General Review Article

COVID-19在孕妇中的严重程度:调节性T细胞潜在作用的综述

卷 31, 期 26, 2024

发表于: 17 July, 2023

页: [4199 - 4212] 页: 14

弟呕挨: 10.2174/0929867330666230619114508

价格: $65

摘要

作为一种生理状况,妊娠可引起血液、心肺和免疫反应的暂时性改变,影响母体对病毒感染的易感性。孕妇容易感染甲型流感病毒、戊型肝炎病毒、中东呼吸综合征冠状病毒和SARS冠状病毒。冠状病毒病(COVID-19)的病原体是SARS冠状病毒(SARS CoV-2),它通过与血管紧张素转换酶-2 (ACE2)结合而影响细胞。然而,ACE2在胎盘组织中的表达升高。然而,令人惊讶的是,孕妇感染COVID-19的严重程度和死亡率往往较低。因此,寻找与妊娠期COVID-19严重程度相关的免疫学机制是很有趣的。调节性T细胞(Tregs)是CD4+T细胞的一个亚群,可能通过调节免疫反应在维持母体耐受性中发挥核心作用。妊娠诱导的treg是用来控制半同种异体移植胎儿对父本抗原表达的免疫反应。不受控制的免疫反应在COVID-19发病机制中的作用已经确定。本文综述了妊娠诱导的调节性t细胞功能是否会影响妊娠期间COVID-19感染的严重程度。

关键词: 调节性T细胞,妊娠,COVID-19,感染,Tregs, SARS冠状病毒。

[1]
Yang, H.; Wang, C.; Poon, L.C. Novel coronavirus infection and pregnancy. Ultrasound Obstet. Gynecol., 2020, 55(4), 435-437.
[http://dx.doi.org/10.1002/uog.22006] [PMID: 32134165]
[2]
Rasmussen, S.A.; Smulian, J.C.; Lednicky, J.A.; Wen, T.S.; Jamieson, D.J. Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am. J. Obstet. Gynecol., 2020, 222(5), 415-426.
[http://dx.doi.org/10.1016/j.ajog.2020.02.017] [PMID: 32105680]
[3]
Schwartz, D.A. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch. Pathol. Lab. Med., 2020, 144(7), 799-805.
[http://dx.doi.org/10.5858/arpa.2020-0901-SA] [PMID: 32180426]
[4]
Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav., 2012, 62(3), 263-271.
[http://dx.doi.org/10.1016/j.yhbeh.2012.02.023] [PMID: 22406114]
[5]
Fried, J.A.; Ramasubbu, K.; Bhatt, R.; Topkara, V.K.; Clerkin, K.J.; Horn, E.; Rabbani, L.; Brodie, D.; Jain, S.S.; Kirtane, A.J.; Masoumi, A.; Takeda, K.; Kumaraiah, D.; Burkhoff, D.; Leon, M.; Schwartz, A.; Uriel, N.; Sayer, G. The variety of cardiovascular presentations of COVID-19. Circulation, 2020, 141(23), 1930-1936.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047164] [PMID: 32243205]
[6]
Choi, H.M.; Moon, S.Y.; Yang, H.I.; Kim, K.S. Understanding viral infection mechanisms and patient symptoms for the development of COVID-19 therapeutics. Int. J. Mol. Sci., 2021, 22(4), 1737.
[http://dx.doi.org/10.3390/ijms22041737] [PMID: 33572274]
[7]
Hanna, N.; Hanna, M.; Sharma, S. Is pregnancy an immunological contributor to severe or controlled COVID-19 disease? Am. J. Reprod. Immunol., 2020, 84(5), e13317.
[http://dx.doi.org/10.1111/aji.13317] [PMID: 32757366]
[8]
Blitz, M.J.; Grünebaum, A.; Tekbali, A.; Bornstein, E.; Rochelson, B.; Nimaroff, M.; Chervenak, F.A. Intensive care unit admissions for pregnant and nonpregnant women with coronavirus disease 2019. Am. J. Obstet. Gynecol., 2020, 223(2), 290-291.
[http://dx.doi.org/10.1016/j.ajog.2020.05.004] [PMID: 32387323]
[9]
Breslin, N.; Baptiste, C.; Gyamfi-Bannerman, C.; Miller, R.; Martinez, R.; Bernstein, K.; Ring, L.; Landau, R.; Purisch, S.; Friedman, A.M.; Fuchs, K.; Sutton, D.; Andrikopoulou, M.; Rupley, D.; Sheen, J.J.; Aubey, J.; Zork, N.; Moroz, L.; Mourad, M.; Wapner, R.; Simpson, L.L.; D’Alton, M.E.; Goffman, D. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: Two weeks of confirmed presentations to an affiliated pair of New York City Hospitals. Am. J. Obstet. Gynecol. MFM, 2020, 2(2), 100118.
[http://dx.doi.org/10.1016/j.ajogmf.2020.100118] [PMID: 32292903]
[10]
Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; Liao, J.; Yang, H.; Hou, W.; Zhang, Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 2020, 395(10226), 809-815.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[11]
Chen, R.; Zhang, Y.; Huang, L.; Cheng, B.H.; Xia, Z.Y.; Meng, Q.T. Safety and efficacy of different anesthetic regimens for parturients with COVID-19 undergoing Cesarean delivery: a case series of 17 patients. Canadian J. Anesth., 2020, 67(6), 655-663.
[12]
Ellington, S.; Strid, P.; Tong, V.T.; Woodworth, K.; Galang, R.R.; Zambrano, L.D.; Nahabedian, J.; Anderson, K.; Gilboa, S.M. Characteristics of women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status-United States, January 22–June 7, 2020. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(25), 769-775.
[http://dx.doi.org/10.15585/mmwr.mm6925a1] [PMID: 32584795]
[13]
Govind, A.; Essien, S.; Karthikeyan, A.; Fakokunde, A.; Janga, D.; Yoong, W.; Nakhosteen, A. Re: Novel Coronavirus COVID-19 in late pregnancy: Outcomes of first nine cases in an inner City London Hospital. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 251, 272-274.
[http://dx.doi.org/10.1016/j.ejogrb.2020.05.004] [PMID: 32402627]
[14]
Juusela, A.; Nazir, M.; Gimovsky, M. Two cases of coronavirus 2019–related cardiomyopathy in pregnancy. Am. J. Obstet. Gynecol. MFM, 2020, 2(2), 100113.
[http://dx.doi.org/10.1016/j.ajogmf.2020.100113] [PMID: 32363336]
[15]
Khalil, A.; Hill, R.; Ladhani, S.; Pattisson, K. SARS-CoV- 2 in pregnancy: symptomatic pregnant women are only the tip of the iceberg. Am. J. Obstet. Gynecol., 2020, 30529-9.
[16]
Knight, M.; Bunch, K.; Vousden, N.; Morris, E.; Simpson, N.; Gale, C.; O’Brien, P.; Quigley, M.; Brocklehurst, P.; Kurinczuk, J.J. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ, 2020, 369, m2107.
[http://dx.doi.org/10.1136/bmj.m2107] [PMID: 32513659]
[17]
Li, N.; Han, L.; Peng, M.; Lv, Y.; Ouyang, Y.; Liu, K.; Yue, L.; Li, Q.; Sun, G.; Chen, L.; Yang, L. Maternal and neonatal outcomes of pregnant women with coronavirus disease 2019 (COVID-19) pneumonia: a case-control study. Clin. Infect. Dis., 2020, 71(16), 2035-2041.
[http://dx.doi.org/10.1093/cid/ciaa352] [PMID: 32249918]
[18]
Liu, D.; Li, L.; Wu, X.; Zheng, D.; Wang, J.; Yang, L.; Zheng, C. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. AJR Am. J. Roentgenol., 2020, 215(1), 127-132.
[http://dx.doi.org/10.2214/AJR.20.23072] [PMID: 32186894]
[19]
Liu, H.; Liu, F.; Li, J.; Zhang, T.; Wang, D.; Lan, W. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J. Infect., 2020, 80(5), e7-e13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.007] [PMID: 32171865]
[20]
Lokken, EM; Walker, CL; Delaney, S; Kachikis, A; Kretzer, NM; Erickson, A Clinical characteristics of 46 pregnant women with a severe acute respiratory syndrome coronavirus 2 infection in Washington State. Am. J. Obsteta. Gynecol., 2020, 223(6), 911.
[http://dx.doi.org/10.1016/j.ajog.2020.05.031]
[21]
Marín Gabriel, M.A.; Cuadrado, I.; Álvarez Fernández, B.; González Carrasco, E.; Alonso Díaz, C.; Llana Martín, I.; Sánchez, L.; Olivas, C.; Heras, S.; Criado, E.; Carrizosa Molina, T.; Royuela Vicente, A.; Forti Buratti, A.; Palanca Maresca, I.; Dip, M.E.; Martínez Bernat, L.; Fernández-Cañadas Morillo, A.; Domingo Comeche, L.; Olza, I.; de Alba Romero, C.; Olabarrieta, I.; Caserío Carbonero, S.; Villar Villar, G.; Dacosta, A.I.; Rivero, I.; Reyne, M.; del Río, R.; Casas, C.; Solé, L. Multicentre Spanish study found no incidences of viral transmission in infants born to mothers with COVID-19. Acta Paediatr., 2020, 109(11), 2302-2308.
[http://dx.doi.org/10.1111/apa.15474] [PMID: 32649784]
[22]
Penfield, C.A.; Brubaker, S.G.; Limaye, M.A.; Lighter, J.; Ratner, A.J.; Thomas, K.M.; Meyer, J.A.; Roman, A.S. Detection of severe acute respiratory syndrome coronavirus 2 in placental and fetal membrane samples. Am. J. Obstet. Gynecol. MFM, 2020, 2(3), 100133.
[http://dx.doi.org/10.1016/j.ajogmf.2020.100133] [PMID: 32391518]
[23]
Vivanti, A.J.; Vauloup-Fellous, C.; Prevot, S.; Zupan, V.; Suffee, C.; Do Cao, J.; Benachi, A.; De Luca, D. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun., 2020, 11(1), 3572.
[http://dx.doi.org/10.1038/s41467-020-17436-6] [PMID: 32665677]
[24]
Wu, C.; Yang, W.; Wu, X.; Zhang, T.; Zhao, Y.; Ren, W.; Xia, J. Clinical manifestation and laboratory characteristics of SARS-CoV-2 infection in pregnant women. Virol. Sin., 2020, 35(3), 305-310.
[http://dx.doi.org/10.1007/s12250-020-00227-0] [PMID: 32314274]
[25]
Wu, X.; Sun, R.; Chen, J.; Xie, Y.; Zhang, S.; Wang, X. Radiological findings and clinical characteristics of pregnant women with COVID-19 pneumonia. Int. J. Gynaecol. Obstet., 2020, 150(1), 58-63.
[http://dx.doi.org/10.1002/ijgo.13165] [PMID: 32270479]
[26]
yang, H.; Sun, G.; Tang, F.; Peng, M.; Gao, Y.; Peng, J.; Xie, H.; Zhao, Y.; Jin, Z. Clinical features and outcomes of pregnant women suspected of coronavirus disease 2019. J. Infect., 2020, 81(1), e40-e44.
[http://dx.doi.org/10.1016/j.jinf.2020.04.003] [PMID: 32294503]
[27]
Yu, N.; Li, W.; Kang, Q.; Xiong, Z.; Wang, S.; Lin, X.; Liu, Y.; Xiao, J.; Liu, H.; Deng, D.; Chen, S.; Zeng, W.; Feng, L.; Wu, J. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect. Dis., 2020, 20(5), 559-564.
[http://dx.doi.org/10.1016/S1473-3099(20)30176-6] [PMID: 32220284]
[28]
Zaigham, M.; Andersson, O. Maternal and perinatal outcomes with COVID-19: A systematic review of 108 pregnancies. Acta Obstet. Gynecol. Scand., 2020, 99(7), 823-829.
[http://dx.doi.org/10.1111/aogs.13867] [PMID: 32259279]
[29]
Mullins, E.; Evans, D.; Viner, R.M.; O’Brien, P.; Morris, E. Coronavirus in pregnancy and delivery: rapid review. Ultrasound Obstet. Gynecol., 2020, 55(5), 586-592.
[http://dx.doi.org/10.1002/uog.22014] [PMID: 32180292]
[30]
Ferrazzi, E.; Frigerio, L.; Savasi, V.; Vergani, P.; Prefumo, F.; Barresi, S.; Bianchi, S.; Ciriello, E.; Facchinetti, F.; Gervasi, M.T.; Iurlaro, E.; Kustermann, A.; Mangili, G.; Mosca, F.; Patanè, L.; Spazzini, D.; Spinillo, A.; Trojano, G.; Vignali, M.; Villa, A.; Zuccotti, G.V.; Parazzini, F.; Cetin, I. Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis. BJOG, 2020, 127(9), 1116-1121.
[http://dx.doi.org/10.1111/1471-0528.16278] [PMID: 32339382]
[31]
Brandt, J.S.; Hill, J.; Reddy, A.; Schuster, M.; Patrick, H.S.; Rosen, T. Epidemiology of coronavirus disease 2019 in pregnancy: risk factors and associations with adverse maternal and neonatal outcomes. Am. J. Obstet. Gynecol., 2020.
[PMID: 32986989]
[32]
Gong, X.; Song, L.; Li, H.; Li, L.; Jin, W.; Yu, K.; Zhang, X.; Li, H.; Ke, H.; Lu, Z. CT characteristics and diagnostic value of COVID-19 in pregnancy. PLoS One, 2020, 15(7), e0235134.
[http://dx.doi.org/10.1371/journal.pone.0235134] [PMID: 32614854]
[33]
Berhan, Y. What immunological and hormonal protective factors lower the risk of COVID-19 related deaths in pregnant women? J. Reprod. Immunol., 2020, 142, 103180.
[http://dx.doi.org/10.1016/j.jri.2020.103180] [PMID: 32739645]
[34]
Roncarolo, M.G.; Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat. Rev. Immunol., 2007, 7(8), 585-598.
[http://dx.doi.org/10.1038/nri2138] [PMID: 17653126]
[35]
Deshmukh, H.; Way, S.S. Immunological basis for recurrent fetal loss and pregnancy complications. Annu. Rev. Pathol., 2019, 14(1), 185-210.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012743] [PMID: 30183507]
[36]
Chen, J.; Zhao, L.; Wang, D.; Xu, Y.; Gao, H.; Tan, W.; Wang, C. Contribution of regulatory T cells to immune tolerance and association of microRNA-210 and Foxp3 in preeclampsia. Mol. Med. Rep., 2019, 19(2), 1150-1158.
[PMID: 30569125]
[37]
Huang, N.; Chi, H.; Qiao, J. Role of regulatory T cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front. Immunol., 2020, 11, 1023.
[http://dx.doi.org/10.3389/fimmu.2020.01023] [PMID: 32676072]
[38]
Farshchi, M.; Abdollahi, E.; Saghafi, N.; Hosseini, A.; Fallahi, S.; Rostami, S.; Rostami, P.; Rafatpanah, H.; Habibagahi, M. Evaluation of Th17 and Treg cytokines in patients with unexplained recurrent pregnancy loss. J. Clin. Transl. Res., 2022, 8(3), 256-265.
[PMID: 35813894]
[39]
Vannuccini, S.; Clifton, V.L.; Fraser, I.S.; Taylor, H.S.; Critchley, H.; Giudice, L.C.; Petraglia, F. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum. Reprod. Update, 2016, 22(1), 104-115.
[http://dx.doi.org/10.1093/humupd/dmv044] [PMID: 26395640]
[40]
Mohammadi, S.; Abdollahi, E.; Nezamnia, M.; Esmaeili, S.A.; Tavasolian, F.; Sathyapalan, T.; Sahebkar, A. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int. Immunopharmacol., 2021, 90, 107195.
[http://dx.doi.org/10.1016/j.intimp.2020.107195] [PMID: 33278746]
[41]
Abdollahi, E.; Rezaee, S.A.; Saghafi, N.; Rastin, M.; Clifton, V.; Sahebkar, A.; Rafatpanah, H. Evaluation of the effects of 1, 25 vitamin D3 on regulatory T cells and T helper 17 cells in Vitamin D-deficient women with unexplained recurrent pregnancy loss. Curr. Mol. Pharmacol., 2020, 13(4), 306-317.
[http://dx.doi.org/10.2174/1874467213666200303130153] [PMID: 32124705]
[42]
O’Dwyer, D.T.; Clifton, V.; Hall, A.; Smith, R.; Robinson, P.J.; Crock, P.A. Pituitary autoantibodies in lymphocytic hypophysitis target both γ- and alpha-Enolase - a link with pregnancy? Arch. Physiol. Biochem., 2002, 110(1-2), 94-98.
[http://dx.doi.org/10.1076/apab.110.1.94.897] [PMID: 11935405]
[43]
Tsuda, S.; Nakashima, A.; Shima, T.; Saito, S. New paradigm in the role of regulatory T cells during pregnancy. Front. Immunol., 2019, 10, 573.
[http://dx.doi.org/10.3389/fimmu.2019.00573] [PMID: 30972068]
[44]
Bouaziz, J.; Even, M.; Isnard-Bogillot, F.; Vesale, E.; Nikpayam, M.; Mihalache, A.; Krief, D.; Frydman, R.; Ayoubi, J-M. COVID-19 in pregnancy: What do we really know? F1000 Res., 2020, 9(362), 362.
[http://dx.doi.org/10.12688/f1000research.23543.1]
[45]
Zhang, Y.; Geng, X.; Tan, Y.; Li, Q.; Xu, C.; Xu, J.; Hao, L.; Zeng, Z.; Luo, X.; Liu, F.; Wang, H. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother., 2020, 127, 110195.
[http://dx.doi.org/10.1016/j.biopha.2020.110195] [PMID: 32361161]
[46]
Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 2020, 12(1), 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[47]
Athari, S.Z.; Mohajeri, D.; Nourazar, M.A.; Doustar, Y. Updates on coronavirus (COVID-19) and kidney. J. Nephropathol., 2020, 9(4), e34.
[http://dx.doi.org/10.34172/jnp.2020.34]
[48]
Chen, C.; Zhou, Y.; Wang, D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz, 2020, 45(3), 230-232.
[http://dx.doi.org/10.1007/s00059-020-04909-z] [PMID: 32140732]
[49]
Unudurthi, S.D.; Luthra, P.; Bose, R.J.C.; McCarthy, J.R.; Kontaridis, M.I. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sci., 2020, 260, 118482.
[http://dx.doi.org/10.1016/j.lfs.2020.118482] [PMID: 32971105]
[50]
Liu, X.; Zhang, R.; He, G. Hematological findings in coronavirus disease 2019: indications of progression of disease. Ann. Hematol., 2020, 99(7), 1421-1428.
[http://dx.doi.org/10.1007/s00277-020-04103-5] [PMID: 32495027]
[51]
Bastug, A.; Bodur, H.; Erdogan, S.; Gokcinar, D.; Kazancioglu, S.; Kosovali, B.D.; Ozbay, B.O.; Gok, G.; Turan, I.O.; Yilmaz, G.; Gonen, C.C.; Yilmaz, F.M. Clinical and laboratory features of COVID-19: Predictors of severe prognosis. Int. Immunopharmacol., 2020, 88, 106950.
[http://dx.doi.org/10.1016/j.intimp.2020.106950] [PMID: 32919217]
[52]
Schett, G.; Sticherling, M.; Neurath, M.F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol., 2020, 20(5), 271-272.
[http://dx.doi.org/10.1038/s41577-020-0312-7] [PMID: 32296135]
[53]
Varchetta, S.; Mele, D.; Oliviero, B.; Mantovani, S.; Ludovisi, S.; Cerino, A. Unique immunological profile in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(3), 604-612.
[PMID: 33060840]
[54]
Yan, W.; Chen, D.; Bigambo, F.M.; Wei, H.; Wang, X.; Xia, Y. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: a network meta-analysis. BMC Infect. Dis., 2021, 21(1), 156.
[http://dx.doi.org/10.1186/s12879-021-05847-9] [PMID: 33557779]
[55]
Feng, X.; Li, S.; Sun, Q.; Zhu, J.; Chen, B.; Xiong, M.; Cao, G. Immune-inflammatory parameters in COVID-19 cases: a systematic review and meta-analysis. Front. Med. (Lausanne), 2020, 7, 301.
[http://dx.doi.org/10.3389/fmed.2020.00301] [PMID: 32582743]
[56]
Chen, R.; Sang, L.; Jiang, M.; Yang, Z.; Jia, N.; Fu, W.; Xie, J.; Guan, W.; Liang, W.; Ni, Z.; Hu, Y.; Liu, L.; Shan, H.; Lei, C.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zheng, J.; Zhang, N.; Li, Y.; He, J.; Li, J.; Li, S.; Zhong, N. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol., 2020, 146(1), 89-100.
[http://dx.doi.org/10.1016/j.jaci.2020.05.003] [PMID: 32407836]
[57]
Carissimo, G.; Xu, W.; Kwok, I.; Abdad, M.Y.; Chan, Y.H.; Fong, S.W.; Puan, K.J.; Lee, C.Y.P.; Yeo, N.K.W.; Amrun, S.N.; Chee, R.S.L.; How, W.; Chan, S.; Fan, B.E.; Andiappan, A.K.; Lee, B.; Rötzschke, O.; Young, B.E.; Leo, Y.S.; Lye, D.C.; Renia, L.; Ng, L.G.; Larbi, A.; Ng, L.F.P. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun., 2020, 11(1), 5243.
[http://dx.doi.org/10.1038/s41467-020-19080-6] [PMID: 33067472]
[58]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[59]
Libby, P.; Simon, D.I. Inflammation and thrombosis: the clot thickens; Am Heart Assoc, 2001.
[http://dx.doi.org/10.1161/01.CIR.103.13.1718]
[60]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[61]
Dashraath, P.; Wong, J.L.J.; Lim, M.X.K.; Lim, L.M.; Li, S.; Biswas, A.; Choolani, M.; Mattar, C.; Su, L.L. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol., 2020, 222(6), 521-531.
[http://dx.doi.org/10.1016/j.ajog.2020.03.021] [PMID: 32217113]
[62]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[63]
Wang, F.; Hou, H.; Luo, Y.; Tang, G.; Wu, S.; Huang, M.; Liu, W.; Zhu, Y.; Lin, Q.; Mao, L.; Fang, M.; Zhang, H.; Sun, Z. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight, 2020, 5(10), e137799.
[http://dx.doi.org/10.1172/jci.insight.137799] [PMID: 32324595]
[64]
Chan, J.W.M.; Ng, C.K.; Chan, Y.H.; Mok, T.Y.; Lee, S.; Chu, S.Y.; Law, W.L.; Lee, M.P.; Li, P.C. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax, 2003, 58(8), 686-689.
[http://dx.doi.org/10.1136/thorax.58.8.686] [PMID: 12885985]
[65]
Booth, C.M.; Matukas, L.M.; Tomlinson, G.A.; Rachlis, A.R.; Rose, D.B.; Dwosh, H.A.; Walmsley, S.L.; Mazzulli, T.; Avendano, M.; Derkach, P.; Ephtimios, I.E.; Kitai, I.; Mederski, B.D.; Shadowitz, S.B.; Gold, W.L.; Hawryluck, L.A.; Rea, E.; Chenkin, J.S.; Cescon, D.W.; Poutanen, S.M.; Detsky, A.S. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA, 2003, 289(21), 2801-2809.
[http://dx.doi.org/10.1001/jama.289.21.JOC30885] [PMID: 12734147]
[66]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[67]
Muyayalo, K.P.; Huang, D.H.; Zhao, S.J.; Xie, T.; Mor, G.; Liao, A.H. COVID-19 and Treg/Th17 imbalance: Potential relationship to pregnancy outcomes. Am. J. Reprod. Immunol., 2020, 84(5), e13304.
[http://dx.doi.org/10.1111/aji.13304] [PMID: 32662111]
[68]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[69]
Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis., 2020, 94, 91-95.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[70]
Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; Cookingham, J.; Coppa, K.; Diefenbach, M.A.; Dominello, A.J.; Duer-Hefele, J.; Falzon, L.; Gitlin, J.; Hajizadeh, N.; Harvin, T.G.; Hirschwerk, D.A.; Kim, E.J.; Kozel, Z.M.; Marrast, L.M.; Mogavero, J.N.; Osorio, G.A.; Qiu, M.; Zanos, T.P. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA, 2020, 323(20), 2052-2059.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[71]
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol., 2020, 5(7), 811-818.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[72]
Lippi, G.; Lavie, C.J.; Sanchis-Gomar, F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog. Cardiovasc. Dis., 2020, 63(3), 390-391.
[http://dx.doi.org/10.1016/j.pcad.2020.03.001] [PMID: 32169400]
[73]
Bhatla, A.; Mayer, M.M.; Adusumalli, S.; Hyman, M.C.; Oh, E.; Tierney, A.; Moss, J.; Chahal, A.A.; Anesi, G.; Denduluri, S.; Domenico, C.M.; Arkles, J.; Abella, B.S.; Bullinga, J.R.; Callans, D.J.; Dixit, S.; Epstein, A.E.; Frankel, D.S.; Garcia, F.C.; Kumareswaram, R.; Nazarian, S.; Riley, M.P.; Santangeli, P.; Schaller, R.D.; Supple, G.E.; Lin, D.; Marchlinski, F.; Deo, R. COVID-19 and cardiac arrhythmias. Heart Rhythm, 2020, 17(9), 1439-1444.
[http://dx.doi.org/10.1016/j.hrthm.2020.06.016] [PMID: 32585191]
[74]
Sala, S.; Peretto, G.; Gramegna, M.; Palmisano, A.; Villatore, A.; Vignale, D.; De Cobelli, F.; Tresoldi, M.; Cappelletti, A.M.; Basso, C.; Godino, C.; Esposito, A. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J., 2020, 41(19), 1861-1862.
[http://dx.doi.org/10.1093/eurheartj/ehaa286] [PMID: 32267502]
[75]
Cheung, E.W.; Zachariah, P.; Gorelik, M.; Boneparth, A.; Kernie, S.G.; Orange, J.S.; Milner, J.D. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA, 2020, 324(3), 294-296.
[http://dx.doi.org/10.1001/jama.2020.10374] [PMID: 32511676]
[76]
Christoffersson, G.; von Herrath, M. Regulatory immune mechanisms beyond regulatory T cells. Trends Immunol., 2019, 40(6), 482-491.
[http://dx.doi.org/10.1016/j.it.2019.04.005] [PMID: 31101537]
[77]
Romano, M.; Fanelli, G.; Albany, C.J.; Giganti, G.; Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol., 2019, 10, 43.
[http://dx.doi.org/10.3389/fimmu.2019.00043] [PMID: 30804926]
[78]
Prabhu, S.D.; Frangogiannis, N.G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res., 2016, 119(1), 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[79]
Pinto, J.; Boyden, P.A. Electrical remodeling in ischemia and infarction. Cardiovasc. Res., 1999, 42(2), 284-297.
[http://dx.doi.org/10.1016/S0008-6363(99)00013-9] [PMID: 10533567]
[80]
Bruins, P.; Velthuis, H.; Yazdanbakhsh, A.P.; Jansen, P.G.M.; van Hardevelt, F.W.J.; de Beaumont, E.M.F.H.; Wildevuur, C.R.H.; Eijsman, L.; Trouwborst, A.; Hack, C.E. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation, 1997, 96(10), 3542-3548.
[http://dx.doi.org/10.1161/01.CIR.96.10.3542] [PMID: 9396453]
[81]
Ker, J. Inflammation, immunity and infection in atherothrombosis. Medical Chronicle., 2019, 2019(3), 33.
[82]
Veldhoen, M.; Hocking, R.J.; Atkins, C.J.; Locksley, R.M.; Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006, 24(2), 179-189.
[http://dx.doi.org/10.1016/j.immuni.2006.01.001] [PMID: 16473830]
[83]
Konkel, J.E.; Zhang, D.; Zanvit, P.; Chia, C.; Zangarle-Murray, T.; Jin, W.; Wang, S.; Chen, W. Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity, 2017, 46(4), 660-674.
[http://dx.doi.org/10.1016/j.immuni.2017.03.015] [PMID: 28423340]
[84]
Fujimoto, Y.; Kuramoto, N.; Yoneyama, M.; Azuma, Y.T. Interleukin-19 as an immunoregulatory cytokine. Curr. Mol. Pharmacol., 2020, 14(2), 191-199.
[http://dx.doi.org/10.2174/1874467213666200424151528] [PMID: 32329704]
[85]
Collison, L.W.; Delgoffe, G.M.; Guy, C.S.; Vignali, K.M.; Chaturvedi, V.; Fairweather, D.; Satoskar, A.R.; Garcia, K.C.; Hunter, C.A.; Drake, C.G.; Murray, P.J.; Vignali, D.A.A. The composition and signaling of the IL-35 receptor are unconventional. Nat. Immunol., 2012, 13(3), 290-299.
[http://dx.doi.org/10.1038/ni.2227] [PMID: 22306691]
[86]
Wang, W.; Su, B.; Pang, L.; Qiao, L.; Feng, Y.; Ouyang, Y.; Guo, X.; Shi, H.; Wei, F.; Su, X.; Yin, J.; Jin, R.; Chen, D. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients. Cell. Mol. Immunol., 2020, 17(6), 650-652.
[http://dx.doi.org/10.1038/s41423-020-0447-2] [PMID: 32346099]
[87]
Anghelina, D.; Zhao, J.; Trandem, K.; Perlman, S. Role of regulatory T cells in coronavirus-induced acute encephalitis. Virology, 2009, 385(2), 358-367.
[http://dx.doi.org/10.1016/j.virol.2008.12.014] [PMID: 19141357]
[88]
Feuerer, M.; Herrero, L.; Cipolletta, D.; Naaz, A.; Wong, J.; Nayer, A.; Lee, J.; Goldfine, A.B.; Benoist, C.; Shoelson, S.; Mathis, D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med., 2009, 15(8), 930-939.
[http://dx.doi.org/10.1038/nm.2002] [PMID: 19633656]
[89]
Saghafi, N.; Rezaee, S.A.; Momtazi-Borojeni, A.A.; Tavasolian, F.; Sathyapalan, T.; Abdollahi, E.; Sahebkar, A. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci., 2022, 294, 120392.
[http://dx.doi.org/10.1016/j.lfs.2022.120392] [PMID: 35149115]
[90]
Witkin, S.S.; Linhares, I.M.; Bongiovanni, A.M.; Herway, C.; Skupski, D. Unique alterations in infection-induced immune activation during pregnancy. BJOG, 2011, 118(2), 145-153.
[http://dx.doi.org/10.1111/j.1471-0528.2010.02773.x] [PMID: 21054766]
[91]
Ghaneifar, Z.; Yousefi, Z.; Tajik, F.; Nikfar, B.; Ghalibafan, F.; Abdollahi, E.; Momtazi-Borojeni, A.A. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life, 2020, 72(12), 2572-2583.
[http://dx.doi.org/10.1002/iub.2399] [PMID: 33107698]
[92]
Hodyl, N.A.; Stark, M.J.; Osei-Kumah, A.; Clifton, V.L. Prenatal programming of the innate immune response following in utero exposure to inflammation: a sexually dimorphic process? Expert Rev. Clin. Immunol., 2011, 7(5), 579-592.
[http://dx.doi.org/10.1586/eci.11.51] [PMID: 21895471]
[93]
Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/tfh cells. Front. Immunol., 2020, 11, 2025.
[http://dx.doi.org/10.3389/fimmu.2020.02025] [PMID: 32973809]
[94]
Pei, C.Z.; Kim, Y.J.; Baek, K.H. Pathogenetic factors involved in recurrent pregnancy loss from multiple aspects. Obstet. Gynecol. Sci., 2019, 62(4), 212-223.
[http://dx.doi.org/10.5468/ogs.2019.62.4.212] [PMID: 31338338]
[95]
Liu, Y.S.; Wu, L.; Tong, X.H.; Wu, L.M.; He, G.P.; Zhou, G.X.; Luo, L.H.; Luan, H.B. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol., 2011, 65(5), 503-511.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00921.x] [PMID: 21029245]
[96]
Hosseini, S.; Shokri, F.; Ansari Pour, S.; Jeddi-Tehrani, M.; Nikoo, S.; Yousefi, M.; Zarnani, A.H. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J. Reprod. Immunol., 2016, 116, 13-22.
[http://dx.doi.org/10.1016/j.jri.2016.03.001] [PMID: 27128988]
[97]
Aluvihare, V.R.; Betz, A.G. The Role of Regulatory T Cells in Materno-Fetal Tolerance. Immunology of Pregnancy; Springer, 2006, pp. 171-178.
[98]
Guerin, L.R.; Prins, J.R.; Robertson, S.A. Regulatory T-cells and immune tolerance in pregnancy: A new target for infertility treatment? Hum. Reprod. Update, 2009, 15(5), 517-535.
[http://dx.doi.org/10.1093/humupd/dmp004] [PMID: 19279047]
[99]
Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441(7090), 235-238.
[http://dx.doi.org/10.1038/nature04753] [PMID: 16648838]
[100]
Yang, H.; Qiu, L.; Chen, G.; Ye, Z.; Lü, C.; Lin, Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril., 2008, 89(3), 656-661.
[http://dx.doi.org/10.1016/j.fertnstert.2007.03.037] [PMID: 17543960]
[101]
Somerset, D.A.; Zheng, Y.; Kilby, M.D.; Sansom, D.M.; Drayson, M.T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology, 2004, 112(1), 38-43.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01869.x] [PMID: 15096182]
[102]
Wang, W.J.; Hao, C.F.; Yi-Lin; Yin, G.J.; Bao, S.H.; Qiu, L.H.; Lin, Q.D. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol., 2010, 84(2), 164-170.
[http://dx.doi.org/10.1016/j.jri.2009.12.003] [PMID: 20106535]
[103]
Lee, S.K.; Kim, J.Y.; Hur, S.E.; Kim, C.J.; Na, B.J.; Lee, M.; Gilman-Sachs, A.; Kwak-Kim, J. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum. Reprod., 2011, 26(11), 2964-2971.
[http://dx.doi.org/10.1093/humrep/der301] [PMID: 21926059]
[104]
Wang, W.J.; Hao, C.F.; Qu, Q.L.; Wang, X.; Qiu, L.H.; Lin, Q.D. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod., 2010, 25(10), 2591-2596.
[http://dx.doi.org/10.1093/humrep/deq198] [PMID: 20685755]
[105]
Sasaki, Y.; Sakai, M.; Miyazaki, S.; Higuma, S.; Shiozaki, A.; Saito, S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod., 2004, 10(5), 347-353.
[http://dx.doi.org/10.1093/molehr/gah044] [PMID: 14997000]
[106]
Mei, S.; Tan, J.; Chen, H.; Chen, Y.; Zhang, J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil. Steril., 2010, 94(6), 2244-2247.
[http://dx.doi.org/10.1016/j.fertnstert.2009.11.020] [PMID: 20056219]
[107]
Wu, L.; Luo, L.H.; Zhang, Y.X.; Li, Q.; Xu, B.; Zhou, G.X.; Luan, H.B.; Liu, Y.S. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod. Biol. Endocrinol., 2014, 12(1), 74.
[http://dx.doi.org/10.1186/1477-7827-12-74] [PMID: 25086467]
[108]
Nakashima, A.; Ito, M.; Shima, T.; Bac, N.D.; Hidaka, T.; Saito, S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am. J. Reprod. Immunol., 2010, 64(1), 4-11.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00812.x] [PMID: 20219063]
[109]
Li, N.; Saghafi, N.; Ghaneifar, Z.; Rezaee, S.A.; Rafatpanah, H.; Abdollahi, E. Evaluation of the effects of 1,25VitD3 on inflammatory responses and IL-25 expression. Front. Genet., 2021, 12, 779494.
[http://dx.doi.org/10.3389/fgene.2021.779494] [PMID: 34956328]
[110]
Corthay, A. How do regulatory T cells work? Scand. J. Immunol., 2009, 70(4), 326-336.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02308.x] [PMID: 19751267]
[111]
Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[112]
Field, E.H.; Kulhankova, K.; Nasr, M.E. Natural Tregs, CD4+CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol. Res., 2007, 39(1-3), 62-78.
[http://dx.doi.org/10.1007/s12026-007-0064-5] [PMID: 17917056]
[113]
Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol., 2010, 63(6), 601-610.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00852.x] [PMID: 20455873]
[114]
Lee, J.H.; Ulrich, B.; Cho, J.; Park, J.; Kim, C.H. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol., 2011, 187(4), 1778-1787.
[http://dx.doi.org/10.4049/jimmunol.1003919] [PMID: 21768398]
[115]
Kmiołek, T.; Rzeszotarska, E.; Wajda, A.; Walczuk, E.; Kuca-Warnawin, E.; Romanowska-Próchnicka, K.; Stypinska, B.; Majewski, D.; Jagodzinski, P.P.; Pawlik, A.; Paradowska-Gorycka, A. The interplay between transcriptional factors and micrornas as an important factor for th17/treg balance in ra patients. Int. J. Mol. Sci., 2020, 21(19), 7169.
[http://dx.doi.org/10.3390/ijms21197169] [PMID: 32998457]
[116]
Qiu, R.; Zhou, L.; Ma, Y.; Zhou, L.; Liang, T.; Shi, L.; Long, J.; Yuan, D. Regulatory T cell plasticity and stability and autoimmune diseases. Clin. Rev. Allergy Immunol., 2020, 58(1), 52-70.
[http://dx.doi.org/10.1007/s12016-018-8721-0] [PMID: 30449014]
[117]
Abdollahi, E.; Saghafi, N.; Rezaee, S.A.R.; Rastin, M.; Jarahi, L.; Clifton, V.; Rafatpanah, H. Evaluation of 1,25(OH)2D3 effects on FOXP3, ROR-γt, GITR, and CTLA-4 gene expression in the PBMCs of vitamin D-deficient women with unexplained recurrent pregnancy loss (URPL). Iran. Biomed. J., 2020, 24(5), 290-300.
[http://dx.doi.org/10.29252/ibj.24.5.290] [PMID: 32429643]
[118]
Harmon, A.; Cornelius, D.; Amaral, L.; Paige, A.; Herse, F.; Ibrahim, T.; Wallukat, G.; Faulkner, J.; Moseley, J.; Dechend, R.; LaMarca, B. IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertens. Pregnancy, 2015, 34(3), 291-306.
[http://dx.doi.org/10.3109/10641955.2015.1032054] [PMID: 25996051]
[119]
Fettke, F.; Schumacher, A.; Canellada, A.; Toledo, N.; Bekeredjian-Ding, I.; Bondt, A.; Wuhrer, M.; Costa, S.D.; Zenclussen, A.C. Maternal and fetal mechanisms of B cell regulation during pregnancy: human chorionic gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis. Front. Immunol., 2016, 7, 495.
[http://dx.doi.org/10.3389/fimmu.2016.00495] [PMID: 28008329]
[120]
Busse, M.; Campe, K.N.J.; Nowak, D.; Schumacher, A.; Plenagl, S.; Langwisch, S.; Tiegs, G.; Reinhold, A.; Zenclussen, A.C. IL-10 producing B cells rescue mouse fetuses from inflammation-driven fetal death and are able to modulate T cell immune responses. Sci. Rep., 2019, 9(1), 9335.
[http://dx.doi.org/10.1038/s41598-019-45860-2] [PMID: 31249364]
[121]
Peng, H; Xian, D; Liu, J; Pan, S; Tang, R; Zhong, J Regulating the polarization of macrophages: a promising approach to vascular dermatosis. J Immunol Res., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8148272]
[122]
Zhao, H.; Ozen, M.; Wong, R.J.; Stevenson, D.K. Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Front. Pharmacol., 2015, 5, 295.
[http://dx.doi.org/10.3389/fphar.2014.00295] [PMID: 25642189]
[123]
Kempkes, R.W.M.; Joosten, I.; Koenen, H.J.P.M.; He, X. Metabolic pathways involved in regulatory T cell functionality. Front. Immunol., 2019, 10, 2839.
[http://dx.doi.org/10.3389/fimmu.2019.02839] [PMID: 31849995]
[124]
Zhang, J.; Dunk, C.; Croy, A.B.; Lye, S.J. To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res., 2016, 363(1), 249-265.
[http://dx.doi.org/10.1007/s00441-015-2315-4] [PMID: 26572540]
[125]
Terme, M.; Chaput, N.; Combadiere, B.; Ma, A.; Ohteki, T.; Zitvogel, L. Regulatory T cells control dendritic cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J. Immunol., 2008, 180(7), 4679-4686.
[http://dx.doi.org/10.4049/jimmunol.180.7.4679] [PMID: 18354191]
[126]
Blois, S.M.; Klapp, B.F.; Barrientos, G. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J. Reprod. Immunol., 2011, 88(2), 86-92.
[http://dx.doi.org/10.1016/j.jri.2010.11.002] [PMID: 21227511]
[127]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[128]
José, R.J.; Williams, A.E.; Chambers, R.C. Proteinase-activated receptors in fibroproliferative lung disease. Thorax, 2014, 69(2), 190-192.
[http://dx.doi.org/10.1136/thoraxjnl-2013-204367] [PMID: 24186921]
[129]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[130]
Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med., 2021, 27(1), 28-33.
[http://dx.doi.org/10.1038/s41591-020-01202-8] [PMID: 33442016]
[131]
Sakaguchi, S; Yamaguchi, T; Nomura, T; Ono, M. Regulatory T cells and immune tolerance. cell., 2008, 133(5), 775-787.
[132]
Jørgensen, N.; Persson, G.; Hviid, T.V.F. The tolerogenic function of regulatory T cells in pregnancy and cancer. Front. Immunol., 2019, 10, 911.
[http://dx.doi.org/10.3389/fimmu.2019.00911] [PMID: 31134056]
[133]
Mjösberg, J.; Berg, G.; Jenmalm, M.C.; Ernerudh, J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol. Reprod., 2010, 82(4), 698-705.
[http://dx.doi.org/10.1095/biolreprod.109.081208] [PMID: 20018909]
[134]
Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Invest., 2018, 128(10), 4224-4235.
[http://dx.doi.org/10.1172/JCI122182] [PMID: 30272581]
[135]
Powell, R.M. Novel T cell function and specificity at the human maternal-fetal interface; University of Birmingham, 2018.
[136]
Leloup, A.J.A.; Van Hove, C.E.; De Moudt, S.; De Keulenaer, G.W.; Fransen, P. Ex vivo aortic stiffness in mice with different eNOS activity. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(5), H1233-H1244.
[http://dx.doi.org/10.1152/ajpheart.00737.2019] [PMID: 32275471]
[137]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[138]
Colmenero, I.; Santonja, C.; Alonso-Riaño, M.; Noguera-Morel, L.; Hernández-Martín, A.; Andina, D.; Wiesner, T.; Rodríguez-Peralto, J.L.; Requena, L.; Torrelo, A. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol., 2020, 183(4), 729-737.
[http://dx.doi.org/10.1111/bjd.19327] [PMID: 32562567]
[139]
Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; Weber, C.; Bochaton-Piallat, M.L.; Bäck, M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res., 2020, 116(14), 2177-2184.
[http://dx.doi.org/10.1093/cvr/cvaa230] [PMID: 32750108]
[140]
Yamashita, T.; Sasaki, N.; Kasahara, K.; Hirata, K. Anti-inflammatory and immune-modulatory therapies for preventing atherosclerotic cardiovascular disease. J. Cardiol., 2015, 66(1), 1-8.
[http://dx.doi.org/10.1016/j.jjcc.2015.02.002] [PMID: 25744783]
[141]
Cornelius, D.C.; Amaral, L.M.; Harmon, A.; Wallace, K.; Thomas, A.J.; Campbell, N.; Scott, J.; Herse, F.; Haase, N.; Moseley, J.; Wallukat, G.; Dechend, R.; LaMarca, B. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 309(8), R884-R891.
[http://dx.doi.org/10.1152/ajpregu.00154.2015] [PMID: 26290102]
[142]
Matrougui, K.; Zakaria, A.E.; Kassan, M.; Choi, S.; Nair, D.; Gonzalez-Villalobos, R.A.; Chentoufi, A.A.; Kadowitz, P.; Belmadani, S.; Partyka, M. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol., 2011, 178(1), 434-441.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.034] [PMID: 21224080]
[143]
Kassan, M.; Galan, M.; Partyka, M.; Trebak, M.; Matrougui, K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2534-2542.
[http://dx.doi.org/10.1161/ATVBAHA.111.233262] [PMID: 21817097]
[144]
Kassan, M.; Wecker, A.; Kadowitz, P.; Trebak, M.; Matrougui, K. CD4 +CD25 +Foxp3 regulatory T cells and vascular dysfunction in hypertension. J. Hypertens., 2013, 31(10), 1939-1943.
[http://dx.doi.org/10.1097/HJH.0b013e328362feb7] [PMID: 23881298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy