Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Predicting the Adsorption Behavior of 6-mercaptopurine Anticancer Drug upon Polyoxazoline Nanocarrier: A Theoretical Study

Author(s): Leila Rahmanifar, Fatemeh Azarakhshi* and Elham Moniri

Volume 20, Issue 12, 2023

Published on: 08 August, 2023

Page: [1151 - 1158] Pages: 8

DOI: 10.2174/1570178620666230622103851

Price: $65

Abstract

Predicting the adsorption behavior of the 6-Mercaptopurine (MCP) anticancer drug upon the polyoxazolinenano-carrier was investigated using DFT and TD-DFT methods by B3LYP/6-31G* level in the gas phase and water solution. Based on the thermochemical parameters, the MCP/polymer complex in the solvent water is more stable rather than the gas phase. The adsorption energies of the MCP/polymer complex displayed that the adsorption process is exothermic. The UV/Vis absorption and IR spectra analysis were calculated to investigate the changes happening in the interaction of the MCP with the polymer. FMO analysis indicated that the energy gap (Eg) of the polymer decreased after the adsorption process. Electronic properties and MEP analysis were also studied. Based on NBO analysis and charge difference (ΔN), the charge transfer in MCP/polymer occurs essentially from the polymer to the MCP drug, which is consistent with the results of NBO analysis. It is predicted that the POZ polymer can be used as a drug delivery system for MCP drug.

Keywords: 6-Mercaptopurine, polyoxazoline, adsorption, DFT, NBO, FMO.

Graphical Abstract
[1]
Qian, W.Y.; Sun, D.M.; Zhu, R.R.; Du, X.L.; Liu, H.; Wang, S.L. Int. J. Nanomedicine, 2012, 7, 5781-5792.
[PMID: 23185118]
[2]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[3]
Viegas, T.X.; Bentley, M.D.; Harris, J.M.; Fang, Z.; Yoon, K.; Dizman, B.; Weimer, R.; Mero, A.; Pasut, G. Int. J. Nanomedicine, 2011, 22, 976-986.
[4]
Kobayashi, S.; Kaku, M.; Sawada, S.; Saegusa, T. Polym. Bull., 1985, 13(5), 447-451.
[http://dx.doi.org/10.1007/BF01033343]
[5]
Kobayashi, S.; Masuda, E.; Shoda, S.; Shimano, Y. Macromolecules, 1989, 22(7), 2878-2884.
[http://dx.doi.org/10.1021/ma00197a002]
[6]
Liu, Q.; Konas, M.; Riffle, J.S. Macromolecules, 1993, 26(21), 5572-5576.
[http://dx.doi.org/10.1021/ma00073a007]
[7]
Hayhoe, F.G. J. Lancet, 1955, 266(6896), 903-905.
[http://dx.doi.org/10.1016/S0140-6736(55)92533-2] [PMID: 13264641]
[8]
Govindappa, P.K.; Joladarashi, D.; Hallur, R.L.S.; Sanganal, J.S.; Phani, A.R. Saudi Pharm. J., 2020, 28(1), 147-154.
[http://dx.doi.org/10.1016/j.jsps.2019.11.018] [PMID: 31933529]
[9]
Karran, P.; Attard, N. Nat. Rev. Cancer, 2008, 8(1), 24-36.
[http://dx.doi.org/10.1038/nrc2292] [PMID: 18097462]
[10]
Abd El-Mageed, H.R.; Abbas, H.S. J. Biomol. Struct. Dyn., 2021, 12, 1-20.
[11]
Yang, Y.; Ostadhosseini, N. Physica E, 2021, 125, 114337.
[http://dx.doi.org/10.1016/j.physe.2020.114337]
[12]
Zaboli, M.; Raissi, H.; Zaboli, M. J. Biomol. Struct. Dyn., 2022, 40(10), 4579-4592.
[http://dx.doi.org/10.1080/07391102.2020.1860823] [PMID: 33336622]
[13]
Hang, N.T.N.; Si, N.T.; Nguyen, M.T.; Nhat, P.V. Molecules, 2021, 26(17), 5422-5438.
[http://dx.doi.org/10.3390/molecules26175422] [PMID: 34500855]
[14]
Kaviani, S.; Izadyar, M. Mater. Chem. Phys., 2022, 276125375.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125375]
[15]
Darbandi, A.; Gavahi, M.; Shirani Bidabadi, E.; Kadhim, M.M.; Naghsh, N.; Canli, G.; Ahmed, O.S. Phys. Lett. A, 2022, 448128318.
[http://dx.doi.org/10.1016/j.physleta.2022.128318]
[16]
Al-Otaibi, J.S.; Mary, Y.S. Comput. Theor. Chem., 2022, 1207113497.
[http://dx.doi.org/10.1016/j.comptc.2021.113497]
[17]
Wu, S.; Lu, L.; Li, L.; Liang, Q.; Gao, H.; Zhao, X.; Hu, D.; Tang, T.; Tang, Y. Chem. Phys. Lett., 2022, 804139910.
[http://dx.doi.org/10.1016/j.cplett.2022.139910]
[18]
Li, Y.; Evans, J.N.S. J. Am. Chem. Soc., 1995, 117(29), 7756-7759.
[http://dx.doi.org/10.1021/ja00134a021] [PMID: 15686355]
[19]
Azarakhshi, F.; Shahab, S.; Kaviani, S.; Sheikhi, M. Lett. Org. Chem., 2021, 18(8), 640-655.
[http://dx.doi.org/10.2174/1570178617999201013170019]
[20]
Weinhold, F.; Landis, C.R. Chem. Educ. Res. Pract., 2001, 2(2), 91-104.
[http://dx.doi.org/10.1039/B1RP90011K]
[21]
Azarakhshi, F.; Sheikhi, M.; Shahab, S.; Khaleghian, M.; Sirotsina, K.; Yurlevich, H.; Novik, D. Chem. Pap., 2021, 75(4), 1521-1533.
[http://dx.doi.org/10.1007/s11696-020-01407-8]
[22]
Azarakhshi, F.; Khaleghian, M.; Farhadyar, N. Lett. Org. Chem., 2015, 12(7), 516-522.
[http://dx.doi.org/10.2174/1570178612666150529205707]
[23]
Sorouraddin, M.H.; Khani, M.Y.; Amini, K. Bioimpacts, 2011, 1, 53-62.
[PMID: 23678408]
[24]
Colombo, A.; Gherardi, F.; Goidanich, S.; Delaney, J.K.; de la Rie, E.R.; Ubaldi, M.C.; Toniolo, L.; Simonutti, R. RSC Advances, 2015, 5(103), 84879-84888.
[http://dx.doi.org/10.1039/C5RA10895K]
[25]
Brusač E.; Jeličić M.L.; Cvetnić M.; Amidžić Klarić D.; Nigović B.; Mornar, A. Pharmaceuticals (Basel), 2021, 14(3), 274.
[http://dx.doi.org/10.3390/ph14030274] [PMID: 33802871]
[26]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09 revision A02; Gaussian, Inc.: Wallingford, CT, 2009.
[27]
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105(8), 2999-3094.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[28]
Sheikhi, M.; Kaviani, S.; Azarakhshi, F.; Shahab, S. Comput. Theor. Chem., 2022, 1212113722.
[http://dx.doi.org/10.1016/j.comptc.2022.113722]
[29]
Pearson, R.G. Hard and Soft Acids and Bases, Dowden; Hutchison & Ross: Stroudsburg, 2001.
[30]
Frisch, A.; Nielson, A.B.; Holder, A.J. GAUSSVIEW User Manual; Gaussian Inc.: Pittsburgh, PA, 2000.
[31]
O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. J. Comput. Chem., 2008, 29(5), 839-845.
[http://dx.doi.org/10.1002/jcc.20823] [PMID: 17849392]
[32]
Runge, E.; Gross, E.K.U. Phys. Rev. Lett., 1984, 52(12), 997-1000.
[http://dx.doi.org/10.1103/PhysRevLett.52.997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy