Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Inflammatory Progression in Patients Undergoing Extracorporeal Membrane Oxygenation

Author(s): Yan’er Yao, Huiyuan Kang, Ye Cheng, Xin Su* and Bin Wang*

Volume 24, Issue 7, 2024

Published on: 16 August, 2023

Page: [844 - 855] Pages: 12

DOI: 10.2174/1566524023666230619102723

Price: $65

Abstract

Extracorporeal membrane oxygenation (ECMO) is identified as a novel therapeutic strategy that offers short-term support to the metabolism of the heart and lungs in humans. Recently, the clinical centers, which provide ECMO has increased rapidly worldwide. The indications for the use of ECMO in daily clinical practice were broadened dynamically. However, even with the widespread adoption of ECMO, it still remains significant morbidity and mortality, and the underlying mechanisms are still not elucidated. Notably, one of the vital complications during ECMO was proposed as the inflammatory progression within the extracorporeal circulation. via the development of inflammatory response, patients with ECMO may further suffer from systemic inflammatory response syndrome (SIRS), posing serious risks to human health. Recently, growing evidence confirmed that through exposure of blood into the ECMO circuit could lead to the stimulation of the immune system which also facilitated the inflammatory response and systemic impaired. In the current review, the pathological development of inflammatory progression in patients with ECMO is well-listed. Furthermore, the relationship between immune-related activation and the development of inflammation is also summarized, which may further help us to decide the therapeutic strategies in daily clinical practice.

Keywords: Extracorporeal membrane oxygenation, inflammation, therapeutic strategy, systemic inflammatory response syndrome, mesenchymal stromal cell, inflammatory.

[1]
Napp LC, Kühn C, Bauersachs J. ECMO in cardiac arrest and cardiogenic shock. Herz 2017; 42(1): 27-44.
[http://dx.doi.org/10.1007/s00059-016-4523-4] [PMID: 28127638]
[2]
Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit Care 2016; 20(1): 387.
[http://dx.doi.org/10.1186/s13054-016-1570-4] [PMID: 27890016]
[3]
Thomas J, Kostousov V, Teruya J. Bleeding and thrombotic complications in the use of extracorporeal membrane oxygenation. Semin Thromb Hemost 2018; 44(1): 020-9.
[http://dx.doi.org/10.1055/s-0037-1606179] [PMID: 28898902]
[4]
Paolone S. Extracorporeal membrane oxygenation (ECMO) for lung injury in severe acute respiratory distress syndrome (ARDS): review of the literature. Clin Nurs Res 2017; 26(6): 747-62.
[http://dx.doi.org/10.1177/1054773816677808] [PMID: 27836935]
[5]
Schechter MA, Ganapathi AM, Englum BR, et al. Spontaneously breathing extracorporeal membrane oxygenation support provides the optimal bridge to lung transplantation. Transplantation 2016; 100(12): 2699-704.
[http://dx.doi.org/10.1097/TP.0000000000001047] [PMID: 26910331]
[6]
Murphy DA, Hockings LE, Andrews RK, et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev 2015; 29(2): 90-101.
[http://dx.doi.org/10.1016/j.tmrv.2014.12.001] [PMID: 25595476]
[7]
Bautista-Rodriguez C, Sanchez-de-Toledo J, Da Cruz EM. The role of echocardiography in neonates and pediatric patients on extracorporeal membrane oxygenation. Front Pediatr 2018; 6: 297.
[http://dx.doi.org/10.3389/fped.2018.00297] [PMID: 30416991]
[8]
Gray BW, Haft JW, Hirsch JC, Annich GM, Hirschl RB, Bartlett RH. Extracorporeal life support: Experience with 2,000 patients. ASAIO J 2015; 61(1): 2-7.
[http://dx.doi.org/10.1097/MAT.0000000000000150] [PMID: 25251585]
[9]
Tsai CW, Lin YF, Wu VC, et al. SAPS 3 at dialysis commencement is predictive of hospital mortality in patients supported by extracorporeal membrane oxygenation and acute dialysis. Eur J Cardiothorac Surg 2008; 34(6): 1158-64.
[http://dx.doi.org/10.1016/j.ejcts.2008.07.025] [PMID: 18757205]
[10]
Aubron C, Cheng AC, Pilcher D, et al. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: A 5-year cohort study. Crit Care 2013; 17(2): R73.
[http://dx.doi.org/10.1186/cc12681] [PMID: 23594433]
[11]
Clark JB, Wang S, Palanzo DA, et al. Current techniques and outcomes in extracorporeal life support. Artif Organs 2015; 39(11): 926-30.
[http://dx.doi.org/10.1111/aor.12527] [PMID: 26489868]
[12]
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic inflammatory response syndrome after surgery: Mechanisms and protection. Anesth Analg 2020; 131(6): 1693-707.
[http://dx.doi.org/10.1213/ANE.0000000000005175] [PMID: 33186158]
[13]
Ki KK, Millar JE, Langguth D, et al. Current understanding of leukocyte phenotypic and functional modulation during extracorporeal membrane oxygenation: A narrative review. Front Immunol 2021; 11: 600684.
[http://dx.doi.org/10.3389/fimmu.2020.600684] [PMID: 33488595]
[14]
Rungatscher A, Tessari M, Stranieri C, et al. Oxygenator is the main responsible for leukocyte activation in experimental model of extracorporeal circulation: A cautionary tale. Mediators Inflamm 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/484979] [PMID: 26063972]
[15]
Wang S, Krawiec C, Patel S, et al. Laboratory evaluation of hemolysis and systemic inflammatory response in neonatal nonpulsatile and pulsatile extracorporeal life support systems. Artif Organs 2015; 39(9): 774-81.
[http://dx.doi.org/10.1111/aor.12466] [PMID: 25940752]
[16]
Al-Fares A, Pettenuzzo T, Del Sorbo L. Extracorporeal life support and systemic inflammation. Intensive Care Med Exp 2019; 7(S1) (Suppl. 1): 46.
[http://dx.doi.org/10.1186/s40635-019-0249-y] [PMID: 31346840]
[17]
Graulich J, Sonntag J, Marcinkowski M, et al. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation. Mediators Inflamm 2002; 11(2): 69-73.
[http://dx.doi.org/10.1080/09629350220131908] [PMID: 12061426]
[18]
Oliver WC. Anticoagulation and coagulation management for ECMO. Semin Cardiothorac Vasc Anesth 2009; 13(3): 154-75.
[http://dx.doi.org/10.1177/1089253209347384] [PMID: 19767408]
[19]
He C, Yang S, Yu W, et al. Effects of continuous renal replacement therapy on intestinal mucosal barrier function during extracorporeal membrane oxygenation in a porcine model. J Cardiothorac Surg 2014; 9(1): 72.
[http://dx.doi.org/10.1186/1749-8090-9-72] [PMID: 24758270]
[20]
Shi J, Chen Q, Yu W, et al. Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model. Artif Organs 2014; 38(3): 215-23.
[http://dx.doi.org/10.1111/aor.12154] [PMID: 24329567]
[21]
Yimin H, Wenkui Y, Jialiang S, et al. Effects of continuous renal replacement therapy on renal inflammatory cytokines during extracorporeal membrane oxygenation in a porcine model. J Cardiothorac Surg 2013; 8(1): 113.
[http://dx.doi.org/10.1186/1749-8090-8-113] [PMID: 23628149]
[22]
Thangappan K, Cavarocchi NC, Baram M, Thoma B, Hirose H. Systemic inflammatory response syndrome (SIRS) after extracorporeal membrane oxygenation (ECMO): Incidence, risks and survivals. Heart Lung 2016; 45(5): 449-53.
[http://dx.doi.org/10.1016/j.hrtlng.2016.06.004] [PMID: 27425197]
[23]
Landis RC, Brown JR, Fitzgerald D, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J Extra Corpor Technol 2014; 46(3): 197-211.
[PMID: 26357785]
[24]
Balk RA. Systemic inflammatory response syndrome (SIRS). Virulence 2014; 5(1): 20-6.
[http://dx.doi.org/10.4161/viru.27135] [PMID: 24280933]
[25]
Wu Y. The plasma contact system as a modulator of innate immunity. Curr Opin Hematol 2018; 25(5): 389-94.
[http://dx.doi.org/10.1097/MOH.0000000000000448] [PMID: 30028742]
[26]
Didiasova M, Wujak L, Schaefer L, Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal 2018; 51: 257-65.
[http://dx.doi.org/10.1016/j.cellsig.2018.08.006] [PMID: 30118759]
[27]
Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131(17): 1903-9.
[http://dx.doi.org/10.1182/blood-2017-04-569111] [PMID: 29483100]
[28]
Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: An interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14(3): 427-37.
[http://dx.doi.org/10.1111/jth.13235] [PMID: 26707513]
[29]
de Maat S, Sanrattana W, Mailer RK, et al. Design and characterization of α1-antitrypsin variants for treatment of contact system–driven thromboinflammation. Blood 2019; 134(19): 1658-69.
[http://dx.doi.org/10.1182/blood.2019000481] [PMID: 31366623]
[30]
Mojcik CF, Levy JH. Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg 2001; 71(2): 745-54.
[http://dx.doi.org/10.1016/S0003-4975(00)02218-9] [PMID: 11235755]
[31]
Wilbs J, Kong XD, Middendorp SJ, et al. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat Commun 2020; 11(1): 3890.
[http://dx.doi.org/10.1038/s41467-020-17648-w] [PMID: 32753636]
[32]
Naaldijk YM, Bittencourt MC, Sack U, Ulrich H. Kinins and microglial responses in bipolar disorder: A neuroinflammation hypothesis. Biol Chem 2016; 397(4): 283-96.
[http://dx.doi.org/10.1515/hsz-2015-0257] [PMID: 26859499]
[33]
Schmaier AH. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14(1): 28-39.
[http://dx.doi.org/10.1111/jth.13194] [PMID: 26565070]
[34]
Yeh CH, Chen TP, Wang YC, Lin YM, Fang SW. Cardiomyo-cytic apoptosis limited by bradykinin via restoration of nitric oxide after cardioplegic arrest. J Surg Res 2010; 163(1): e1-9.
[http://dx.doi.org/10.1016/j.jss.2010.04.005] [PMID: 20638673]
[35]
Weitz JI, Chan NC. Novel antithrombotic strategies for treatment of venous thromboembolism. Blood 2020; 135(5): 351-9.
[http://dx.doi.org/10.1182/blood.2019000919] [PMID: 31917385]
[36]
Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2019; 39(3): 331-8.
[http://dx.doi.org/10.1161/ATVBAHA.118.312130] [PMID: 30700128]
[37]
Visser M, van Oerle R, ten Cate H, et al. Plasma Kallikrein contributes to coagulation in the Absence of Factor XI by Activating Factor IX. Arterioscler Thromb Vasc Biol 2020; 40(1): 103-11.
[http://dx.doi.org/10.1161/ATVBAHA.119.313503] [PMID: 31766871]
[38]
Morgan EN, Pohlman TH, Vocelka C, et al. Nuclear factor κB mediates a procoagulant response in monocytes during extracorporeal circulation. J Thorac Cardiovasc Surg 2003; 125(1): 165-71.
[http://dx.doi.org/10.1067/mtc.2003.99] [PMID: 12539000]
[39]
Shibamiya A, Tabuchi N, Chung J, Sunamori M, Koyama T. Formation of tissue factor-bearing leukocytes during and after cardiopulmonary bypass. Thromb Haemost 2004; 92(7): 124-31.
[http://dx.doi.org/10.1160/TH03-12-0787] [PMID: 15213853]
[40]
Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005; 96(12): 1233-9.
[http://dx.doi.org/10.1161/01.RES.0000171805.24799.fa] [PMID: 15920023]
[41]
Alvarez-Flores MP, Furlin D, Ramos OHP, Balan A, Konno K, Chudzinski-Tavassi AM. Losac, the first hemolin that exhibits procogulant activity through selective factor X proteolytic activation. J Biol Chem 2011; 286(9): 6918-28.
[http://dx.doi.org/10.1074/jbc.M110.167718] [PMID: 21177860]
[42]
Oulion B, Dobson JS, Zdenek CN, et al. Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicol Lett 2018; 288: 119-28.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.020] [PMID: 29462691]
[43]
Lim CH, Puthia M, Butrym M, et al. Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Sci Rep 2017; 7(1): 11201.
[http://dx.doi.org/10.1038/s41598-017-11464-x] [PMID: 28894159]
[44]
Bronicki RA, Hall M. Cardiopulmonary bypass-induced inflammatory response. Pediatr Crit Care Med 2016; 17(8) (Suppl. 1): S272-8.
[http://dx.doi.org/10.1097/PCC.0000000000000759] [PMID: 27490610]
[45]
Evora PRB, Tenório DF, Braile DM. Is the cardiopulmonary bypass systemic inflammatory response overestimated? Rev Bras Cir Cardiovasc 2018; 33(4): I-III.
[http://dx.doi.org/10.21470/1678-9741-2018-0605] [PMID: 30184025]
[46]
Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jámbor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. Anesth Analg 2010; 110(3): 702-7.
[http://dx.doi.org/10.1213/ANE.0b013e3181c92a5c] [PMID: 20042444]
[47]
Cheung PY, Sawicki G, Salas E, Etches PC, Schulz R, Radomski MW. The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit Care Med 2000; 28(7): 2584-90.
[http://dx.doi.org/10.1097/00003246-200007000-00067] [PMID: 10921599]
[48]
Jiritano F, Serraino GF, ten Cate H, et al. Platelets and extra-corporeal membrane oxygenation in adult patients: A systematic review and meta-analysis. Intensive Care Med 2020; 46(6): 1154-69.
[http://dx.doi.org/10.1007/s00134-020-06031-4] [PMID: 32328725]
[49]
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The human platelet as an innate immune cell: Interactions between activated platelets and the complement system. Front Immunol 2019; 10: 1590.
[http://dx.doi.org/10.3389/fimmu.2019.01590] [PMID: 31354729]
[50]
Whiteheart SW. Platelet granules: Surprise packages. Blood 2011; 118(5): 1190-1.
[http://dx.doi.org/10.1182/blood-2011-06-359836] [PMID: 21816838]
[51]
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: Molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39(6): BSR20190805.
[http://dx.doi.org/10.1042/BSR20190805] [PMID: 31092698]
[52]
Maugeri N, Brambilla M, Camera M, et al. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J Thromb Haemost 2006; 4(6): 1323-30.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01968.x] [PMID: 16706978]
[53]
Datzmann T, Träger K. Extracorporeal membrane oxygenation and cytokine adsorption. J Thorac Dis 2018; 10(S5) (Suppl. 5): S653-60.
[http://dx.doi.org/10.21037/jtd.2017.10.128] [PMID: 29732183]
[54]
Liu CH, Kuo SW, Hsu LM, et al. Peroxiredoxin 1 induces inflammatory cytokine response and predicts outcome of cardiogenic shock patients necessitating extracorporeal membrane oxygenation: An observational cohort study and translational approach. J Transl Med 2016; 14(1): 114.
[http://dx.doi.org/10.1186/s12967-016-0869-x] [PMID: 27142532]
[55]
Diakos NA, Thayer K, Swain L, Goud M, Jain P, Kapur NK. Systemic inflammatory burden correlates with severity and predicts outcomes in patients with cardiogenic shock supported by a percutaneous mechanical assist device. J Cardiovasc Transl Res 2021; 14(3): 476-83.
[PMID: 33078375]
[56]
Liang Y, Li C, Liu B, et al. Protective effect of extracorporeal membrane oxygenation on intestinal mucosal injury after cardiopulmonary resuscitation in pigs. Exp Ther Med 2019; 18(6): 4347-55.
[http://dx.doi.org/10.3892/etm.2019.8087] [PMID: 31777541]
[57]
Moore FD Jr, Socher SH, Davis C. Tumor necrosis factor and endotoxin can cause neutrophil activation through separate pathways. Arch Surg 1991; 126(1): 70-3.
[http://dx.doi.org/10.1001/archsurg.1991.01410250076012] [PMID: 1985637]
[58]
Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF ‐α mediated NF ‐κB pathway. J Cell Mol Med 2016; 20(12): 2318-27.
[http://dx.doi.org/10.1111/jcmm.12923] [PMID: 27515767]
[59]
Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol 2017; 176: 55-62.
[http://dx.doi.org/10.1016/j.clim.2017.01.007] [PMID: 28095319]
[60]
Ranucci M, Baryshnikova E, Isgrò G, et al. Heparin-like effect in postcardiotomy extracorporeal membrane oxygenation patients. Crit Care 2014; 18(5): 504.
[http://dx.doi.org/10.1186/s13054-014-0504-2] [PMID: 25189998]
[61]
Hagiwara S, Kaushal E, Paruthiyil S, Pasricha PJ, Hasdemir B, Bhargava A. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia. PLoS One 2018; 13(9): e0203704.
[http://dx.doi.org/10.1371/journal.pone.0203704] [PMID: 30192883]
[62]
McILwain RB, Timpa JG, Kurundkar AR, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest 2010; 90(1): 128-39.
[http://dx.doi.org/10.1038/labinvest.2009.119] [PMID: 19901912]
[63]
Fortenberry JD, Bhardwaj V, Niemer P, Cornish JD, Wright JA, Bland L. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J Pediatr 1996; 128(5): 670-8.
[http://dx.doi.org/10.1016/S0022-3476(96)80133-8] [PMID: 8627440]
[64]
Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res 2014; 2(4): 288-94.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0022] [PMID: 24764575]
[65]
Delnoij TSR, Driessen R, Sharma AS, Bouman EA, Strauch U, Roekaerts PM. Venovenous extracorporeal membrane oxygenation in intractable pulmonary insufficiency: Practical issues and future directions. BioMed Res Int 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/9367464] [PMID: 27127794]
[66]
Mazzoni A, Salvati L, Maggi L, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest 2020; 130(9): 4694-703.
[http://dx.doi.org/10.1172/JCI138554] [PMID: 32463803]
[67]
Risnes I, Wagner K, Ueland T, Mollnes TE, Aukrust P, Svennevig JL. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion 2008; 23(3): 173-8.
[http://dx.doi.org/10.1177/0267659108097882] [PMID: 19029268]
[68]
Roumy A, Liaudet L, Rusca M, Marcucci C, Kirsch M. Pulmonary complications associated with veno-arterial extra-corporeal membrane oxygenation: A comprehensive review. Crit Care 2020; 24(1): 212.
[http://dx.doi.org/10.1186/s13054-020-02937-z] [PMID: 32393326]
[69]
Adrian K, Mellgren K, Skogby M, Friberg LG, Mellgren G, Wadenvik H. Cytokine release during long-term extracorporeal circulation in an experimental model. Artif Organs 1998; 22(10): 859-63.
[http://dx.doi.org/10.1046/j.1525-1594.1998.06121.x] [PMID: 9790084]
[70]
Delvino P, Monti S, Balduzzi S, Belliato M, Montecucco C, Caporali R. The role of extra-corporeal membrane oxygenation (ECMO) in the treatment of diffuse alveolar haemorrhage secondary to ANCA-associated vasculitis: Report of two cases and review of the literature. Rheumatol Int 2019; 39(2): 367-75.
[http://dx.doi.org/10.1007/s00296-018-4116-z] [PMID: 30074077]
[71]
Hong TH, Kuo SW, Hu FC, et al. Do interleukin-10 and superoxide ions predict outcomes of cardiac extracorporeal membrane oxygenation patients? Antioxid Redox Signal 2014; 20(1): 60-8.
[http://dx.doi.org/10.1089/ars.2013.5427] [PMID: 23786249]
[72]
Plötz FB, Oeveren W, Bartlett RH, Wildevuur CRH. Blood activation during neonatal extracorporeal life support. J Thorac Cardiovasc Surg 1993; 105(5): 823-32.
[http://dx.doi.org/10.1016/S0022-5223(19)34156-X] [PMID: 7683735]
[73]
Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20(1): 34-50.
[http://dx.doi.org/10.1038/cr.2009.139] [PMID: 20010915]
[74]
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol 2013; 33(6): 479-92.
[http://dx.doi.org/10.1016/j.semnephrol.2013.08.001] [PMID: 24161035]
[75]
Zhang L, Dai Y, Huang P, et al. Absence of complement component 3 does not prevent classical pathway–mediated hemolysis. Blood Adv 2019; 3(12): 1808-14.
[http://dx.doi.org/10.1182/bloodadvances.2019031591] [PMID: 31196848]
[76]
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system Part II: Role in immunity. Front Immunol 2015; 6: 257.
[http://dx.doi.org/10.3389/fimmu.2015.00257] [PMID: 26074922]
[77]
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J Immunol 2013; 190(8): 3831-8.
[http://dx.doi.org/10.4049/jimmunol.1203487] [PMID: 23564577]
[78]
Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol 2007; 44(1-3): 82-94.
[http://dx.doi.org/10.1016/j.molimm.2006.06.020] [PMID: 16905192]
[79]
Wehlin L, Vedin J, Vaage J, Lundahl J. Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg 2004; 25(1): 35-42.
[http://dx.doi.org/10.1016/S1010-7940(03)00652-3] [PMID: 14690730]
[80]
Wehlin L, Vedin J, Vaage J, Lundahl J. Peripheral blood monocyte activation during coronary artery bypass grafting with or without cardiopulmonary bypass. Scand Cardiovasc J 2005; 39(1-2): 78-86.
[http://dx.doi.org/10.1080/14017430410004623] [PMID: 16097419]
[81]
Moen O, Fosse E, Bråten J, et al. Roller and centrifugal pumps compared in vitro with regard to haemolysis, granulocyte and complement activation. Perfusion 1994; 9(2): 109-17.
[http://dx.doi.org/10.1177/026765919400900205] [PMID: 7919596]
[82]
Vallhonrat H, Swinford RD, Ingelfinger JR, et al. Rapid activation of the alternative pathway of complement by extracorporeal membrane oxygenation. ASAIO J 1999; 45(1): 113-4.
[http://dx.doi.org/10.1097/00002480-199901000-00025] [PMID: 9952020]
[83]
Hocker JR, Wellhausen SR, Ward RA, Simpson PM, Cook LN. Effect of extracorporeal membrane oxygenation on leukocyte function in neonates. Artif Organs 1991; 15(1): 23-8.
[http://dx.doi.org/10.1111/j.1525-1594.1991.tb00755.x] [PMID: 1998487]
[84]
Lindholm L, Westerberg M, Bengtsson A, Ekroth R, Jensen E, Jeppsson A. A closed perfusion system with heparin coating and centrifugal pump improves cardiopulmonary bypass biocompatibility in elderly patients. Ann Thorac Surg 2004; 78(6): 2131-8.
[http://dx.doi.org/10.1016/j.athoracsur.2004.06.011] [PMID: 15561050]
[85]
Morgan I, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: Prospective randomised trial. Eur J Cardiothorac Surg 1998; 13(5): 526-32.
[http://dx.doi.org/10.1016/S1010-7940(98)00067-0] [PMID: 9663533]
[86]
Hein E, Munthe-Fog L, Thiara AS, Fiane AE, Mollnes TE, Garred P. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo. Clin Exp Immunol 2015; 179(2): 294-9.
[http://dx.doi.org/10.1111/cei.12446] [PMID: 25174443]
[87]
Ozturk MB, Aksan T, Ozcelik IB, et al. Extracorporeal free flap perfusion using extracorporeal membrane oxygenation device. Ann Plast Surg 2019; 83(6): 702-8.
[http://dx.doi.org/10.1097/SAP.0000000000002014] [PMID: 31688101]
[88]
Duffy MJ, Mullan BA, Craig TR, et al. Impaired endothelium-dependent vasodilatation is a novel predictor of mortality in intensive care. Crit Care Med 2011; 39(4): 629-35.
[http://dx.doi.org/10.1097/CCM.0b013e318206bc4a] [PMID: 21242802]
[89]
Boyle EM Jr, Pohlman TH, Johnson MC, Verrier ED. Endothelial cell injury in cardiovascular surgery: The systemic inflammatory response. Ann Thorac Surg 1997; 63(1): 277-84.
[PMID: 8993292]
[90]
Fischetti F, Tedesco F. Cross-talk between the complement system and endothelial cells in physiologic conditions and in vascular diseases. Autoimmunity 2006; 39(5): 417-28.
[http://dx.doi.org/10.1080/08916930600739712] [PMID: 16923542]
[91]
Warren OJ, Smith AJ, Alexiou C, et al. The inflammatory response to cardiopulmonary bypass: Part 1-mechanisms of pathogenesis. J Cardiothorac Vasc Anesth 2009; 23(2): 223-31.
[http://dx.doi.org/10.1053/j.jvca.2008.08.007] [PMID: 18930659]
[92]
Perkins GD, Nathani N, McAuley DF, Gao F, Thickett DR. In vitro and in vivo effects of salbutamol on neutrophil function in acute lung injury. Thorax 2007; 62(1): 36-42.
[http://dx.doi.org/10.1136/thx.2006.059410] [PMID: 16928710]
[93]
Wachtfogel YT, Kucich U, Erik Hack C, et al. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. J Thorac Cardiovasc Surg 1993; 106(1): 1-10.
[http://dx.doi.org/10.1016/S0022-5223(19)33735-3] [PMID: 7686593]
[94]
Rinder CS, Rinder HM, Smith MJ, et al. Selective blockade of membrane attack complex formation during simulated extracorporeal circulation inhibits platelet but not leukocyte activation. J Thorac Cardiovasc Surg 1999; 118(3): 460-6.
[http://dx.doi.org/10.1016/S0022-5223(99)70183-2] [PMID: 10469960]
[95]
Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog 2015; 11(3): e1004651.
[http://dx.doi.org/10.1371/journal.ppat.1004651] [PMID: 25764063]
[96]
Kotani N, Hashimoto H, Sessler DI, et al. Neutrophil number and interleukin-8 and elastase concentrations in bronchoalveolar lavage fluid correlate with decreased arterial oxygenation after cardiopulmonary bypass. Anesth Analg 2000; 90(5): 1046-51.
[http://dx.doi.org/10.1097/00000539-200005000-00009] [PMID: 10781451]
[97]
Kiaii B, Fox S, Swinamer SA, et al. The early inflammatory response in a mini-cardiopulmonary bypass system: A prospective randomized study. Innovations 2012; 7(1): 23-32.
[http://dx.doi.org/10.1097/imi.0b013e3182552ade] [PMID: 22576032]
[98]
van der Meer PF, de Wildt-Eggen J. The effect of whole-blood storage time on the number of white cells and platelets in whole blood and in white cell-reduced red cells. Transfusion 2006; 46(4): 589-94.
[http://dx.doi.org/10.1111/j.1537-2995.2006.00778.x] [PMID: 16584435]
[99]
Hatami S, Hefler J, Freed DH. Inflammation and oxidative stress in the context of extracorporeal cardiac and pulmonary support. Front Immunol 2022; 13: 831930.
[http://dx.doi.org/10.3389/fimmu.2022.831930] [PMID: 35309362]
[100]
Rilinger J, Kern WV, Duerschmied D, et al. A prospective, randomised, double blind placebo-controlled trial to evaluate the efficacy and safety of tocilizumab in patients with severe COVID-19 pneumonia (TOC-COVID): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 470.
[http://dx.doi.org/10.1186/s13063-020-04447-3] [PMID: 32493514]
[101]
Kenne E, Renné T, Factor X. Factor XII: A drug target for safe interference with thrombosis and inflammation. Drug Discov Today 2014; 19(9): 1459-64.
[http://dx.doi.org/10.1016/j.drudis.2014.06.024] [PMID: 24993156]
[102]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy