efficient Drug Delivery and Sensitization in Glioblastoma

Author(s): Jeswanthi Aishwarya Vibhavari Ravuluri, Vanishree Rao, Gautam Kumar, Suman Manandhar, Sri Pragnya Cheruku, Priya Bisht, Mallikarjuna Rao Chamallmudi, Krishnadas Nandakumar, Lalit Kumar and Nitesh Kumar*

Volume 29, Issue 22, 2023

Published on: 19 July, 2023

Page: [1775 - 1790] Pages: 16

DOI: 10.2174/1381612829666230703113141

Price: $65

Abstract

Due to ineffective diagnosis and analysis, glioblastoma multiforme (GBM), is still the most aggressive form of all cancers. Standard therapy for GBM comprises resection surgery following chemo and radiotherapy, which offers less efficacious treatment to the malignant nature of glioma. Several treatment strategies involving gene therapy, immunotherapy, and angiogenesis inhibition have been employed recently as alternative therapeutics. The main drawback of chemotherapy is resistance, which is mainly due to the enzymes involved in the therapeutic pathways. Our objective is to provide a clear insight into various nano-architectures used in the sensitization of GBM and their importance in drug delivery and bioavailability. This review includes the overview and summary of articles from Pubmed and Scopus search engines. The present era’s synthetic and natural drugs used in the treatment of GBM are facing poor Blood Brain Barrier (BBB) permeability issues due to greater particle size. This problem can be resolved by using the nanostructures that showcase high specificity to cross the BBB with their nano-scale size and broader surface area. Nano-architectures act as promising tools for effective brain-targeted drug delivery at a concentration well below the final dose of free drug, thus resulting in safe therapeutic effects and reversal of chemoresistance. The present review focuses on the mechanisms involved in the resistance of glioma cells to chemotherapeutic agents, nano-pharmacokinetics, diverse types of nano-architectures used for potent delivery of the medicine and sensitization in GBM, their recent clinical advances, potential challenges, and future perspective.

Keywords: Nanoparticles, glioblastoma, resistance, sensitization, temozolomide, drug delivery.

[1]
Żukiel R, Piestrzeniewicz R, Nowak S, et al. History of surgical treatment of brain tumors. 2004; 6: 9-19.
[2]
Sun YS. Direct-current electric field distribution in the brain for tumor treating field applications: A simulation study. Comput Math Methods Med 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/3829768] [PMID: 29681995]
[3]
Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic Drugs: DNA damage and repair in glioblastoma. Cancers 2017; 9(6): 57.
[http://dx.doi.org/10.3390/cancers9060057] [PMID: 28587121]
[4]
Wesolowski JR, Rajdev P, Mukherji SK. Temozolomide (Temodar). AJNR Am J Neuroradiol 2010; 31(8): 1383-4.
[http://dx.doi.org/10.3174/ajnr.A2170] [PMID: 20538821]
[5]
Davis B, Shen Y, Poon CC, et al. Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors. Neuro-oncol 2016; 18(3): 350-60.
[http://dx.doi.org/10.1093/neuonc/nov143] [PMID: 26245525]
[6]
Baker SD, Wirth M, Statkevich P, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 1999; 5(2): 309-17.
[PMID: 10037179]
[7]
Nikaki A, Piperi C, Papavassiliou AG. Role of microRNAs in gliomagenesis: Targeting miRNAs in glioblastoma multiforme therapy. Expert Opin Investig Drugs 2012; 21(10): 1475-88.
[http://dx.doi.org/10.1517/13543784.2012.710199] [PMID: 22809292]
[8]
Salim S. Identification of polyphenoilc compounds within fruit extracts and their role in the treatment of glioma. University of Central Lancashire 2017.
[9]
Luby S, Lubyová M, Šiffalovič P, et al. A brief history of nanoscience and foresight in nanotechnology, Nanomaterials, and Nanoarchitectures. Springer 2015; pp. 63-86.
[10]
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res 1995; 55(17): 3752-6.
[PMID: 7641188]
[11]
Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: Control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(4): 391-404.
[http://dx.doi.org/10.1002/wnan.40] [PMID: 20049805]
[12]
Jena L, McErlean E, McCarthy H. Delivery across the blood-brain barrier: Nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res 2020; 10(2): 304-18.
[http://dx.doi.org/10.1007/s13346-019-00679-2] [PMID: 31728942]
[13]
Shen S, Xu X, Lin S, et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol 2021; 16(1): 104-13.
[http://dx.doi.org/10.1038/s41565-020-00793-0] [PMID: 33437035]
[14]
Kitange GJ, Carlson BL, Schroeder MA, et al. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro-oncol 2009; 11(3): 281-91.
[http://dx.doi.org/10.1215/15228517-2008-090] [PMID: 18952979]
[15]
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[16]
Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 2005; 65(14): 6394-400.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0715] [PMID: 16024643]
[17]
Perazzoli G, Prados J, Ortiz R, et al. Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression. PLoS One 2015; 10(10): e0140131.
[http://dx.doi.org/10.1371/journal.pone.0140131] [PMID: 26447477]
[18]
Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li CH, Leung GK. MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res 2012; 32(7): 2835-41.
[PMID: 22753745]
[19]
Kitange GJ, Mladek AC, Carlson BL, et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 2012; 18(15): 4070-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0560] [PMID: 22675172]
[20]
Munoz JL, Walker ND, Scotto KW, Rameshwar P. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett 2015; 367(1): 69-75.
[http://dx.doi.org/10.1016/j.canlet.2015.07.013] [PMID: 26208431]
[21]
Musah-Eroje A, Watson S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 2019; 142(2): 231-40.
[http://dx.doi.org/10.1007/s11060-019-03107-0] [PMID: 30694423]
[22]
Qiu ZK, Shen D, Chen YS, et al. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer 2014; 33(2): 115-22.
[http://dx.doi.org/10.5732/cjc.012.10236] [PMID: 23958055]
[23]
Kumar N, Rao V, Kumar G, et al. Temozolomide resistance: A multifarious review on mechanisms beyond O-6-Methylguanine-DNA methyltransferase. CNS Neurol Disord Drug Targets 2023; 22(6): 817-31.
[http://dx.doi.org/10.2174/1871527321666220404180944] [PMID: 35379142]
[24]
Yang RSH, Chang LW, Yang CS, Lin P. Pharmacokinetics and physiologically-based pharmacokinetic modeling of nanoparticles. J Nanosci Nanotechnol 2010; 10(12): 8482-90.
[http://dx.doi.org/10.1166/jnn.2010.2687] [PMID: 21121357]
[25]
Sahab Uddin MD. Nanoparticles as nanopharmaceuticals: A smart drug delivery system. Nanoparticulate Drug Delivery Systems. 2019; p. 85.
[http://dx.doi.org/10.1201/9781351137263-3]
[26]
Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharm 1993; 94(1-3): 115-23.
[http://dx.doi.org/10.1016/0378-5173(93)90015-8]
[27]
Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 2008; 85(1): 11-9.
[http://dx.doi.org/10.1016/j.yexmp.2008.03.007] [PMID: 18482721]
[28]
Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin: First member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999; 5(1): 83-94.
[PMID: 9918206]
[29]
Singh M, Mazumder B. Recent advancements in nanodiamond mediated brain targeted drug delivery and bioimaging of brain ailments: A holistic review. Pharm Nanotechnol 2022; 10(1): 42-55.
[http://dx.doi.org/10.2174/2211738510666211222111938] [PMID: 34951376]
[30]
Trivedi S, Bhoyar V, Akojwar N, Belgamwar V. Transport of nanocarriers to brain for treatment of glioblastoma multiforme: Routes and challenges. Nano Trends 2023; 1: 100005.
[http://dx.doi.org/10.1016/j.nwnano.2023.100005]
[31]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[32]
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely triggered nano-theranostics for cancer applications. Nanotheranostics 2017; 1(1): 1-22.
[http://dx.doi.org/10.7150/ntno.17109] [PMID: 28191450]
[33]
Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008; 5(4): 496-504.
[http://dx.doi.org/10.1021/mp800049w] [PMID: 18611037]
[34]
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: Current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20(1): 412.
[http://dx.doi.org/10.1186/s12951-022-01610-7] [PMID: 36109754]
[35]
Kaur IP, Bhandari R, Bhandari S, et al. Potential of solid lipid nanoparticles in brain targeting. J Control Rel 2008; 127: 97-109.
[36]
Cox B, Nicolaï J, Williamson B. The role of the efflux transporter, P-glycoprotein, at the blood–brain barrier in drug discovery. Biopharm Drug Dispos 2023; 44(1): 113-26.
[http://dx.doi.org/10.1002/bdd.2331] [PMID: 36198662]
[37]
Allen TM, Cheng WW, Hare JI, Laginha KM. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents Med Chem 2006; 6(6): 513-23.
[http://dx.doi.org/10.2174/187152006778699121] [PMID: 17100556]
[38]
Nyman DW, Campbell KJ, Hersh E, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 2005; 23(31): 7785-93.
[http://dx.doi.org/10.1200/JCO.2004.00.6148] [PMID: 16258082]
[39]
Emilienne Soma C, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 2000; 21(1): 1-7.
[http://dx.doi.org/10.1016/S0142-9612(99)00125-8] [PMID: 10619673]
[40]
Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300(5624): 1434-6.
[http://dx.doi.org/10.1126/science.1083780] [PMID: 12775841]
[41]
Lim YJN, Scott NE, Bawendi MG, et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003; 2: 50-64.
[42]
Morgan NY, English S, Chen W, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots1. Acad Radiol 2005; 12(3): 313-23.
[http://dx.doi.org/10.1016/j.acra.2004.04.023] [PMID: 15766692]
[43]
Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 2008; 354(1-2): 217-26.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.036] [PMID: 18191350]
[44]
Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2007; 2(11): 713-7.
[http://dx.doi.org/10.1038/nnano.2007.347] [PMID: 18654411]
[45]
De la Zerda A, Zavaleta C, Keren S, et al. Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat Nanotechnol 2008; 3: 557-62.
[http://dx.doi.org/10.1038/nnano.2008.231] [PMID: 18772918]
[46]
Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Crémillieux Y. In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 2009; 9(3): 1023-7.
[http://dx.doi.org/10.1021/nl8032608] [PMID: 19199447]
[47]
Gonzalez-Carter D, Liu X, Tockary TA, et al. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc Natl Acad Sci USA 2020; 117(32): 19141-50.
[http://dx.doi.org/10.1073/pnas.2002016117] [PMID: 32703811]
[48]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta, Gen Subj 2012; 1820(3): 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[49]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[50]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[51]
Budisa N, Schulze-Makuch D. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life 2014; 4(3): 331-40.
[http://dx.doi.org/10.3390/life4030331] [PMID: 25370376]
[52]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[53]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[54]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[55]
Qiao Y, Wan J, Zhou L, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(1): e1527.
[http://dx.doi.org/10.1002/wnan.1527] [PMID: 29726115]
[56]
Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res 2020; 10(6): 1876-87.
[http://dx.doi.org/10.1007/s13346-020-00773-w] [PMID: 32367425]
[57]
Lakkadwala S, Dos Santos Rodrigues B, Sun C, et al. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J Control Rel 2019; 307: 247-60.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.033]
[58]
Hegde MM, Prabhu S, Mutalik S, Chatterjee A, Goda JS, Satish Rao BS. Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: Recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J Pharm Investig 2022; 52(1): 49-74.
[http://dx.doi.org/10.1007/s40005-021-00548-6]
[59]
Fathi M, Barar J. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Bioimpacts 2017; 7(1): 49-57.
[http://dx.doi.org/10.15171/bi.2017.07] [PMID: 28546953]
[60]
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. J Polym Sci A Polym Chem 2016; 54(22): 3525-50.
[http://dx.doi.org/10.1002/pola.28252]
[61]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[62]
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology 2023; 34(7): 072001.
[http://dx.doi.org/10.1088/1361-6528/ac9683] [PMID: 36179653]
[63]
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750-63.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[64]
Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005; 1(3): 242-50.
[http://dx.doi.org/10.1039/b500266d] [PMID: 16880988]
[65]
Schwartz SG, Scott IU, Flynn HW Jr, Stewart MW. Drug delivery techniques for treating age-related macular degeneration. Expert Opin Drug Deliv 2014; 11(1): 61-8.
[http://dx.doi.org/10.1517/17425247.2013.859135] [PMID: 24219407]
[66]
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16(10): 1564-9.
[http://dx.doi.org/10.1023/A:1018983904537] [PMID: 10554098]
[67]
Andrieux K, Garcia-Garcia E, Kim HR, et al. Colloidal carriers: A promising way to treat central nervous system diseases. J Neurosci 2009; 1: 17-34.
[68]
Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008; 5(2): 155-74.
[http://dx.doi.org/10.1517/17425247.5.2.155] [PMID: 18248316]
[69]
Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[70]
Bikhezar F, de Kruijff RM, van der Meer AJGM, et al. Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma. J Neurooncol 2020; 146(2): 239-46.
[http://dx.doi.org/10.1007/s11060-019-03365-y] [PMID: 31875307]
[71]
Luque-Michel E, Lemaire L, Blanco-Prieto MJ. SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res 2021; 11(2): 515-23.
[http://dx.doi.org/10.1007/s13346-020-00880-8] [PMID: 33405212]
[72]
Pantshwa JM, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. Nanodrug delivery systems for the treatment of ovarian cancer. Cancers 2020; 12(1): 213.
[http://dx.doi.org/10.3390/cancers12010213] [PMID: 31952210]
[73]
Yu F, Jiang F, Tang X, Wang B. N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: Characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev Ind Pharm 2018; 44(4): 615-23.
[http://dx.doi.org/10.1080/03639045.2017.1405973] [PMID: 29188736]
[74]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010; 6(6): 714-29.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[75]
Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin Drug Deliv 2010; 7(1): 49-62.
[http://dx.doi.org/10.1517/17425240903380446] [PMID: 20017660]
[76]
Agrawal P, Sonali , Singh RP, et al. Bioadhesive micelles of d-α- tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf B Biointerfaces 2017; 152: 277-88.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.021] [PMID: 28122295]
[77]
Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Deliv Sci Technol 2020; 57: 101343.
[http://dx.doi.org/10.1016/j.jddst.2019.101343]
[78]
Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014; 2014: 1-19.
[http://dx.doi.org/10.1155/2014/507273]
[79]
Kesharwani P, Amin MCIM, Giri N, et al. Dendrimers in targeting and delivery of drugs, Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Elsevier 2017; pp. 363-88.
[80]
Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur Polym J 2020; 126: 109546.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109546]
[81]
He H, Li Y, Jia XR, et al. PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32(2): 478-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.002] [PMID: 20934215]
[82]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[83]
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. ‘Dendrimer-Cationized-Albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2019; 555: 77-99.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.035] [PMID: 30448308]
[84]
Mahajan S, Patharkar A, Kuche K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm 2018; 548(1): 540-58.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[85]
He H, Gao C. A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water. Molecules 2010; 15(7): 4679-94.
[http://dx.doi.org/10.3390/molecules15074679] [PMID: 20657385]
[86]
Rakov EG. Methods for preparation of carbon nanotubes. Russ Chem Rev 2000; 69(1): 35-52.
[http://dx.doi.org/10.1070/RC2000v069n01ABEH000531]
[87]
Harsha PJ, Thotakura N, Kumar M, et al. A novel PEGylated carbon nanotube conjugated mangiferin: An explorative nanomedicine for brain cancer cells. J Drug Deliv Sci Technol 2019; 53: 101186.
[http://dx.doi.org/10.1016/j.jddst.2019.101186]
[88]
You Y, Wang N, He L, et al. Designing dual-functionalized carbon nanotubes with high blood–brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 2019; 48(5): 1569-73.
[http://dx.doi.org/10.1039/C8DT03948H] [PMID: 30499579]
[89]
Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov Today 2018; 23(6): 1219-32.
[http://dx.doi.org/10.1016/j.drudis.2018.01.006] [PMID: 29366761]
[90]
Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205.
[http://dx.doi.org/10.1039/C8NR08970A] [PMID: 30874284]
[91]
Sonali MK, Viswanadh MK, Singh RP, et al. Nanotheranostics: Emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2018; 2(1): 70-86.
[http://dx.doi.org/10.7150/ntno.21638] [PMID: 29291164]
[92]
Norden AD, Drappatz J, Wen PY. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol 2008; 7(12): 1152-60.
[http://dx.doi.org/10.1016/S1474-4422(08)70260-6] [PMID: 19007739]
[93]
Pandey S, Oza G, Mewada A, Shah R, Thakur M, Sharon M. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J Mater Chem B Mater Biol Med 2013; 1(9): 1361-70.
[http://dx.doi.org/10.1039/c2tb00168c] [PMID: 32260809]
[94]
Alle M, Kim TH, Park SH, Lee SH, Kim JC. Doxorubicin- carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr Polym 2020; 229: 115511.
[http://dx.doi.org/10.1016/j.carbpol.2019.115511] [PMID: 31826400]
[95]
Abdal Dayem A, Hossain M, Lee S, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 2017; 18(1): 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[96]
Salazar-García S, García-Rodrigo JF, Martínez-Castañón GA, Ruiz-Rodríguez VM, Portales-Pérez DP, Gonzalez C. Silver nanoparticles (AgNPs) and zinc chloride (ZnCl2) exposure order determines the toxicity in C6 rat glioma cells. J Nanopart Res 2020; 22(9): 253.
[http://dx.doi.org/10.1007/s11051-020-04984-7]
[97]
Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 2009; 74(1): M46-52.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01013.x] [PMID: 19200107]
[98]
Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010; 7(9): 1063-77.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[99]
Wang ZL. Zinc oxide nanostructures: Growth, properties and applications. J Phys Condens Matter 2004; 16(25): R829-58.
[http://dx.doi.org/10.1088/0953-8984/16/25/R01]
[100]
Sharma AK, Singh V, Gera R, Purohit MP, Ghosh D. Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion. Mol Neurobiol 2017; 54(8): 6273-86.
[http://dx.doi.org/10.1007/s12035-016-0133-7] [PMID: 27714634]
[101]
Makharza SA, Cirillo G, Vittorio O, et al. Magnetic graphene oxide nanocarrier for targeted delivery of cisplatin: A perspective for glioblastoma treatment. Pharmaceuticals 2019; 12(2): 76.
[http://dx.doi.org/10.3390/ph12020076] [PMID: 31109098]
[102]
Ramalho MJ, Sevin E, Gosselet F, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm 2018; 545(1-2): 84-92.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.062] [PMID: 29715532]
[103]
Kadari A, Pooja D, Gora RH, et al. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm 2018; 132: 168-79.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.012] [PMID: 30244167]
[104]
Wang L, Wang X, Shen L, et al. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed Pharmacother 2021; 138: 111461.
[http://dx.doi.org/10.1016/j.biopha.2021.111461] [PMID: 33706131]
[105]
Velpurisiva P, Piel B, Lepine J, Rai P. GSK461364A, a polo-like kinase-1 inhibitor encapsulated in polymeric nanoparticles for the treatment of glioblastoma multiforme (GBM). Bioengineering 2018; 5(4): 83.
[http://dx.doi.org/10.3390/bioengineering5040083] [PMID: 30304810]
[106]
Grillone A, Battaglini M, Moscato S, et al. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine 2019; 14(6): 727-52.
[http://dx.doi.org/10.2217/nnm-2018-0436] [PMID: 30574827]
[107]
Wang L, Liu C, Qiao F, et al. Analysis of the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel-loaded nanoparticles in glioblastoma cells in vitro. Exp Ther Med 2021; 21(4): 292.
[http://dx.doi.org/10.3892/etm.2021.9723] [PMID: 33717235]
[108]
Pellosi DS, Paula LB, de Melo MT, Tedesco AC. Targeted and synergic glioblastoma treatment: Multifunctional nanoparticles delivering verteporfin as adjuvant therapy for temozolomide chemotherapy. Mol Pharm 2019; 16(3): 1009-24.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01001] [PMID: 30698450]
[109]
Cai X, Bandla A, Chuan CK, et al. Identifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy. Mater Horiz 2019; 6(2): 311-7.
[http://dx.doi.org/10.1039/C8MH00946E]
[110]
Kuo YC, Hsu CC. Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme. J Taiwan Inst Chem Eng 2017; 77: 10-20.
[http://dx.doi.org/10.1016/j.jtice.2017.04.026]
[111]
Gregory JV, Kadiyala P, Doherty R, et al. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat Commun 2020; 11(1): 5687.
[http://dx.doi.org/10.1038/s41467-020-19225-7] [PMID: 33173024]
[112]
Turan O, Bielecki PA, Perera V, et al. Treatment of glioblastoma using multicomponent silica nanoparticles. Adv Ther 2019; 2(11): 1900118.
[http://dx.doi.org/10.1002/adtp.201900118] [PMID: 32953978]
[113]
Kuo YC, Wang IH. Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. J Taiwan Inst Chem Eng 2017; 77: 73-82.
[http://dx.doi.org/10.1016/j.jtice.2017.05.003]
[114]
Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine 2018; 13(20): 2579-96.
[http://dx.doi.org/10.2217/nnm-2018-0110] [PMID: 30334671]
[115]
Kutwin M, Sawosz E, Jaworski S, et al. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch Med Sci 2017; 6(6): 1322-34.
[http://dx.doi.org/10.5114/aoms.2016.58925] [PMID: 29181062]
[116]
Norouzi M, Yathindranath V, Thliveris JA, Miller DW. Salinomycin-loaded iron oxide nanoparticles for glioblastoma therapy. Nanomaterials 2020; 10(3): 477.
[http://dx.doi.org/10.3390/nano10030477] [PMID: 32155938]
[117]
Younas Iqbal MKM, Wang J, Wang C, et al. Synthesis and growth mechanism of ZnO nanospheres by hydrothermal process and their anticancer effect against glioblastoma multiforme. Biom Lett 2020; 6: 17-22.
[118]
Taghizadehghalehjoughi A, Hacimuftuoglu A, Cetin M, et al. Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. Nanomedicine 2018; 13(13): 1595-606.
[http://dx.doi.org/10.2217/nnm-2017-0386] [PMID: 30028222]
[119]
Velpurisiva P, Rai P. Synergistic action of gefitinib and GSK41364A simultaneously loaded in ratiometrically-engineered polymeric nanoparticles for glioblastoma multiforme. J Clin Med 2019; 8(3): 367.
[http://dx.doi.org/10.3390/jcm8030367] [PMID: 30875975]
[120]
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004; 49: 309-15.
[http://dx.doi.org/10.1088/0031-9155/49/18/N03]
[121]
Alric C, Bazzi R, Lux F, et al. The design of hybrid nanoparticles for image-guided radiotherapyFunctional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices. ACS Publications 2012; Vol. 2: pp. 95-143.
[http://dx.doi.org/10.1021/bk-2012-1113.ch007]
[122]
Liu PD, Jin H, Guo Z, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomedicine 2016; 11: 5003-14.
[http://dx.doi.org/10.2147/IJN.S115473] [PMID: 27757033]
[123]
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10(1): 11292.
[http://dx.doi.org/10.1038/s41598-020-68017-y] [PMID: 32647151]
[124]
Sheykhzadeh S, Luo M, Peng B, et al. Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Sci Rep 2020; 10(1): 2320.
[http://dx.doi.org/10.1038/s41598-020-59146-5] [PMID: 32047170]
[125]
Lu Z, Li Y, Shi Y, Li Y, Xiao Z, Zhang X. Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv Funct Mater 2017; 27(46): 1703967.
[http://dx.doi.org/10.1002/adfm.201703967]
[126]
Zhou J, Patel TR, Sirianni RW, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci USA 2013; 110(29): 11751-6.
[http://dx.doi.org/10.1073/pnas.1304504110] [PMID: 23818631]
[127]
Inoue T, Yamashita Y, Nishihara M, et al. Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro-oncol 2009; 11(2): 151-7.
[http://dx.doi.org/10.1215/15228517-2008-068] [PMID: 18755917]
[128]
Sayiner O, Arisoy S, Comoglu T, Ozbay FG, Esendagli G. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. J Drug Deliv Sci Technol 2020; 57: 101627.
[http://dx.doi.org/10.1016/j.jddst.2020.101627]
[129]
Denora N, Lee C, Iacobazzi RM, et al. TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging. Eur J Pharm Sci 2019; 139: 105047.
[http://dx.doi.org/10.1016/j.ejps.2019.105047] [PMID: 31422171]
[130]
Marino A, Almici E, Migliorin S, et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J Colloid Interface Sci 2019; 538: 449-61.
[http://dx.doi.org/10.1016/j.jcis.2018.12.014] [PMID: 30537658]
[131]
Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020; 18(1): 122.
[http://dx.doi.org/10.1186/s12951-020-00684-5] [PMID: 32883290]
[132]
Cha GD, Kang T, Baik S, et al. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Rel 2020; 328: 350-67.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.002]
[133]
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 2018; 13(1): 105-37.
[http://dx.doi.org/10.2217/nnm-2017-0286] [PMID: 29161215]
[134]
Zhu Y, Jiang Y, Meng F, et al. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. J Control Rel 2018; 278: 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.025]
[135]
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev 2016; 116(4): 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[136]
Wu H, Lu H, Xiao W, et al. Sequential targeting in crosslinking nanotheranostics for tackling the multibarriers of brain tumors. Advanced materials 2020; 32: e1903759.
[http://dx.doi.org/10.1002/adma.201903759]
[137]
Zheng M, Liu Y, Wang Y, et al. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Advanced materials 2019; 31: e1903277.
[138]
Hua L, Wang Z, Zhao L, et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018; 8(18): 5088-105.
[http://dx.doi.org/10.7150/thno.26225] [PMID: 30429888]
[139]
Universty N. NU-0129 in Treating Patients With Recurrent Glioblastoma or Gliosarcoma Undergoing Surgery. Chicago, IL, USA: US National Library of Medicine 2019.
[140]
Thivat E, Casile M, Moreau J, et al. Phase I/II study testing the combination of AGuIX nanoparticles with radiochemotherapy and concomitant temozolomide in patients with newly diagnosed glioblastoma (NANO-GBM trial protocol). BMC Cancer 2023; 23(1): 344.
[http://dx.doi.org/10.1186/s12885-023-10829-y] [PMID: 37060055]
[141]
Kumthekar P, Rademaker A, Ko C, et al. A phase 0 first-in-human study using NU-0129: A gold base spherical nucleic acid (SNA) nanoconjugate targeting BCL2L12 in recurrent glioblastoma patients. J Clin Oncol 2019; 37(15_suppl): 3012-2.
[142]
Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8(1): 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[143]
Müller LK, Simon J, Rosenauer C, Mailänder V, Morsbach S, Landfester K. The transferability from animal models to humans: Challenges regarding aggregation and protein corona formation of nanoparticles. Biomacromolecules 2018; 19(2): 374-85.
[http://dx.doi.org/10.1021/acs.biomac.7b01472] [PMID: 29286657]
[144]
Cifuentes-Rius A, de Puig H, Kah JCY, Borros S, Hamad-Schifferli K. Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 2013; 7(11): 10066-74.
[http://dx.doi.org/10.1021/nn404166q] [PMID: 24128271]
[145]
Schonberg DL, Lubelski D, Miller TE, Rich JN. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med 2014; 39: 82-101.
[http://dx.doi.org/10.1016/j.mam.2013.06.004] [PMID: 23831316]
[146]
Bhargav AG, Mondal SK, Garcia CA. Nanomedicine Revisited. Next Generation Therapies for Brain Cancer 2020; 3: 2000118.
[147]
Bozzato E, Bastiancich C, Préat V. Nanomedicine: A useful tool against glioma stem cells. Cancers 2020; 13(1): 9.
[http://dx.doi.org/10.3390/cancers13010009] [PMID: 33375034]
[148]
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate glioblastoma: Clinical challenges and advances. Clin Transl Med 2018; 7(1): 33.
[http://dx.doi.org/10.1186/s40169-018-0211-8] [PMID: 30327965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy