Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Navigating Molecular Pathways: An Update on Drugs in Colorectal Cancer Treatment

Author(s): Neha Shree Maurya and Ashutosh Mani*

Volume 23, Issue 30, 2023

Published on: 03 July, 2023

Page: [2821 - 2843] Pages: 23

DOI: 10.2174/1568026623666230614165548

Price: $65

Open Access Journals Promotions 2
Abstract

Colorectal cancer (CRC) is a multifaceted and heterogeneous ailment that affects the colon or rectum of the digestive system. It is the second most commonly occurring form of cancer and ranks third in terms of mortality rate. The progression of CRC does not occur due to a single mutational event; rather, it is the result of the sequential and cumulative accumulation of mutations in key driver genes of signaling pathways. The most significant signaling pathways, which have oncogenic potential due to their deregulation, include Wnt/β-catenin, Notch, TGF-β, EGFR/MAPK, and PI3K/AKT pathways. Numerous drug target therapies have been developed to treat CRC using small molecule inhibitors, antibodies, or peptides. Although drug-targeted therapy is effective in most cases, the development of resistance mechanisms in CRC has raised questions about their efficacy. To overcome this issue, a novel approach to drug repurposing has come to light, which utilizes already FDA-approved drugs to treat CRC. This approach has shown some promising experimental results, making it a crucial avenue of research in the treatment of CRC.

Keywords: Colorectal cancer, Signaling pathways, Mutation, Drug targets, Drug repurposing, Neoplasm, Predominantly.

Graphical Abstract
[1]
Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; Martinelli, E. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol., 2023, 34(1), 10-32.
[http://dx.doi.org/10.1016/j.annonc.2022.10.003] [PMID: 36307056]
[2]
Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer — a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[3]
Zygulska, A.L.; Pierzchalski, P. Novel diagnostic biomarkers in colorectal cancer. Int. J. Mol. Sci., 2022, 23(2), 852.
[http://dx.doi.org/10.3390/ijms23020852] [PMID: 35055034]
[4]
Dunlop, M.G.; Tenesa, A.; Farrington, S.M.; Ballereau, S.; Brewster, D.H.; Koessler, T.; Pharoah, P.; Schafmayer, C.; Hampe, J.; Völzke, H.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H.; von Holst, S.; Picelli, S.; Lindblom, A.; Jenkins, M.A.; Hopper, J.L.; Casey, G.; Duggan, D.; Newcomb, P.A.; Abulí, A.; Bessa, X.; Ruiz-Ponte, C.; Castellví-Bel, S.; Niittymäki, I.; Tuupanen, S.; Karhu, A.; Aaltonen, L.; Zanke, B.; Hudson, T.; Gallinger, S.; Barclay, E.; Martin, L.; Gorman, M.; Carvajal-Carmona, L.; Walther, A.; Kerr, D.; Lubbe, S.; Broderick, P.; Chandler, I.; Pittman, A.; Penegar, S.; Campbell, H.; Tomlinson, I.; Houlston, R.S. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42 103 individuals. Gut, 2013, 62(6), 871-881.
[http://dx.doi.org/10.1136/gutjnl-2011-300537] [PMID: 22490517]
[5]
Johnson, C.M.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control, 2013, 24(6), 1207-1222.
[http://dx.doi.org/10.1007/s10552-013-0201-5] [PMID: 23563998]
[6]
Rawla, P; Sunkara, T; Barsouk, A Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072]
[7]
Samadder, N.J.; Jasperson, K.; Burt, R.W. Hereditary and common familial colorectal cancer: Evidence for colorectal screening. Dig. Dis. Sci., 2015, 60(3), 734-747.
[http://dx.doi.org/10.1007/s10620-014-3465-z] [PMID: 25501924]
[8]
Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; Schrag, D.; Meyerhardt, J.A.; Ng, K.; Kidd, J.; Singh, N.; Hartman, A.R.; Wenstrup, R.J.; Syngal, S. Cancer susceptibility gene mutations in individuals with colorectal cancer. J. Clin. Oncol., 2017, 35(10), 1086-1095.
[http://dx.doi.org/10.1200/JCO.2016.71.0012] [PMID: 28135145]
[9]
Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature, 1998, 396(6712), 643-649.
[http://dx.doi.org/10.1038/25292] [PMID: 9872311]
[10]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[11]
Tsang, A.H.F.; Cheng, K-H.; Wong, A.S-P.; Ng, S.S-M.; Ma, B.B-Y.; Chan, C.M.; Tsui, N.B.; Chan, L.W.; Yung, B.Y.; Wong, S.C. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World J. Gastroenterol., 2014, 20(14), 3847-3857.
[http://dx.doi.org/10.3748/wjg.v20.i14.3847] [PMID: 24744577]
[12]
Grady, W.M.; Pritchard, C.C. Molecular alterations and biomarkers in colorectal cancer. Toxicol. Pathol., 2014, 42(1), 124-139.
[http://dx.doi.org/10.1177/0192623313505155] [PMID: 24178577]
[13]
Fransén, K.; Klintenäs, M.; Osterström, A.; Dimberg, J.; Monstein, H-J.; Söderkvist, P. Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis, 2003, 25(4), 527-533.
[http://dx.doi.org/10.1093/carcin/bgh049] [PMID: 14688025]
[14]
Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[15]
Lynch, H.T.; de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med., 2003, 348(10), 919-932.
[http://dx.doi.org/10.1056/NEJMra012242] [PMID: 12621137]
[16]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[17]
Tabana, Y.; Dahham, S.; Shah, A.; Majid, A. Major signaling pathways of colorectal carcinogenesis. Recent Adv Colon Cancer, 2016, 1, 1.
[18]
Jeong, W.J.; Ro, E.J.; Choi, K.Y. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis. Oncol., 2018, 2(1), 5.
[http://dx.doi.org/10.1038/s41698-018-0049-y] [PMID: 29872723]
[19]
Wu, W.K.K.; Wang, X.J.; Cheng, A.S.L.; Luo, M.X.M.; Ng, S.S.M.; To, K.F.; Chan, F.K.L.; Cho, C.H.; Sung, J.J.Y.; Yu, J. Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit. Rev. Oncol. Hematol., 2013, 86(3), 251-277.
[http://dx.doi.org/10.1016/j.critrevonc.2012.11.009] [PMID: 23287077]
[20]
Li, D.; Masiero, M.; Banham, A.H.; Harris, A.L. The Notch ligand Jagged1 as a target for anti-tumor therapy. Front. Oncol., 2014, 4, 254.
[http://dx.doi.org/10.3389/fonc.2014.00254] [PMID: 25309874]
[21]
Liao, W.; Li, G.; You, Y.; Wan, H.; Wu, Q.; Wang, C.; Lv, N. Antitumor activity of Notch‑1 inhibition in human colorectal carcinoma cells. Oncol. Rep., 2018, 39(3), 1063-1071.
[PMID: 29286145]
[22]
Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol., 2013, 5(2), a012336.
[http://dx.doi.org/10.1101/cshperspect.a012336] [PMID: 22767671]
[23]
Neumann, J.; Wehweck, L.; Maatz, S.; Engel, J.; Kirchner, T.; Jung, A. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch., 2013, 463(4), 509-523.
[http://dx.doi.org/10.1007/s00428-013-1450-0] [PMID: 23934607]
[24]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[25]
Raskov, H.; Søby, J.H.; Troelsen, J.; Bojesen, R.D.; Gögenur, I. Driver gene mutations and epigenetics in colorectal cancer. Ann. Surg., 2020, 271(1), 75-85.
[http://dx.doi.org/10.1097/SLA.0000000000003393] [PMID: 31188207]
[26]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[27]
Huang, D.; Sun, W.; Zhou, Y.; Li, P.; Chen, F.; Chen, H.; Xia, D.; Xu, E.; Lai, M.; Wu, Y.; Zhang, H. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev., 2018, 37(1), 173-187.
[http://dx.doi.org/10.1007/s10555-017-9726-5] [PMID: 29322354]
[28]
Vogelstein, B; Papadopoulos, N; Velculescu, VE; Zhou, S; Diaz, LA, Jr; Kinzler, KW Cancer genome landscapes. Science, 2013, 337, 1546.
[29]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[30]
Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol., 2007, 27(21), 7551-7559.
[http://dx.doi.org/10.1128/MCB.01034-07] [PMID: 17785439]
[31]
Novellasdemunt, L.; Antas, P.; Li, V.S.W. Targeting Wnt signaling in colorectal cancer. A review in the theme: Cell signaling: Proteins, pathways and mechanisms. Am. J. Physiol. Cell Physiol., 2015, 309(8), C511-C521.
[http://dx.doi.org/10.1152/ajpcell.00117.2015] [PMID: 26289750]
[32]
Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(12), 767-779.
[http://dx.doi.org/10.1038/nrm3470] [PMID: 23151663]
[33]
Behrens, J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem. Soc. Trans., 2005, 33(4), 672-675.
[http://dx.doi.org/10.1042/BST0330672] [PMID: 16042571]
[34]
Segditsas, S.; Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene, 2006, 25(57), 7531-7537.
[http://dx.doi.org/10.1038/sj.onc.1210059] [PMID: 17143297]
[35]
Hirsh, V. Turning EGFR mutation-positive non-small-cell lung cancer into a chronic disease: Optimal sequential therapy with EGFR tyrosine kinase inhibitors. Ther. Adv. Med. Oncol., 2018, 10
[http://dx.doi.org/10.1177/1758834017753338] [PMID: 29383041]
[36]
Saletti, P.; Molinari, F.; De Dosso, S.; Frattini, M. EGFR signaling in colorectal cancer: A clinical perspective. Gastrointest. Cancer, 2015, 5, 21.
[37]
Ahmad, R.; Singh, J.; Wunnava, A.; Al-Obeed, O.; Abdulla, M.; Srivastava, S. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). Int. J. Mol. Med., 2021, 47(3), 14.
[http://dx.doi.org/10.3892/ijmm.2021.4847] [PMID: 33655327]
[38]
Koveitypour, Z.; Panahi, F.; Vakilian, M.; Peymani, M.; Seyed Forootan, F.; Nasr Esfahani, M.H.; Ghaedi, K. Signaling pathways involved in colorectal cancer progression. Cell Biosci., 2019, 9(1), 97.
[http://dx.doi.org/10.1186/s13578-019-0361-4]
[39]
Ashokkumar, P.; Divya, T.; Kumar, K.; Dineshbabu, V.; Velavan, B.; Sudhandiran, G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J. Gastrointest. Oncol., 2018, 10(9), 244-259.
[http://dx.doi.org/10.4251/wjgo.v10.i9.244]
[40]
Tiwari, A.; Saraf, S.; Verma, A.; Panda, P.K.; Jain, S.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J. Gastroenterol., 2018, 24(39), 4428-4435.
[http://dx.doi.org/10.3748/wjg.v24.i39.4428] [PMID: 30357011]
[41]
Świderska, E.; Strycharz, J.; Wróblewski, A.; Szemraj, J.; Drzewoski, J.; Śliwińska, A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. Blood Glucose Levels, 2018, 1, 1.
[42]
Utermark, T.; Rao, T.; Cheng, H.; Wang, Q.; Lee, S.H.; Wang, Z.C.; Iglehart, J.D.; Roberts, T.M.; Muller, W.J.; Zhao, J.J. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev., 2012, 26(14), 1573-1586.
[http://dx.doi.org/10.1101/gad.191973.112] [PMID: 22802530]
[43]
Knight, Z.A.; Gonzalez, B.; Feldman, M.E.; Zunder, E.R.; Goldenberg, D.D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W.A.; Williams, R.L.; Shokat, K.M. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell, 2006, 125(4), 733-747.
[http://dx.doi.org/10.1016/j.cell.2006.03.035] [PMID: 16647110]
[44]
Cheung, L.W.T.; Hennessy, B.T.; Li, J.; Yu, S.; Myers, A.P.; Djordjevic, B.; Lu, Y.; Stemke-Hale, K.; Dyer, M.D.; Zhang, F.; Ju, Z.; Cantley, L.C.; Scherer, S.E.; Liang, H.; Lu, K.H.; Broaddus, R.R.; Mills, G.B. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov., 2011, 1(2), 170-185.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0039] [PMID: 21984976]
[45]
Sun, M.; Hillmann, P.; Hofmann, B.T.; Hart, J.R.; Vogt, P.K. Cancer-derived mutations in the regulatory subunit p85α of phosphoinositide 3-kinase function through the catalytic subunit p110α. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15547-15552.
[http://dx.doi.org/10.1073/pnas.1009652107] [PMID: 20713702]
[46]
Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M. Catalogue of somatic mutations in cancer. Nucleic Acids Res., 2010, 47(D1), D941-D947.
[47]
Jaiswal, B.S.; Janakiraman, V.; Kljavin, N.M.; Chaudhuri, S.; Stern, H.M.; Wang, W.; Kan, Z.; Dbouk, H.A.; Peters, B.A.; Waring, P.; Dela Vega, T.; Kenski, D.M.; Bowman, K.K.; Lorenzo, M.; Li, H.; Wu, J.; Modrusan, Z.; Stinson, J.; Eby, M.; Yue, P.; Kaminker, J.S.; de Sauvage, F.J.; Backer, J.M.; Seshagiri, S. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell, 2009, 16(6), 463-474.
[http://dx.doi.org/10.1016/j.ccr.2009.10.016] [PMID: 19962665]
[48]
Papadatos-Pastos, D.; Rabbie, R.; Ross, P.; Sarker, D. The role of the PI3K pathway in colorectal cancer. Crit. Rev. Oncol. Hematol., 2015, 94(1), 18-30.
[http://dx.doi.org/10.1016/j.critrevonc.2014.12.006] [PMID: 25591826]
[49]
Kaya Temiz, T.; Altun, A.; Turgut, N.H.; Balcı, E. Investigation of the effects of drugs effective on PI3K-AKT signaling pathway in colorectal cancer alone and in combination. Cumhuriyet Medical Journal, 2014, 36(2), 167.
[http://dx.doi.org/10.7197/cmj.v36i2.5000033144]
[50]
McDonald, G.T.; Sullivan, R.; Paré, G.C.; Graham, C.H. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp. Cell Res., 2010, 316(19), 3197-3206.
[http://dx.doi.org/10.1016/j.yexcr.2010.08.007] [PMID: 20736003]
[51]
Radtke, F.; Clevers, H.; Riccio, O. From gut homeostasis to cancer. Curr. Mol. Med., 2006, 6(3), 275-289.
[http://dx.doi.org/10.2174/156652406776894527] [PMID: 16712475]
[52]
Fre, S.; Huyghe, M.; Mourikis, P.; Robine, S.; Louvard, D.; Artavanis-Tsakonas, S. Notch signals control the fate of immature progenitor cells in the intestine. Nature, 2005, 435(7044), 964-968.
[http://dx.doi.org/10.1038/nature03589] [PMID: 15959516]
[53]
van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.; van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A.P.; Tjon-Pon-Fong, M.; Moerer, P.; van den Born, M.; Soete, G.; Pals, S.; Eilers, M.; Medema, R.; Clevers, H. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002, 111(2), 241-250.
[http://dx.doi.org/10.1016/S0092-8674(02)01014-0] [PMID: 12408868]
[54]
Riccio, O.; van Gijn, M.E.; Bezdek, A.C.; Pellegrinet, L.; van Es, J.H.; Zimber-Strobl, U.; Strobl, L.J.; Honjo, T.; Clevers, H.; Radtke, F. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27 Kip1 and p57 Kip2. EMBO Rep., 2008, 9(4), 377-383.
[http://dx.doi.org/10.1038/embor.2008.7] [PMID: 18274550]
[55]
Zheng, H.; Pritchard, D.M.; Yang, X.; Bennett, E.; Liu, G.; Liu, C.; Ai, W. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(3), G490-G498.
[http://dx.doi.org/10.1152/ajpgi.90393.2008] [PMID: 19109406]
[56]
Bertrand, F.E.; Angus, C.W.; Partis, W.J.; Sigounas, G. Developmental pathways in colon cancer. Cell Cycle, 2012, 11(23), 4344-4351.
[http://dx.doi.org/10.4161/cc.22134] [PMID: 23032367]
[57]
Ntziachristos, P.; Lim, J.S.; Sage, J.; Aifantis, I. From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell, 2014, 25(3), 318-334.
[http://dx.doi.org/10.1016/j.ccr.2014.02.018] [PMID: 24651013]
[58]
Aithal, M.G.S.; Rajeswari, N. Role of Notch signalling pathway in cancer and its association with DNA methylation. J. Genet., 2013, 92(3), 667-675.
[http://dx.doi.org/10.1007/s12041-013-0284-5] [PMID: 24371188]
[59]
Al-Hussaini, H.; Subramanyam, D.; Reedijk, M.; Sridhar, S.S. Notch signaling pathway as a therapeutic target in breast cancer. Mol. Cancer Ther., 2011, 10(1), 9-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0677] [PMID: 20971825]
[60]
Karamboulas, C.; Ailles, L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(2), 2481-2495.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.008] [PMID: 23196196]
[61]
Schwanbeck, R. The role of epigenetic mechanisms in Notch signaling during development. J. Cell. Physiol., 2015, 230(5), 969-981.
[http://dx.doi.org/10.1002/jcp.24851] [PMID: 25336183]
[62]
Ilagan, MXG; Kopan, R SnapShot: Notch signaling pathway. Cell, 2007, 128, 1246.
[http://dx.doi.org/10.1016/j.cell.2007.03.011]
[63]
Rodilla, V.; Villanueva, A.; Obrador-Hevia, A.; Robert-Moreno, À.; Fernández-Majada, V.; Grilli, A.; López-Bigas, N.; Bellora, N.; Albà, M.M.; Torres, F.; Duñach, M.; Sanjuan, X.; Gonzalez, S.; Gridley, T.; Capella, G.; Bigas, A.; Espinosa, L. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc. Natl. Acad. Sci. USA, 2009, 106(15), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0813221106] [PMID: 19325125]
[64]
Cecchinato, V.; Chiaramonte, R.; Nizzardo, M.; Cristofaro, B.; Basile, A.; Sherbet, G.V.; Comi, P. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem. Pharmacol., 2007, 74(11), 1568-1574.
[http://dx.doi.org/10.1016/j.bcp.2007.08.001] [PMID: 17868649]
[65]
Zhang, Y.; Li, B.; Ji, Z.Z.; Zheng, P.S. Notch1 regulates the growth of human colon cancers. Cancer, 2010, 116(22), 5207-5218.
[http://dx.doi.org/10.1002/cncr.25449] [PMID: 20665495]
[66]
Chen, X.; Johns, D.C.; Geiman, D.E.; Marban, E.; Dang, D.T.; Hamlin, G.; Sun, R.; Yang, V.W. Krüppel-like factor 4 (gut-enriched Krüppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J. Biol. Chem., 2001, 276(32), 30423-30428.
[http://dx.doi.org/10.1074/jbc.M101194200] [PMID: 11390382]
[67]
Chu, D.; Zhang, Z.; Zhou, Y.; Wang, W.; Li, Y.; Zhang, H.; Dong, G.; Zhao, Q.; Ji, G. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann. Oncol., 2011, 22(11), 2440-2447.
[http://dx.doi.org/10.1093/annonc/mdq776] [PMID: 21378202]
[68]
Serafin, V.; Persano, L.; Moserle, L.; Esposito, G.; Ghisi, M.; Curtarello, M.; Bonanno, L.; Masiero, M.; Ribatti, D.; Stürzl, M.; Naschberger, E.; Croner, R.S.; Jubb, A.M.; Harris, A.L.; Koeppen, H.; Amadori, A.; Indraccolo, S. Notch3 signalling promotes tumour growth in colorectal cancer. J. Pathol., 2011, 224(4), 448-460.
[http://dx.doi.org/10.1002/path.2895] [PMID: 21598247]
[69]
Espinoza, I.; Miele, L. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett., 2013, 341(1), 41-45.
[http://dx.doi.org/10.1016/j.canlet.2013.08.027] [PMID: 23973264]
[70]
Wang, Z.; Li, Y.; Kong, D.; Sarkar, F.H. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets, 2010, 11(6), 745-751.
[http://dx.doi.org/10.2174/138945010791170860] [PMID: 20041844]
[71]
Fender, A.W.; Nutter, J.M.; Fitzgerald, T.L.; Bertrand, F.E.; Sigounas, G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J. Cell. Biochem., 2015, 116(11), 2517-2527.
[http://dx.doi.org/10.1002/jcb.25196] [PMID: 25914224]
[72]
Derynck, R.; Feng, X.H. TGF-beta receptor signaling. Biochim. Biophys. Acta, 1997, 1333(2), F105-F150.
[PMID: 9395284]
[73]
Massagué, J. TGF-β SIGNAL TRANSDUCTION. Annu. Rev. Biochem., 1998, 67(1), 753-791.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.753] [PMID: 9759503]
[74]
Massagué, J. The transforming growth factor-beta family. Annu. Rev. Cell Biol., 1990, 6(1), 597-641.
[http://dx.doi.org/10.1146/annurev.cb.06.110190.003121] [PMID: 2177343]
[75]
Sinha, S.; Nevett, C.; Shuttleworth, C.A.; Kielty, C.M. Cellular and extracellular biology of the latent transforming growth factor-β binding proteins. Matrix Biol., 1998, 17(8-9), 529-545.
[http://dx.doi.org/10.1016/S0945-053X(98)90106-8] [PMID: 9923648]
[76]
Derynck, R.; Zhang, Y.; Feng, X.H. Smads: Transcriptional activators of TGF-β responses. Cell, 1998, 95(6), 737-740.
[http://dx.doi.org/10.1016/S0092-8674(00)81696-7] [PMID: 9865691]
[77]
Miyazono, K. TGF-β signaling by Smad proteins. Cytokine Growth Factor Rev., 2000, 11(1-2), 15-22.
[http://dx.doi.org/10.1016/S1359-6101(99)00025-8] [PMID: 10708949]
[78]
Liu, F.; Pouponnot, C.; Massagué, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev., 1997, 11(23), 3157-3167.
[http://dx.doi.org/10.1101/gad.11.23.3157] [PMID: 9389648]
[79]
Reynisdóttir, I.; Polyak, K.; Iavarone, A.; Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev., 1995, 9(15), 1831-1845.
[http://dx.doi.org/10.1101/gad.9.15.1831] [PMID: 7649471]
[80]
Akhurst, R.J.; Derynck, R. TGF- β signaling in cancer – a double-edged sword. Trends Cell Biol., 2001, 11(11), S44-S51.
[http://dx.doi.org/10.1016/S0962-8924(01)02130-4] [PMID: 11684442]
[81]
Schroy, P.; Rifkin, J.; Coffey, R.J.; Winawer, S.; Friedman, E. Role of transforming growth factor β 1 in induction of colon carcinoma differentiation by hexamethylene bisacetamide. Cancer Res., 1990, 50(2), 261-265.
[PMID: 2295065]
[82]
Friedman, E.; Gold, L.I.; Klimstra, D.; Zeng, Z.S.; Winawer, S.; Cohen, A. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol. Biomarkers Prev., 1995, 4(5), 549-554.
[PMID: 7549813]
[83]
Yang, L.; Pang, Y.; Moses, H.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 2010, 31(6), 220-227.
[http://dx.doi.org/10.1016/j.it.2010.04.002] [PMID: 20538542]
[84]
Flavell, R.A.; Sanjabi, S.; Wrzesinski, S.H.; Licona-Limón, P. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol., 2010, 10(8), 554-567.
[http://dx.doi.org/10.1038/nri2808] [PMID: 20616810]
[85]
Khanh, D.T.; Mekata, E.; Mukaisho, K.; Sugihara, H.; Shimizu, T.; Shiomi, H.; Murata, S.; Naka, S.; Yamamoto, H.; Endo, Y.; Tani, T. Prognostic role of CD10+ myeloid cells in association with tumor budding at the invasion front of colorectal cancer. Cancer Sci., 2011, 102(9), 1724-1733.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01987.x] [PMID: 21599811]
[86]
Narai, S.; Watanabe, M.; Hasegawa, H.; Nishibori, H.; Endo, T.; Kubota, T.; Kitajima, M. Significance of transforming growth factor? 1 as a new tumor marker for colorectal cancer. Int. J. Cancer, 2002, 97(4), 508-511.
[http://dx.doi.org/10.1002/ijc.1631] [PMID: 11802214]
[87]
Kwon, J.J.; Willy, J.A.; Quirin, K.A.; Wek, R.C.; Korc, M.; Yin, X.M.; Kota, J. Novel role of miR-29a in pancreatic cancer autophagy and its therapeutic potential. Oncotarget, 2016, 7(44), 71635-71650.
[http://dx.doi.org/10.18632/oncotarget.11928] [PMID: 27626694]
[88]
Ishiguro, H.; Okubo, T.; Kuwabara, Y.; Kimura, M.; Mitsui, A.; Sugito, N.; Ogawa, R.; Katada, T.; Tanaka, T.; Shiozaki, M.; Mizoguchi, K.; Samoto, Y.; Matsuo, Y.; Takahashi, H.; Takiguchi, S. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget, 2017, 8(36), 60378-60389.
[http://dx.doi.org/10.18632/oncotarget.19534] [PMID: 28947978]
[89]
Rajendran, DT; Subramaniyan, B; Ganeshan, M Role of Notch signaling in colorectal cancer.Role of Transcription Factors in Gastrointestinal Malignancies; Springer Nature: Berlin, 2017, pp. 305-312.
[http://dx.doi.org/10.1007/978-981-10-6728-0_21]
[90]
Roy, S.; Majumdar, A.P.N. Signaling in colon cancer stem cells. J. Mol. Signal., 2012, 7(1), 11.
[http://dx.doi.org/10.1186/1750-2187-7-11] [PMID: 22866952]
[91]
Vaish, V.; Kim, J.; Shim, M. Jagged-2 (JAG2) enhances tumorigenicity and chemoresistance of colorectal cancer cells. Oncotarget, 2017, 8(32), 53262-53275.
[http://dx.doi.org/10.18632/oncotarget.18391] [PMID: 28881809]
[92]
Peng, X.; Luo, Z.; Kang, Q.; Deng, D.; Wang, Q.; Peng, H.; Wang, S.; Wei, Z. FOXQ1 mediates the crosstalk between TGF-β and Wnt signaling pathways in the progression of colorectal cancer. Cancer Biol. Ther., 2015, 16(7), 1099-1109.
[http://dx.doi.org/10.1080/15384047.2015.1047568] [PMID: 25955104]
[93]
Staudacher, J.J.; Bauer, J.; Jana, A.; Tian, J.; Carroll, T.; Mancinelli, G.; Özden, Ö.; Krett, N.; Guzman, G.; Kerr, D.; Grippo, P.; Jung, B. Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer. Sci. Rep., 2017, 7(1), 5569.
[http://dx.doi.org/10.1038/s41598-017-05907-8] [PMID: 28717230]
[94]
Liu, Y.Z.; Wu, K.; Huang, J.; Liu, Y.; Wang, X.; Meng, Z.J.; Yuan, S.X.; Wang, D.X.; Luo, J.Y.; Zuo, G.W.; Yin, L.J.; Chen, L.; Deng, Z.L.; Yang, J.Q.; Sun, W.J.; He, B.C. The PTEN/PI3K/Akt and Wnt/β-catenin signaling pathways are involved in the inhibitory effect of resveratrol on human colon cancer cell proliferation. Int. J. Oncol., 2014, 45(1), 104-112.
[http://dx.doi.org/10.3892/ijo.2014.2392] [PMID: 24756222]
[95]
Cheruku, H.R.; Mohamedali, A.; Cantor, D.I.; Tan, S.H.; Nice, E.C.; Baker, M.S. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EuPA Open Proteom., 2015, 8, 104-115.
[http://dx.doi.org/10.1016/j.euprot.2015.06.004]
[96]
Jin, D.; Fang, Y.; Li, Z.; Chen, Z.; Xiang, J. Epithelial-mesenchymal transition-associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncol. Rep., 2015, 33(2), 515-525.
[http://dx.doi.org/10.3892/or.2014.3638] [PMID: 25435189]
[97]
Ramana, K.V.; Tammali, R.; Srivastava, S.K. Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells. Mol. Cancer Ther., 2010, 9(4), 813-824.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0795] [PMID: 20354121]
[98]
Zhao, Q.; Zhuang, K.; Han, K.; Tang, H.; Wang, Y.; Si, W.; Yang, Z. Silencing DVL3 defeats MTX resistance and attenuates stemness via Notch Signaling Pathway in colorectal cancer. Pathol. Res. Pract., 2020, 216(8), 152964.
[http://dx.doi.org/10.1016/j.prp.2020.152964] [PMID: 32414668]
[99]
Qiao, L.; Wong, B.C.Y. Role of Notch signaling in colorectal cancer. Carcinogenesis, 2009, 30(12), 1979-1986.
[http://dx.doi.org/10.1093/carcin/bgp236] [PMID: 19793799]
[100]
Nagaraju, G.P.; Bramhachari, P.V. Role of transcription factors in gastrointestinal malignancies; Springer: Berlin, 2017.
[http://dx.doi.org/10.1007/978-981-10-6728-0]
[101]
Hristova, N.R.; Tagscherer, K.; Fassl, A.; Kopitz, J.; Roth, W. Notch1-dependent regulation of p27 determines cell fate in colorectal cancer. Int. J. Oncol., 2013, 43(6), 1967-1975.
[http://dx.doi.org/10.3892/ijo.2013.2140] [PMID: 24141420]
[102]
Meng, R.D.; Shelton, C.C.; Li, Y.M.; Qin, L.X.; Notterman, D.; Paty, P.B.; Schwartz, G.K. γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res., 2009, 69(2), 573-582.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2088] [PMID: 19147571]
[103]
Miyamoto, S.; Nakanishi, M.; Rosenberg, D.W. Suppression of colon carcinogenesis by targeting Notch signaling. Carcinogenesis, 2013, 34(10), 2415-2423.
[http://dx.doi.org/10.1093/carcin/bgt191] [PMID: 23729655]
[104]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[105]
Mohanty, A.; Uthaman, S.; Park, I.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules, 2020, 25(19), 4377.
[http://dx.doi.org/10.3390/molecules25194377] [PMID: 32977707]
[106]
Rizwanullah, M.; Alam, M.; Harshita; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215.
[http://dx.doi.org/10.2174/1381612826666200116150426] [PMID: 31951163]
[107]
Ghorbanizamani, F.; Moulahoum, H.; Zihnioglu, F.; Timur, S. Nanohybrid carriers: The yin–yang equilibrium between natural and synthetic in biomedicine. Biomater. Sci., 2020, 8(12), 3237-3247.
[http://dx.doi.org/10.1039/D0BM00401D] [PMID: 32484498]
[108]
Pan, G.; Jia, T.; Huang, Q.; Qiu, Y.; Xu, J.; Yin, P.; Liu, T. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf. B Biointerfaces, 2017, 159, 375-385.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.013] [PMID: 28818782]
[109]
Ghorbani, F.; Kokhaei, P.; Ghorbani, M.; Eslami, M. Application of different nanoparticles in the diagnosis of colorectal cancer. Gene Rep., 2020, 21, 100896.
[http://dx.doi.org/10.1016/j.genrep.2020.100896]
[110]
Feng, H.Y.; Yuan, Y.; Zhang, Y.; Liu, H.J.; Dong, X.; Yang, S.C.; Liu, X.L.; Lai, X.; Zhu, M.H.; Wang, J.; Lu, Q.; Lin, Q.; Chen, H.Z.; Lovell, J.F.; Sun, P.; Fang, C. Targeted micellar phthalocyanine for lymph node metastasis homing and photothermal therapy in an orthotopic colorectal tumor model. Nano-Micro Lett., 2021, 13(1), 145.
[http://dx.doi.org/10.1007/s40820-021-00666-8] [PMID: 34146159]
[111]
Huang, J.R.; Lee, M.H.; Li, W.S.; Wu, H.C. Liposomal irinotecan for treatment of colorectal cancer in a preclinical model. Cancers, 2019, 11(3), 281.
[http://dx.doi.org/10.3390/cancers11030281] [PMID: 30818855]
[112]
El Hallal, R.; Lyu, N.; Wang, Y. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules, 2021, 26(3), 567.
[http://dx.doi.org/10.3390/molecules26030567] [PMID: 33499047]
[113]
Barenholz, Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[114]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[115]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[116]
Bao, X.; Zeng, J.; Huang, H.; Ma, C.; Wang, L.; Wang, F.; Liao, X.; Song, X. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int. J. Pharm., 2020, 576, 118999.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118999] [PMID: 31893541]
[117]
Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol., 2022, 86(Pt 2), 1-13.
[118]
Liu, Y.; Li, X.; Pen, R.; Zuo, W.; Chen, Y.; Sun, X.; Gou, J.; Guo, Q.; Wen, M.; Li, W.; Yu, S.; Liu, H.; Huang, M. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed. Eng. Online, 2022, 21(1), 53.
[http://dx.doi.org/10.1186/s12938-022-01012-8] [PMID: 35918704]
[119]
Diao, W.; Yang, B.; Sun, S.; Wang, A.; Kou, R. PNA-Modified liposomes improve the delivery efficacy of CAPIRI for the synergistic treatment of colorectal cancer. Front. Pharmacol., 2022, 13, 893151.
[120]
Norouzi, M.; Amerian, M.; Amerian, M.; Atyabi, F. Clinical applications of nanomedicine in cancer therapy. Drug Discov. Today, 2020, 25(1), 107-125.
[http://dx.doi.org/10.1016/j.drudis.2019.09.017] [PMID: 31586642]
[121]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[122]
Nanocarriers as a tool for the treatment of colorectal cancer. Pharmaceutics, 2021, 13, 1321.
[http://dx.doi.org/10.3390/pharmaceutics13081321]
[123]
Hossain, M; Urbi, Z; Sule, A; Rahman, K Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J, 2014, 2014, 274905.
[124]
Urbi, Z.; Zainuddin, Z. Standardization of surface sterilization protocol of field grown stevia rebaudiana prior to in vitro clonal propagation., 2015, 77(24)
[125]
Hossain, M.; Urbi, Z.; Evamoni, F.Z.; Zohora, F.T.; Rahman, K. A secondary research on medicinal plants mentioned in the Holy Qur’an. Faslnamah-i Giyahan-i Daruyi, 2016, 15, 81.
[126]
Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (burm. F.) wall. Ex nees: An updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life, 2021, 11(4), 348.
[http://dx.doi.org/10.3390/life11040348] [PMID: 33923529]
[127]
Hossain, M; Urbi, Z Effect of Naphthalene acetic acid on the adventitious rooting in shoot cuttings of Andrographis paniculata (Burm.f.) Wall. ex Nees: An important therapeutical herb. Int. J. Agron., 2016, 2016
[128]
Bode, A.M.; Dong, Z. The amazing and mighty ginger.Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Boca Raton: Florida, 2011.
[http://dx.doi.org/10.1201/b10787-8]
[129]
Tang, D.; Wu, D.; Hirao, A.; Lahti, J.M.; Liu, L.; Mazza, B.; Kidd, V.J.; Mak, T.W.; Ingram, A.J. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem., 2002, 277(15), 12710-12717.
[http://dx.doi.org/10.1074/jbc.M111598200] [PMID: 11821415]
[130]
Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J. Pharmacol. Exp. Ther., 2005, 313(1), 333-344.
[http://dx.doi.org/10.1124/jpet.104.078808] [PMID: 15626723]
[131]
Park, G.H.; Park, J.H.; Song, H.M.; Eo, H.J.; Kim, M.K. Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Complement. Altern. Med., 2014, 14, 1.
[132]
Lavrado, J.; Brito, H.; Borralho, P.M.; Ohnmacht, S.A.; Kim, N.S.; Leitão, C.; Pisco, S.; Gunaratnam, M.; Rodrigues, C.M.P.; Moreira, R.; Neidle, S.; Paulo, A. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci. Rep., 2015, 5(1), 9696.
[http://dx.doi.org/10.1038/srep09696] [PMID: 25853628]
[133]
Buhrmann, C.; Shayan, P.; Banik, K.; Kunnumakkara, A.B.; Kubatka, P.; Koklesova, L.; Shakibaei, M. Targeting NF-κB signaling by calebin a, a compound of turmeric, in multicellular tumor microenvironment: Potential role of apoptosis induction in CRC cells. Biomedicines, 2020, 8(8), 236.
[http://dx.doi.org/10.3390/biomedicines8080236] [PMID: 32708030]
[134]
Rajitha, B.; Belalcazar, A.; Nagaraju, G.P.; Shaib, W.L.; Snyder, J.P.; Shoji, M.; Pattnaik, S.; Alam, A.; El-Rayes, B.F. Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer. Cancer Lett., 2016, 373(2), 227-233.
[http://dx.doi.org/10.1016/j.canlet.2016.01.052] [PMID: 26850372]
[135]
Li, Y.; Li, S.; Han, Y.; Liu, J.; Zhang, J.; Li, F.; Wang, Y.; Liu, X.; Yao, L. Calebin-A induces apoptosis and modulates MAPK family activity in drug resistant human gastric cancer cells. Eur. J. Pharmacol., 2008, 591(1-3), 252-258.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.065] [PMID: 18619958]
[136]
Lee, M.J.; Tsai, Y.J.; Lin, M.Y.; You, H.L.; Kalyanam, N.; Ho, C.T.; Pan, M.H. Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine, 2019, 57, 377-384.
[http://dx.doi.org/10.1016/j.phymed.2019.01.001] [PMID: 30831486]
[137]
Czepukojc, B.; Baltes, A.K.; Cerella, C.; Kelkel, M.; Viswanathan, U.M.; Salm, F.; Burkholz, T.; Schneider, C.; Dicato, M.; Montenarh, M.; Jacob, C.; Diederich, M. Synthetic polysulfane derivatives induce cell cycle arrest and apoptotic cell death in human hematopoietic cancer cells. Food Chem. Toxicol., 2014, 64, 249-257.
[http://dx.doi.org/10.1016/j.fct.2013.10.020] [PMID: 24157544]
[138]
Eng, S.K.; Imtiaz, I.R.; Goh, B.H.; Ming, L.C.; Lim, Y.C.; Lee, W.L. Does KRAS play a role in the regulation of colon cancer cells-derived exosomes? Biology, 2021, 10(1), 58.
[http://dx.doi.org/10.3390/biology10010058] [PMID: 33466836]
[139]
Emília Juan, M.; Wenzel, U.; Ruiz-Gutierrez, V.; Daniel, H.; Planas, J.M. Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells. J. Nutr., 2006, 136(10), 2553-2557.
[http://dx.doi.org/10.1093/jn/136.10.2553] [PMID: 16988125]
[140]
Inamura, K. Colorectal cancers: An update on their molecular pathology. Cancers, 2018, 10(1), 26.
[http://dx.doi.org/10.3390/cancers10010026] [PMID: 29361689]
[141]
Brodsky, F.M. Monoclonal antibodies as magic bullets. Pharm. Res., 1988, 5(1), 1-9.
[http://dx.doi.org/10.1023/A:1015860525341] [PMID: 3072552]
[142]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[143]
Martinelli, E.; Ciardiello, D.; Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.P.; Normanno, N.; Rachiglio, A.M.; Maiello, E.; Latiano, T.; De Vita, F.; Ciardiello, F. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: Challenges and future perspectives. Ann. Oncol., 2020, 31(1), 30-40.
[http://dx.doi.org/10.1016/j.annonc.2019.10.007] [PMID: 31912793]
[144]
Hwang, K.; Yoon, J.H.; Lee, J.H.; Lee, S. Recent advances in monoclonal antibody therapy for colorectal cancers. Biomedicines, 2021, 9(1), 39.
[http://dx.doi.org/10.3390/biomedicines9010039] [PMID: 33466394]
[145]
Oh, D.Y.; Bang, Y.J. HER2-targeted therapies — a role beyond breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(1), 33-48.
[http://dx.doi.org/10.1038/s41571-019-0268-3] [PMID: 31548601]
[146]
Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034.
[http://dx.doi.org/10.1056/NEJMoa1305275] [PMID: 24024839]
[147]
Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; Ciardiello, F.; D’Hoore, A.; Diaz-Rubio, E.; Douillard, J.Y.; Ducreux, M.; Falcone, A.; Grothey, A.; Gruenberger, T.; Haustermans, K.; Heinemann, V.; Hoff, P.; Köhne, C.H.; Labianca, R.; Laurent-Puig, P.; Ma, B.; Maughan, T.; Muro, K.; Normanno, N.; Österlund, P.; Oyen, W.J.G.; Papamichael, D.; Pentheroudakis, G.; Pfeiffer, P.; Price, T.J.; Punt, C.; Ricke, J.; Roth, A.; Salazar, R.; Scheithauer, W.; Schmoll, H.J.; Tabernero, J.; Taïeb, J.; Tejpar, S.; Wasan, H.; Yoshino, T.; Zaanan, A.; Arnold, D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol., 2016, 27(8), 1386-1422.
[http://dx.doi.org/10.1093/annonc/mdw235] [PMID: 27380959]
[148]
Benson, A.B., III; Venook, A.P.; Al-Hawary, M.M.; Cederquist, L.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Engstrom, P.F.; Garrido-Laguna, I.; Grem, J.L.; Grothey, A.; Hochster, H.S.; Hoffe, S.; Hunt, S.; Kamel, A.; Kirilcuk, N.; Krishnamurthi, S.; Messersmith, W.A.; Meyerhardt, J.; Miller, E.D.; Mulcahy, M.F.; Murphy, J.D.; Nurkin, S.; Saltz, L.; Sharma, S.; Shibata, D.; Skibber, J.M.; Sofocleous, C.T.; Stoffel, E.M.; Stotsky-Himelfarb, E.; Willett, C.G.; Wuthrick, E.; Gregory, K.M.; Freedman-Cass, D.A. NCCN guidelines insights: Colon cancer, version 2.2018. J. Natl. Compr. Canc. Netw., 2018, 16(4), 359-369.
[http://dx.doi.org/10.6004/jnccn.2018.0021] [PMID: 29632055]
[149]
Kienast, Y.; Klein, C.; Scheuer, W.; Raemsch, R.; Lorenzon, E.; Bernicke, D.; Herting, F.; Yu, S.; The, H.H.; Martarello, L.; Gassner, C.; Stubenrauch, K.G.; Munro, K.; Augustin, H.G.; Thomas, M. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin. Cancer Res., 2013, 19(24), 6730-6740.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0081] [PMID: 24097868]
[150]
Swaika, A.; Hammond, W.A.; Joseph, R.W. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol. Immunol., 2015, 67(2), 4-17.
[http://dx.doi.org/10.1016/j.molimm.2015.02.009] [PMID: 25749122]
[151]
Bouhadir, K.; Eid, A.H.; Hamze, K.; Abdallah, R.H.; Younis, N.K.; Fardoun, M.; Darwiche, N.; Kobeissy, F.; Iratni, R. 2-Nucleobase-substituted 4,6-Diaminotriazine Analogs: Synthesis and anti-cancer activity in 5-fluorouracil-sensitive and resistant colorectal cancer cells. Curr. Med. Chem., 2023, 30(26), 3032-3049.
[http://dx.doi.org/10.2174/0929867329666220914112042] [PMID: 36111761]
[152]
Fragoulis, G.E.; McInnes, I.B.; Siebert, S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology, 2019, 58(Suppl. 1), i43-i54.
[http://dx.doi.org/10.1093/rheumatology/key276] [PMID: 30806709]
[153]
Cook, N.; Basu, B.; Smith, D.M.; Gopinathan, A.; Evans, J.; Steward, W.P.; Palmer, D.; Propper, D.; Venugopal, B.; Hategan, M.; Anthoney, D.A.; Hampson, L.V.; Nebozhyn, M.; Tuveson, D.; Farmer-Hall, H.; Turner, H.; McLeod, R.; Halford, S.; Jodrell, D. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer, 2018, 118(6), 793-801.
[http://dx.doi.org/10.1038/bjc.2017.495] [PMID: 29438372]
[154]
Andersson, E.R.; Lendahl, U. Therapeutic modulation of Notch signalling — are we there yet? Nat. Rev. Drug Discov., 2014, 13(5), 357-378.
[http://dx.doi.org/10.1038/nrd4252] [PMID: 24781550]
[155]
Kongkavitoon, P.; Butta, P.; Sanpavat, A.; Bhattarakosol, P.; Tangtanatakul, P.; Wongprom, B.; Tangkijvanich, P.; Hirankarn, N.; Palaga, T. Regulation of periostin expression by Notch signaling in hepatocytes and liver cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 506(3), 739-745.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.144] [PMID: 30384995]
[156]
Du, F.Y.; Zhou, Q.F.; Sun, W.J.; Chen, G.L. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J. Stem Cells, 2019, 11(7), 398-420.
[http://dx.doi.org/10.4252/wjsc.v11.i7.398] [PMID: 31396368]
[157]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[158]
Li, K.; Li, Y.; Wu, W.; Gordon, W.R.; Chang, D.W.; Lu, M.; Scoggin, S.; Fu, T.; Vien, L.; Histen, G.; Zheng, J.; Martin-Hollister, R.; Duensing, T.; Singh, S.; Blacklow, S.C.; Yao, Z.; Aster, J.C.; Zhou, B.B.S. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem., 2008, 283(12), 8046-8054.
[http://dx.doi.org/10.1074/jbc.M800170200] [PMID: 18182388]
[159]
Wu, Y.; Cain-Hom, C.; Choy, L.; Hagenbeek, T.J.; de Leon, G.P.; Chen, Y.; Finkle, D.; Venook, R.; Wu, X.; Ridgway, J.; Schahin-Reed, D.; Dow, G.J.; Shelton, A.; Stawicki, S.; Watts, R.J.; Zhang, J.; Choy, R.; Howard, P.; Kadyk, L.; Yan, M.; Zha, J.; Callahan, C.A.; Hymowitz, S.G.; Siebel, C.W. Therapeutic antibody targeting of individual Notch receptors. Nature, 2010, 464(7291), 1052-1057.
[http://dx.doi.org/10.1038/nature08878] [PMID: 20393564]
[160]
Sharma, A.; Gadkari, R.A.; Ramakanth, S.V.; Padmanabhan, K.; Madhumathi, D.S.; Devi, L.; Appaji, L.; Aster, J.C.; Rangarajan, A.; Dighe, R.R. Devi Let al.: A novel monoclonal antibody against Notch1 targets leukemia-associated mutant Notch1 and depletes therapy resistant cancer stem cells in solid tumors. Sci. Rep., 2015, 5(1), 11012.
[http://dx.doi.org/10.1038/srep11012]
[161]
Seymour, M.T.; Maughan, T.S.; Ledermann, J.A.; Topham, C.; James, R.; Gwyther, S.J.; Smith, D.B.; Shepherd, S.; Maraveyas, A.; Ferry, D.R.; Meade, A.M.; Thompson, L.; Griffiths, G.O.; Parmar, M.K.B.; Stephens, R.J. Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): A randomised controlled trial. Lancet, 2007, 370(9582), 143-152.
[http://dx.doi.org/10.1016/S0140-6736(07)61087-3] [PMID: 17630037]
[162]
Koopman, M.; Antonini, N.F.; Douma, J.; Wals, J.; Honkoop, A.H.; Erdkamp, F.L.G.; de Jong, R.S.; Rodenburg, C.J.; Vreugdenhil, G.; Loosveld, O.J.L.; van Bochove, A.; Sinnige, H.A.M.; Creemers, G.J.M.; Tesselaar, M.E.T.; Slee, P.H.T.J.; Werter, M.J.B.P.; Mol, L.; Dalesio, O.; Punt, C.J.A. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): A phase III randomised controlled trial. Lancet, 2007, 370(9582), 135-142.
[http://dx.doi.org/10.1016/S0140-6736(07)61086-1] [PMID: 17630036]
[163]
Falcone, A.; Ricci, S.; Brunetti, I.; Pfanner, E.; Allegrini, G.; Barbara, C.; Crinò, L.; Benedetti, G.; Evangelista, W.; Fanchini, L.; Cortesi, E.; Picone, V.; Vitello, S.; Chiara, S.; Granetto, C.; Porcile, G.; Fioretto, L.; Orlandini, C.; Andreuccetti, M.; Masi, G. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: The Gruppo Oncologico Nord Ovest. J. Clin. Oncol., 2007, 25(13), 1670-1676.
[http://dx.doi.org/10.1200/JCO.2006.09.0928] [PMID: 17470860]
[164]
Souglakos, J.; Androulakis, N.; Syrigos, K.; Polyzos, A.; Ziras, N.; Athanasiadis, A.; Kakolyris, S.; Tsousis, S.; Kouroussis, C.; Vamvakas, L.; Kalykaki, A.; Samonis, G.; Mavroudis, D.; Georgoulias, V. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): A multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br. J. Cancer, 2006, 94(6), 798-805.
[http://dx.doi.org/10.1038/sj.bjc.6603011] [PMID: 16508637]
[165]
Cassidy, J.; Tabernero, J.; Twelves, C.; Brunet, R.; Butts, C.; Conroy, T.; Debraud, F.; Figer, A.; Grossmann, J.; Sawada, N.; Schöffski, P.; Sobrero, A.; Van Cutsem, E.; Díaz-Rubio, E. XELOX (capecitabine plus oxaliplatin): Active first-line therapy for patients with metastatic colorectal cancer. J. Clin. Oncol., 2004, 22(11), 2084-2091.
[http://dx.doi.org/10.1200/JCO.2004.11.069] [PMID: 15169795]
[166]
Goldberg, R.M.; Sargent, D.J.; Morton, R.F.; Fuchs, C.S.; Ramanathan, R.K.; Williamson, S.K.; Findlay, B.P.; Pitot, H.C.; Alberts, S.R. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol., 2004, 22(1), 23-30.
[http://dx.doi.org/10.1200/JCO.2004.09.046] [PMID: 14665611]
[167]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[168]
Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; Murugappan, S.; Sidhu, R. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): A randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol., 2014, 15(6), 569-579.
[http://dx.doi.org/10.1016/S1470-2045(14)70118-4] [PMID: 24739896]
[169]
Pauken, K.E.; Wherry, E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol., 2015, 36(4), 265-276.
[http://dx.doi.org/10.1016/j.it.2015.02.008] [PMID: 25797516]
[170]
Wang, J.; Reiss, K.A.; Khatri, R.; Jaffee, E.; Laheru, D. Immune therapy in GI malignancies: A review. J. Clin. Oncol., 2015, 33(16), 1745-1753.
[http://dx.doi.org/10.1200/JCO.2015.60.7879] [PMID: 25918295]
[171]
Duarte, D.; Vale, N. Combining repurposed drugs to treat colorectal cancer. Drug Discov. Today, 2022, 27(1), 165-184.
[http://dx.doi.org/10.1016/j.drudis.2021.09.012] [PMID: 34592446]
[172]
Iwata, H.; Sawada, R.; Mizutani, S.; Yamanishi, Y. Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data. J. Chem. Inf. Model., 2015, 55(2), 446-459.
[http://dx.doi.org/10.1021/ci500670q] [PMID: 25602292]
[173]
Mei, X-L.; Yang, Y.; Zhang, Y-J.; Li, Y.; Zhao, J-M.; Qiu, J.G.; Zhang, W.J.; Jiang, Q.W.; Xue, Y.Q.; Zheng, D.W.; Chen, Y.; Qin, W.M.; Wei, M.N.; Shi, Z. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am. J. Cancer Res., 2015, 5(11), 3311-3324.
[PMID: 26807313]
[174]
Huang, W.; Sundquist, J.; Sundquist, K.; Ji, J. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat. Commun., 2020, 11(1), 3191.
[http://dx.doi.org/10.1038/s41467-020-17028-4] [PMID: 32581298]
[175]
Fu, X.; Tan, T.; Liu, P. Regulation of autophagy by non-steroidal anti-inflammatory drugs in cancer. Cancer Manag. Res., 2020, 12, 4595-4604.
[http://dx.doi.org/10.2147/CMAR.S253345] [PMID: 32606952]
[176]
Valverde, A.; Peñarando, J.; Cañas, A.; López-Sánchez, L.M.; Conde, F.; Guil-Luna, S.; Hernández, V.; Villar, C.; Morales-Estévez, C.; de la Haba-Rodríguez, J.; Aranda, E.; Rodríguez-Ariza, A. The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: Role of EGFR-RAS-FOXM1-β-catenin signaling axis. Oncotarget, 2017, 8(13), 21754-21769.
[http://dx.doi.org/10.18632/oncotarget.15567] [PMID: 28423516]
[177]
Neo, J.H.; Malcontenti-Wilson, C.; Muralidharan, V.; Christophi, C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J. Gastroenterol. Hepatol., 2007, 22(4), 577-584.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04797.x] [PMID: 17376054]
[178]
Cunha Júnior, A.D.; Bragagnoli, A.C.; Costa, F.O.; Carvalheira, J.B.C. Repurposing metformin for the treatment of gastrointestinal cancer. World J. Gastroenterol., 2021, 27(17), 1883-1904.
[http://dx.doi.org/10.3748/wjg.v27.i17.1883] [PMID: 34007128]
[179]
Zhang, Y.; Guan, M.; Zheng, Z.; Zhang, Q.; Gao, F.; Xue, Y. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS One, 2013, 8(11), e81264.
[http://dx.doi.org/10.1371/journal.pone.0081264] [PMID: 24278407]
[180]
Nangia-Makker, P.; Yu, Y.; Vasudevan, A.; Farhana, L.; Rajendra, S.G.; Levi, E.; Majumdar, A.P.N. Metformin: A potential therapeutic agent for recurrent colon cancer. PLoS One, 2014, 9(1), e84369.
[http://dx.doi.org/10.1371/journal.pone.0084369] [PMID: 24465408]
[181]
Kim, S.H.; Kim, S.C.; Ku, J.L. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget, 2017, 8(34), 56546-56557.
[http://dx.doi.org/10.18632/oncotarget.17798] [PMID: 28915611]
[182]
Skinner, H.D.; Crane, C.H.; Garrett, C.R.; Eng, C.; Chang, G.J.; Skibber, J.M.; Rodriguez-Bigas, M.A.; Kelly, P.; Sandulache, V.C.; Delclos, M.E.; Krishnan, S.; Das, P. Metformin use and improved response to therapy in rectal cancer. Cancer Med., 2013, 2(1), 99-107.
[http://dx.doi.org/10.1002/cam4.54] [PMID: 24133632]
[183]
Singh, P.P.; Shi, Q.; Foster, N.R.; Grothey, A.; Nair, S.G.; Chan, E.; Shields, A.F.; Goldberg, R.M.; Gill, S.; Kahlenberg, M.S.; Sinicrope, F.A.; Sargent, D.J.; Alberts, S.R. Relationship between metformin use and recurrence and survival in patients with resected stage III colon cancer receiving adjuvant chemotherapy: Results from North Central Cancer Treatment Group N0147 (Alliance). Oncologist, 2016, 21(12), 1509-1521.
[http://dx.doi.org/10.1634/theoncologist.2016-0153] [PMID: 27881709]
[184]
Bragagnoli, A.; Araujo, R.; Abdalla, K.; Comar, F.; Santos, F. Final results of a phase II of metformin plus irinotecan for refractory colorectal cancer. J. Clin. Oncol., 2018, 36(15_suppl), e15527-e15527.
[185]
Miranda, V.C.; Braghiroli, M.I.; Faria, L.D.; Bariani, G.; Alex, A.; Bezerra Neto, J.E.; Capareli, F.C.; Sabbaga, J.; Lobo dos Santos, J.F.; Hoff, P.M.; Riechelmann, R.P. Phase 2 trial of metformin combined with 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin. Colorectal Cancer, 2016, 15(4), 321-328.e1.
[http://dx.doi.org/10.1016/j.clcc.2016.04.011] [PMID: 27262895]
[186]
Ganesan, K; Rana, MBM; Sultan, S Oral hypoglycemic medications; StatPearls: Florida, 2018.
[187]
Kothiwale, S.; Borza, C.M.; Lowe, E.W., Jr; Pozzi, A.; Meiler, J. Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery. Drug Discov. Today, 2015, 20(2), 255-261.
[http://dx.doi.org/10.1016/j.drudis.2014.09.025] [PMID: 25284748]
[188]
Okada, J.; Matsumoto, S.; Kaira, K.; Saito, T.; Yamada, E.; Yokoo, H.; Katoh, R.; Kusano, M.; Okada, S.; Yamada, M. Sodium glucose cotransporter 2 inhibition combined with cetuximab significantly reduced tumor size and carcinoembryonic antigen level in colon cancer metastatic to liver. Clin. Colorectal Cancer, 2018, 17(1), e45-e48.
[http://dx.doi.org/10.1016/j.clcc.2017.09.005] [PMID: 29054804]
[189]
Poynter, J.N.; Gruber, S.B.; Higgins, P.D.R.; Almog, R.; Bonner, J.D.; Rennert, H.S.; Low, M.; Greenson, J.K.; Rennert, G. Statins and the risk of colorectal cancer. N. Engl. J. Med., 2005, 352(21), 2184-2192.
[http://dx.doi.org/10.1056/NEJMoa043792] [PMID: 15917383]
[190]
El Zarif, T.; Yibirin, M.; De Oliveira-Gomes, D.; Machaalani, M.; Nawfal, R.; Bittar, G.; Bahmad, H.F.; Bitar, N. Overcoming therapy resistance in colon cancer by drug repurposing. Cancers, 2022, 14(9), 2105.
[http://dx.doi.org/10.3390/cancers14092105] [PMID: 35565237]
[191]
Juneja, M.; Kobelt, D.; Walther, W.; Voss, C.; Smith, J.; Specker, E.; Neuenschwander, M.; Gohlke, B.O.; Dahlmann, M.; Radetzki, S.; Preissner, R.; von Kries, J.P.; Schlag, P.M.; Stein, U. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol., 2017, 15(6), e2000784.
[http://dx.doi.org/10.1371/journal.pbio.2000784] [PMID: 28570591]
[192]
Qi, J; Wei, J; Zhang, Z; Dong, L; Zhang, L [A Meta-analysis on association between statins and colorectal cancer]. Zhonghua Liu Xing Bing Xue Za Zhi., 2021, 42(2), 343-350.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy