Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Role of Brain Endothelin Receptor Type B (ETB) in the Regulation of Tyrosine Hydroxylase in the Olfactory Bulb of DOCA-Salt Hypertensive Rats

Author(s): Luis Cassinotti, María Guil, Liliana Bianciotti and Marcelo Vatta*

Volume 21, Issue 4, 2023

Published on: 09 August, 2023

Page: [246 - 256] Pages: 11

DOI: 10.2174/1570161121666230622121956

Price: $65

Abstract

Background: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects.

Objective: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

Methods: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction.

Results: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression.

Conclusion: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.

Keywords: Hypertension, endothelin, olfactory bulb, central nervous system, DOCA-salt, tyrosine hydroxylase, endothelin receptor type B.

Graphical Abstract
[1]
Hirooka Y. Sympathetic activation in hypertension. Importance of the central nervous system. Am J Hypertens 2020; 33(10): 914-26.
[http://dx.doi.org/10.1093/ajh/hpaa074] [PMID: 32374869]
[2]
DeLalio LJ, Sved AF, Stocker SD. Sympathetic nervous system contribution to hypertension: Update and therapeutic relevance. Can J Cardiol 2020; 36(5): 712-20.
[http://dx.doi.org/10.1016/j.cjca.2020.03.003] [PMID: 32389344]
[3]
Salman IM. Major autonomic neuroregulatory pathways underlying shor//t- and long-term control of cardiovascular function. Curr Hypertens Rep 2016; 18(3): 18.
[http://dx.doi.org/10.1007/s11906-016-0625-x] [PMID: 26838031]
[4]
Savić B, Murphy D, Japundžić-Žigon N. The paraventricular nucleus of the hypothalamus in control blood pressure and blood pressure variability. Front Physiol 2022; 13: 858941.
[http://dx.doi.org/10.3389/fphys.2022.858941] [PMID: 35370790]
[5]
Cassinotti LR, Fernandez MF, Hope SI, Bianciotti LG, Vatta MS. The olfactory bulb: An ignored brain structure in the regulation of cardiovascular activity. Physiol MiniRev 2022; 15(2): 14-26.
[6]
Moffitt JA, Grippo AJ, Holmes PV, Johnson AK. Olfactory bulbectomy attenuates cardiovascular sympathoexcitatory reflexes in rats. Am J Physiol Heart Circ Physiol 2002; 283(6): H2575-83.
[http://dx.doi.org/10.1152/ajpheart.00164.2002] [PMID: 12388291]
[7]
Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 2005; 29(4-5): 627-47.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.010] [PMID: 15925697]
[8]
Ruda-Kucerova J, Amchova P, Havlickova T, et al. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J Biol Psychiatry 2015; 16(7): 521-35.
[http://dx.doi.org/10.3109/15622975.2015.1077991] [PMID: 26444572]
[9]
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009; 12(1): 1-21.
[http://dx.doi.org/10.1080/10253890802046281] [PMID: 19116888]
[10]
Grippo AJ, Trahanas DM, Zimmerman RR II, Porges SW, Carter CS. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 2009; 34(10): 1542-53.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.017] [PMID: 19553027]
[11]
Nagai K, Niijima A, Horii Y, Shen J, Tanida M. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function. Auton Neurosci 2014; 185: 29-35.
[http://dx.doi.org/10.1016/j.autneu.2014.06.005] [PMID: 25002406]
[12]
Nakamura T, Hayashida Y. Autonomic cardiovascular responses to smoke exposure in conscious rats. Am J Physiol Regul Integr Comp Physiol 1992; 262(5): R738-45.
[http://dx.doi.org/10.1152/ajpregu.1992.262.5.R738] [PMID: 1590469]
[13]
Zhang Y, Chen Y, Ma L. Depression and cardiovascular disease in elderly: Current understanding. J Clin Neurosci 2018; 47: 1-5.
[http://dx.doi.org/10.1016/j.jocn.2017.09.022] [PMID: 29066229]
[14]
Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev 2016; 68(2): 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[15]
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91(1): 1-77.
[http://dx.doi.org/10.1152/physrev.00060.2009] [PMID: 21248162]
[16]
Guil MJ, Schöller MI, Cassinotti LR, et al. Role of endothelin receptor type A on catecholamine regulation in the olfactory bulb of DOCA-salt hypertensive rats: Hemodynamic implications. Biochim Biophys Acta Mol Basis Dis 2019; 1865(11): 165527.
[http://dx.doi.org/10.1016/j.bbadis.2019.08.003] [PMID: 31398465]
[17]
Cassinotti L, Guil M, Schöller M, Navarro M, Bianciotti L, Vatta M. Chronic blockade of brain endothelin receptor type-A (ETA) reduces blood pressure and prevents catecholaminergic overactivity in the right olfactory bulb of DOCA-Salt hypertensive rats. Int J Mol Sci 2018; 19(3): 660.
[http://dx.doi.org/10.3390/ijms19030660] [PMID: 29495426]
[18]
Reinhard JF Jr, Smith GK, Nichol CA. A rapid and sensitive assay for tyrosine-3-monooxygenase based upon the release of 3H2O and adsorption of [3H]-tyrosine by charcoal. Life Sci 1986; 39(23): 2185-9.
[http://dx.doi.org/10.1016/0024-3205(86)90395-4] [PMID: 2878337]
[19]
Abramoff T, Guil MJ, Morales VP, et al. Enhanced assymetrical noradrenergic transmissión in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Neurochem Res 2013; 38: 2063-71.
[http://dx.doi.org/10.1007/s11064-013-1114-0] [PMID: 23888389]
[20]
di Nunzio AS, Jaureguiberry MS, Rodano V, Bianciotti LG, Vatta MS. Endothelin-1 and -3 diminish neuronal NE release through an NO mechanism in rat anterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2002; 283: R615-22.
[http://dx.doi.org/10.1152/ajpregu.00026.2002] [PMID: 12184995]
[21]
Hope SI, Schmipp J, Rossi AH, Bianciotti LG, Vatta MS. Regulation of the neuronal norepinephrine transporter by endothelin-1 and -3 in the rat anterior and posterior hypothalamus. Neurochem Int 2008; 53: 207-13.
[http://dx.doi.org/10.1016/j.neuint.2008.07.003] [PMID: 18682267]
[22]
Abramoff T, Guil MJ, Morales VP, et al. Involvement of endothelins in deoxycorticosterone acetate-salt hypertension through the modulation of noradrenergic transmission in the rat posterior hypothalamus. Exp Physiol 2015; 100(6): 617-27.
[http://dx.doi.org/10.1113/EP085230] [PMID: 25809871]
[23]
Guil MJ, Soria C, Seijas M, Bianciotti LG, Vatta MS. Central endothelin ETB receptor activation reduces blood pressure and catecholaminergic activity in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Eur J Pharmacol 2020; 885: 173543.
[http://dx.doi.org/10.1016/j.ejphar.2020.173543] [PMID: 32896551]
[24]
Guimaraes PS, Santiago NM, Xavier CH, et al. Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol 2012; 303(3): H393-400.
[http://dx.doi.org/10.1152/ajpheart.00075.2012] [PMID: 22661512]
[25]
Bigalke JA, Gao H, Chen QH, Shan Z. Activation of orexin 1 receptors in the paraventricular nucleus contributes to the development of deoxycorticosterone acetate-salt hypertension through regulation of vasopressin. Front Physiol 2021; 12: 641331.
[http://dx.doi.org/10.3389/fphys.2021.641331] [PMID: 33633591]
[26]
Fink GD, Johnson RJ, Galligan JJ. Mechanisms of increased venous smooth muscle tone in desoxycorticosterone acetate-salt hypertension. Hypertension 2000; 35(1): 464-9.
[http://dx.doi.org/10.1161/01.HYP.35.1.464] [PMID: 10642342]
[27]
Wang DS, Xie HH, Shen FM, Cai GJ, Su DF. Blood pressure variability, cardiac baroreflex sensitivity and organ damage in experimentally hypertensive rats. Clin Exp Pharmacol Physiol 2005; 32(7): 545-52.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04229.x] [PMID: 16026514]
[28]
Basting T, Lazartigues E. DOCA-salt hypertension: an update. Curr Hypertens Rep 2017; 19(4): 32.
[http://dx.doi.org/10.1007/s11906-017-0731-4] [PMID: 28353076]
[29]
Nabhen SL, Perfume G, Battistone MA, et al. Short-term effects of endothelins on tyrosine hydroxylase activity and expression in the olfactory bulb of normotensive rats. Neurochem Res 2009; 34(5): 953-63.
[http://dx.doi.org/10.1007/s11064-008-9859-6] [PMID: 18850267]
[30]
Nabhen SL, Morales VP, Guil MJ, Höcht C, Bianciotti LG, Vatta MS. Mechanisms involved in the long-term modulation of tyrosine hydroxylase by endothelins in the olfactory bulb of normotensive rats. Neurochem Int 2011; 58(2): 196-205.
[http://dx.doi.org/10.1016/j.neuint.2010.11.016] [PMID: 21129429]
[31]
Ennis M, Puche AC, Holy T, Shipley MT. The olfactory system. In: Paxinos G, Ed. The rat nervous system. (4th ed.). Cambridge: Academic Press 2015; pp. 761-803.
[http://dx.doi.org/10.1016/B978-0-12-374245-2.00027-9]
[32]
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383(1): 507-24.
[http://dx.doi.org/10.1007/s00441-020-03365-9] [PMID: 33355709]
[33]
El-Etri MM, Ennis M, Griff ER, Shipley MT. Evidence for cholinergic regulation of basal norepinephrine release in the rat olfactory bulb. Neuroscience 1999; 93(2): 611-7.
[http://dx.doi.org/10.1016/S0306-4522(99)00169-4] [PMID: 10465445]
[34]
Devore S, Linster C. Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 2012; 6: 52.
[http://dx.doi.org/10.3389/fnbeh.2012.00052] [PMID: 22905025]
[35]
Brennan PA, Kendrick KM. Mammalian social odours: Attraction and individual recognition. Philos Trans R Soc Lond B Biol Sci 2006; 361(1476): 2061-78.
[http://dx.doi.org/10.1098/rstb.2006.1931] [PMID: 17118924]
[36]
Manella LC, Alperin S, Linster C. Stressors impair odor recognition memory via an olfactory bulb-dependent noradrenergic mechanism. Front Integr Nuerosci 2013; 7: 97.
[http://dx.doi.org/10.3389/fnint.2013.00097] [PMID: 24391558]
[37]
Schroeder C, Jordan J. Norepinephrine transporter function and human cardiovascular disease. Am J Physiol Heart Circ Physiol 2012; 303(11): H1273-82.
[http://dx.doi.org/10.1152/ajpheart.00492.2012] [PMID: 23023867]
[38]
Eikelis N, Marques FZ, Hering D, et al. A polymorphism in the noradrenaline transporter gene is associated with increased blood pressure in patients with resistant hypertension. J Hypertens 2018; 36(7): 1571-7.
[http://dx.doi.org/10.1097/HJH.0000000000001736] [PMID: 29677047]
[39]
Xavier CH, Beig MI, Ianzer D, Fontes MAP, Nalivaiko E. Asymmetry in the control of cardiac performance by dorsomedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013; 304(8): R664-74.
[http://dx.doi.org/10.1152/ajpregu.00401.2012] [PMID: 23408030]
[40]
Segarra AB, Prieto I, Martínez-Cañamero M, Ramírez-Sánchez M. Is there a link between depression, neurochemical asymmetry and cardiovascular function? AIMS Neurosci 2020; 7(4): 360-72.
[http://dx.doi.org/10.3934/Neuroscience.2020022] [PMID: 33263075]
[41]
Kurokawa K, Yamada H, Ochi J. Topographical distribution of neurons containing endothelin type A receptor in the rat brain. J Comp Neurol 1997; 389(2): 348-60.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19971215)389:2<348:AID-CNE11>3.0.CO;2-H] [PMID: 9416926]
[42]
Sluck JM, Lin RCS, Katolik LI, Jeng AY, Lehmann JC. Endothelin converting enzyme-1-, endothelin-1-, and endothelin-3-like immunoreactivity in the rat brain. Neuroscience 1999; 91(4): 1483-97.
[http://dx.doi.org/10.1016/S0306-4522(98)00692-7] [PMID: 10391453]
[43]
Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange ECM. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 2012; 14(3): 543-53.
[http://dx.doi.org/10.1208/s12248-012-9366-1] [PMID: 22588644]
[44]
Skovsted GF, Kilic S, Edvinsson L. Endothelin-1 and endothelin-3 regulate endothelin receptor expression in rat coronary arteries. Basic Clin Pharmacol Toxicol 2015; 117(5): 297-305.
[http://dx.doi.org/10.1111/bcpt.12407] [PMID: 25891848]
[45]
Zrein A, Bagher AM, Young AP, Denovan-Wright EM, Kelly MEM. Endothelin receptor heteromerization inhibits β-arrestin function in HEK293 cells. Can J Physiol Pharmacol 2020; 98(8): 531-40.
[http://dx.doi.org/10.1139/cjpp-2019-0620] [PMID: 32744876]
[46]
Ono K, Sakamoto A, Masaki T, Satake M. Desensitization of ET A endothelin receptor-mediated negative chronotropic response in right atria-species difference and intracellular mechanisms. Br J Pharmacol 1998; 125(4): 787-97.
[http://dx.doi.org/10.1038/sj.bjp.0702125] [PMID: 9831916]
[47]
Cramer H, Müller-Esterl W, Schroeder C. Subtype-specific desensitization of human endothelin ETA and ETB receptors reflects differential receptor phosphorylation. Biochemistry 1997; 36(43): 13325-32.
[http://dx.doi.org/10.1021/bi9708848] [PMID: 9341224]
[48]
Himeno A, Shigematsu K, Taguchi T, Niwa M. Endothelin-1 binding to endothelin receptors in the rat anterior pituitary gland: interaction in the recognition of endothelin-1 between ETA and ETB receptors. Cell Mol Neurobiol 1998; 18(4): 447-52.
[http://dx.doi.org/10.1023/A:1022557717481] [PMID: 9619300]
[49]
Davenport AP, O’Reilly G, Kuc RE. Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type. Br J Pharmacol 1995; 114(6): 1110-6.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb13322.x] [PMID: 7620699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy