Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

General Review Article

Our Contribution to Microwave-Assisted Conversions of Bioactive Compounds

Author(s): Biswanath Das*, Nayaki Salva Reddy, Aravind Kumar Rathod, Satya Kumar Avula and Ratna Das

Volume 10, Issue 2, 2023

Published on: 07 August, 2023

Page: [198 - 207] Pages: 10

DOI: 10.2174/2213335610666230609121927

Price: $65

Abstract

The microwave chemistry of several bioactive natural products and synthetic compounds was studied by us. The compounds of different types, such as alkaloid, terpenoid, lignan, etc. were considered for our investigation. Some indole compounds, as well as organosulfur and miscellaneous carbonyl compounds, were also included. The substrates were irradiated under microwave irradiation for a short time and the resulting products were characterized. The conversion was conducted without using any solvent. The catalysts were not required in many transformations, but in some cases, catalysts, mainly heterogeneous catalysts were needed. The experimental procedures were convenient, less expensive, and generally eco-friendly. The interesting results of our efforts are briefly discussed in the present article.

Keywords: Microwave chemistry, Bioactive compounds, Natural products, Synthetic molecules, Eco-friendly and catalysts.

Graphical Abstract
[1]
Strauss, C.R.; Trainor, R.W. Developments in Microwave-Assisted Organic Chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[2]
Kidwai, M. Dry Media Reactions; , 2001. Available From:
[http://dx.doi.org/10.1351/pac20017301014710.1351/pac200173010147]
[3]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[4]
Cavalluzzi, M.M.; Lamonaca, A.; Rotondo, N.P.; Miniero, D.V.; Muraglia, M.; Gabriele, P.; Corbo, F.; De Palma, A.; Budriesi, R.; De Angelis, E.; Monaci, L.; Lentini, G. Microwave-Assisted Extraction of Bioactive Compounds from Lentil Wastes: Antioxidant Activity Evaluation and Metabolomic Characterization. Molecules, 2022, 27(21), 7471.
[http://dx.doi.org/10.3390/molecules27217471] [PMID: 36364300]
[5]
Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J. Pharm. Biomed. Anal., 2018, 156, 313-322.
[http://dx.doi.org/10.1016/j.jpba.2018.04.050] [PMID: 29734100]
[6]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[7]
Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring ultrasound, microwave and ultrasound–microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar. Drugs, 2020, 18(3), 172.
[http://dx.doi.org/10.3390/md18030172] [PMID: 32244865]
[8]
da Rocha, C.B.; Noreña, C.P.Z. Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. Int. J. Food Eng., 2020, 16(1-2), 1-10.
[http://dx.doi.org/10.1515/ijfe-2019-0191]
[9]
Bhatkar, A.; Mane, S.; Mekala, S.P.; Gogoi, P.; Mohapatra, G.; Ramakrishnan, A.; Marimuthu, P.; Thirumalaiswamy, R. Microwave-assisted selective N-alkylation of aniline over molybdenum supported catalyst. Catal. Commun., 2022, 168, 106464.
[http://dx.doi.org/10.1016/j.catcom2022.106464]
[10]
de Oliveira, D.R.; Avelino, F.; Mazzetto, S.E.; Lomonaco, D. Microwave-assisted selective acetylation of Kraft lignin: Acetic acid as a sustainable reactant for lignin valorization. Int. J. Biol. Macromol., 2020, 164, 1536-1544.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.216] [PMID: 32738321]
[11]
Nguyen, R.; Galy, N.; Alasmary, F.; Len, C. Microwave-assisted continuous flow for the selective oligomerization of glycerol. Catalysts, 2021, 11(2), 166.
[http://dx.doi.org/10.3390/catal11020166]
[12]
Restrepo, J.; Porcar, R.; Lozano, P.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Microwave-assisted selective oxidation of 1-phenyl ethanol in water catalyzed by metal nanoparticles immobilized onto supported ionic liquidlike phases. ACS Catal., 2015, 5(8), 4743-4750.
[http://dx.doi.org/10.1021/acscatal.5b01129]
[13]
Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Selectivity in organic synthesis under microwave irradiation. Curr. Org. Chem., 2004, 8(10), 903-918.
[http://dx.doi.org/10.2174/1385272043370429]
[14]
Bassyouni, F.A.; Abu-Bakr, S.M.; Rehim, M.A. Evolution of microwave irradiation and its application in green chemistry and biosciences. Res. Chem. Intermed., 2012, 38(2), 283-322.
[http://dx.doi.org/10.1007/s11164-011-0348-1]
[15]
Cernansky, R. Chemistry: Green refill. Nature, 2015, 519(7543), 379-380.
[http://dx.doi.org/10.1038/nj7543-379a] [PMID: 25793239]
[16]
Das, B.; Krishnaiah, M.; Venkateswarlu, K.; Das, R. Camptothecins: Some recent chemical studies. Nat. Prod. Commun., 2006, 1(3), 225-1934578X0600100.
[http://dx.doi.org/10.1177/1934578X0600100313]
[17]
Das, B.; Satyalakshmi, G.; Bhunia, N.; Reddy, K.R.; Reddy, V.S.; Mahender, G. Chemical transformations of parthenin, a natural bioactive sesquiterpenoid., Nat. Prod. Commun., 2009, 4(3), 9-1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400104] [PMID: 19370866]
[18]
Das, B.; Satyalakshmi, G. Natural products based anticancer agents. Mini Rev. Org. Chem., 2012, 9(2), 169-177.
[http://dx.doi.org/10.2174/157019312800604706]
[19]
Das, B.; Salvanna, N.; Reddy, P.R.; Paramesh, J.; Das, R. Our phytochemical research on jatropha species. ARKIVOC, 2018, 2018(i), 114-133.
[20]
Das, B.; Salvanna, N.; Kumar, R.A.; Das, R. Our phytochemical research on parthenium hysterophorous. Mini Rev. Org. Chem., 2020, 17(7), 843-854.
[http://dx.doi.org/10.2174/1570193X17666191218092812]
[21]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata 1,2. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[22]
Govindachari, T.R.; Viswanathan, N. Alkaloids of Mappia foetida. Phytochemistry, 1972, 11(12), 3529-3531.
[http://dx.doi.org/10.1016/S0031-9422(00)89852-0]
[23]
Das, B.; Rao, S.P.; Srinivas, K.V.N.S. Studies on phytochemicals: Part XV-investigation on the alkaloidal constituents of indian mappia foetida. Indian J. Chem., 1997, 36B, 208-210.
[24]
Das, B.; Anjani, G.; Kashinatham, A.; Madhusudhan, P. Occurrence of 5-Methoxy-1-oxo-Tetrahydro-β-Carboline in Indian Nothapodytes foetida —An important clue to the biogenetic formation of camptothecins. Nat. Prod. Lett., 1998, 11(4), 285-289.
[http://dx.doi.org/10.1080/10575639808044961]
[25]
Das, B.; Madhusudhan, P.; Veena Reddy, P.; Anitha, Y. Natural Camptothecins. Indian J. Chem. Sect. B, 2001, 40B, 453-464.
[26]
Kessel, D. Effects of camptothecin on RNA synthesis in leukemia L1210 cells. Biochim. Biophys. Acta Nucleic Acids Protein Synth., 1971, 246(2), 225-232.
[http://dx.doi.org/10.1016/0005-2787(71)90131-6] [PMID: 5167295]
[27]
Khan, H.E. Proceedings of the American Association for Cancer Research. Proc. Am. Assoc. cancer Res., 1971. 12, 59
[28]
Li, C.J.; Wang, C.; Pardee, A.B. Camptothecin inhibits Tat-mediated transactivation of type 1 human immunodeficiency virus. J. Biol. Chem., 1994, 269(10), 7051-7054.
[http://dx.doi.org/10.1016/S0021-9258(17)37242-3] [PMID: 8125909]
[29]
Jaxel, C.; Kohn, K.W.; Wani, M.C.; Wall, M.E.; Pommier, Y. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: Evidence for a specific receptor site and a relation to antitumor activity. Cancer Res., 1989, 49(6), 1465-1469.
[PMID: 2538227]
[30]
Das, B.; Madhusudhan, P.; Kashinatham, A. The first conversion of camptothecin to (S)-mappicine by an efficient chemoenzymatic method. Bioorg. Med. Chem. Lett., 1998, 8(11), 1403-1406.
[http://dx.doi.org/10.1016/S0960-894X(98)00234-0] [PMID: 9871774]
[31]
Das, B.; Madhusudhan, P. Enantioselective synthesis of (S)- and (R)-mappicines and their analogues. Tetrahedron, 1999, 55(25), 7875-7880.
[http://dx.doi.org/10.1016/S0040-4020(99)00397-X]
[32]
Das, B.; Madhusudhan, P.; Kashinatham, A. Two efficient methods for the conversion of camptothecin to mappicine ketone, an antiviral lead compound. Tetrahedron Lett., 1998, 39(5-6), 431-432.
[http://dx.doi.org/10.1016/S0040-4039(97)10539-1]
[33]
Wu, T.S.; Chan, Y.Y.; Leu, Y.L.; Chern, C.Y.; Chen, C.F. Nothapodytines A and B from Nothapodytes foetida. Phytochemistry, 1996, 42(3), 907-908.
[http://dx.doi.org/10.1016/0031-9422(95)00962-0] [PMID: 8835464]
[34]
Pendrak, I.; Wittrock, R.; Kingsbury, W.D. Synthesis and Anti-HSV activity of Methylenedioxy Mappicine Ketone Analogs. J. Org. Chem., 1995, 60(9), 2912-2915.
[http://dx.doi.org/10.1021/jo00114a050]
[35]
Carte, B.K.; DeBrosse, C.; Eggleston, D.; Hemling, M.; Mentzer, M.; Poehland, B.; Troupe, N.; Westley, J.W.; Hecht, S.M. Isolation and characterization of a presumed biosynthetic precursor of camptothecin from extracts of Camptotheca acuminata. Tetrahedron, 1990, 46(8), 2747-2760.
[http://dx.doi.org/10.1016/S0040-4020(01)88369-1]
[36]
Roja, G.; Heble, M.R. The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry, 1994, 36(1), 65-66.
[http://dx.doi.org/10.1016/S0031-9422(00)97013-4]
[37]
Gunasekera, S.P.; Badawi, M.M.; Cordell, G.A.; Farnsworth, N.R.; Chitnis, M. Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J. Nat. Prod., 1979, 42(5), 475-477.
[http://dx.doi.org/10.1021/np50005a006] [PMID: 521817]
[38]
Das., B.,; Madhusudhan, P.,; Venkataiah, B., Chemoenzymatic transformations of the natural antitumor alkaloid 20-O- acetylcampotothecin to mappicine ketone and (S)-mappicine, J. Indian Chem Soc., 1998, 75, 662.
[39]
Srinivas, K.V.N.S.; Das, B. 9-Methoxy-20-O-acetylcamptothecin, a minor new alkaloid from Nothapodites foetida. Biochem. Syst. Ecol., 2003, 31(1), 85-87.
[http://dx.doi.org/10.1016/S0305-1978(02)00077-7]
[40]
Microwave Prompted Transformations of Natural Antitumor Alkaloid 20-O-Acetyl-9-Methoxy Campothecin to Its Decarboxylated ERing Anologues1 ECSOC-The 8th International Electronic Conference on Synthetic Organic Chemistry., Switzerland 2004, , p.E-001.
[41]
Das, B.; Srinivas, K.V.N.S.; Mahender, I.; Ravindranath, N.; Ramesh, C. A convenient method for the preparation of 7-Cyanocamptothecins and 7-Cyanomappicine Ketones1. Synth. Commun., 2004, 34(2), 199-204.
[http://dx.doi.org/10.1081/SCC-120027253]
[42]
Sawada, S.; Nokata, K.; Furata, T.; Yokokura, T.; Miyasaka, T. Chemical modification of an antitumor alkaloid camptothecin: Synthesis and antitumor activity of 7-C-substituted camptothecins. Chem. Pharm. Bull., 1991, 39(10), 2574-2580.
[http://dx.doi.org/10.1248/cpb.39.2574] [PMID: 1806276]
[43]
Das, B.; Madhusudhan, P.; Venkataiah, B. An efficient microwave assisted one-pot conversion of aldehydes into nitriles using silica gel supported NaHSO 4 catalyst. Synlett, 1999, 1999(10), 1569-1570.
[http://dx.doi.org/10.1055/s-0029-1216866]
[44]
Dallavalle, S.; Delsoldato, T.; Ferrari, A.; Merlini, L.; Penco, S.; Carenini, N.; Perego, P.; De Cesare, M.; Pratesi, G.; Zunino, F. Novel 7-substituted camptothecins with potent antitumor activity. J. Med. Chem., 2000, 43(21), 3963-3969.
[http://dx.doi.org/10.1021/jm000944z] [PMID: 11052801]
[45]
Das, B.; Madhusudhan, P.; Kashinatham, A. Unprecedented adducts formed by Camptothecin and Mappicine Ketone with Maleic Anhydride under microwave irradiation. Indian J. Chem. Sect. B, 2000, 39B(5), 326-328.
[46]
Herz, W.; Watanabe, H.; Miyazaki, M.; Kishida, Y. The structures of Parthenin and Ambrosin J. Am. Chem. Soc., 1962, 84(13), 2601-2610.
[http://dx.doi.org/10.1021/ja00872a027]
[47]
Das, B.; Dasi, R. Chemical investigation in Parthenium Hysteruphorus an Allelopathic Plant. Allelopathy J., 1995, 2(I), 99-104.
[48]
Kupchan, S.M.; Eakin, M.A.; Thomas, A.M. Tumor inhibitors. 69. Structure-cytotoxicity relations among the sesquiterpene lactones. J. Med. Chem., 1971, 14(12), 1147-1152.
[http://dx.doi.org/10.1021/jm00294a001] [PMID: 5116225]
[49]
Mew, D.; Balza, F.; Towers, G.; Levy, J. Anti-tumour effects of the Sesquiterpene Lactone Parthenin. Planta Med., 1982, 45(5), 23-27.
[http://dx.doi.org/10.1055/s-2007-971234]
[50]
Hooper, M.; Kirby, G.C.; Kulkarni, M.M.; Kulkarni, S.N.; Nagasampagi, B.A.; O’Neill, M.J.; Phillipson, J.D.; Rojatkar, S.R.; Warhurst, D.C. Antimalarial activity of parthenin and its derivatives. Eur. J. Med. Chem., 1990, 25(9), 717-723.
[http://dx.doi.org/10.1016/0223-5234(90)90190-E]
[51]
Kanchan, S.D. Growth inhibitors from Parthenium Hysterophorus Linn. Curr. Sci., 1975, 44, 358-3598.
[52]
Patil, T.M.; Hegde, B.A. Isolation and purification of a sesquiterpene lactone from the leaves of Parthenium Hysterophorus-Its allelopathic and cytotoxic effects. Curr. Sci., 1988, 57(21), 1178-1181.
[53]
Das, B.; Venkataiah, B. Conversion of Parthenin to Anhydroparthenin using Microwave Irradiation. Synth. Commun., 1999, 29(5), 863-866.
[http://dx.doi.org/10.1080/00397919908086044]
[54]
Das, B.; Venkataiah, B.; Kashinatham, A. Chemical and biochemical modifications of parthenin. Tetrahedron, 1999, 55(21), 6585-6594.
[http://dx.doi.org/10.1016/S0040-4020(99)00292-6]
[55]
Pandey, D.K. Allelochemicals in Parthenium in Response to Biological Activity and the Environment. Indian J. Weed Sci., 2009, 41(3-4), 111-123.
[56]
Srinivasan, G.V.; Unnikrishnan, K.P.; Rema Shree, A.B.; Balachandran, I. HPLC estimation of berberine in <i> Tinospora cordifolia</i> and <i> Tinospora sinensis</i>. Indian J. Pharm. Sci., 2008, 70(1), 96-99.
[http://dx.doi.org/10.4103/0250-474X.40341] [PMID: 20390090]
[57]
Das, B.; Srinivas, K.V.N.S. Conversion of berberine into berberrubine by selective demethylation under microwave irradiation. Synth. Commun., 2002, 32(19), 3027-3029.
[http://dx.doi.org/10.1081/SCC-120012993]
[58]
Gharbi, S.A.; Beal, J.L.; Doskotch, R.W.; Mitscher, L.A. Lloydia, 1973, 36, 349.
[PMID: 4586790]
[59]
Kamal, R.; Mangla, M.; Prakash, D.; Sharma, G.; Srivastva, R.C. Lloydia, 1978, 41, 169.
[60]
Hearon, W.M.; MacGregor, W.S. The naturally occurring Lignans. Chem. Rev., 1955, 55(5), 957-1068.
[http://dx.doi.org/10.1021/cr50005a003]
[61]
Petter, A.; Ward, R.S. Chemistry of Lignans; Andhra Univ. Press: India, 1978, pp. 227-275.
[62]
Das, B.; Kashinatham, A.; Srinivas, K.V.N.S. Alkamides and other constituents of Piper longum1. Planta Med., 1996, 62(6), 582.
[http://dx.doi.org/10.1055/s-2006-957982]
[63]
Das, B.; Venkataiah, B.; Kashinatham, A. (+)-Syringaresinol from Parthenium hysterophorus. Fitoterapia, 1999, 70(1), 101-102.
[http://dx.doi.org/10.1016/S0367-326X(98)00014-8]
[64]
Das, B.; Madhusudhan, P.; Venkataiah, B. Clay Catalysed convenient Isomerization of natural Furofuran Lignans under Microwave Irradiation. Synth. Commun., 2000, 30(22), 4001-4006.
[http://dx.doi.org/10.1080/00397910008087015]
[65]
Kumar, S. Ritika, A brief review of the biological potential of indole derivatives. Futur J Pharma Sci, 2020, 6(1), 121-139.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[66]
Roomi, M.W.; MacDonald, S.F. Reductive C -alkylation. II. Can. J. Chem., 1970, 48(1), 139-143.
[http://dx.doi.org/10.1139/v70-019]
[67]
Chakrabarti, R.,; Das, B.,; Saha, M.,; Banerji, J., Electrophilic substitution reactions of indoles: Part X, Indian J Chem., 1990, 29B, 737.
[68]
Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Silica Supported Sodium Hydrogen Sulfate and Amberlyst-15: Two Efficient Heterogeneous Catalysts for Facile Synthesis of Bis- and Tris(1H-indol-3-yl)methanes from Indoles and Carbonyl Compounds1. Adv. Synth. Catal., 2003, 345(5), 557-559.
[http://dx.doi.org/10.1002/adsc.200303022]
[69]
Das, B.; Pal, P.; Banerjee, J.; Ramesh, C.; Mahender, G.; Venkateswarlu, K. Convenient, rapid and eco-friendly synthesis of bis-indolylmethanes under microwave irradiation. Indian J. Chem., 2005, 44B, 327-330.
[70]
Firouzabadi, H.; Iranpoor, N.; Karimi, B.; Hazarkhani, H. Highly efficient transdithioacetalization of acetals catalyzed by silica chloride. Synlett, 2000, 2000(2), 263-265.
[http://dx.doi.org/10.1055/s-2000-6483]
[71]
Lei, Z.W.; Yao, J.; Liu, H.; Ma, C.; Yang, W. Synthesis and bioactivity of novel sulfonate scaffold-containing pyrazolecarbamide derivatives as antifungal and antiviral agents. Front Chem., 2022, 10, 928842.
[http://dx.doi.org/10.3389/fchem.2022.928842] [PMID: 35815220]
[72]
Su, B.; Darby, M.V.; Brueggemeier, R.W. Synthesis and biological evaluation of novel sulfonanilide compounds as antiproliferative agents for breast cancer. J. Comb. Chem., 2008, 10(3), 475-483.
[http://dx.doi.org/10.1021/cc700138n] [PMID: 18380483]
[73]
Yoshimura, T.; Nakatani, M.; Asakura, S.; Hanai, R.; Hiraoka, M.; Kuwahara, S. Synthesis and herbicidal activity of sulfonanilides having a pyrimidinyl-containing group at the 2′-position. J. Pestic. Sci., 2011, 36(2), 212-220.
[http://dx.doi.org/10.1584/jpestics.G10-87]
[74]
Ahmed, I. Sulfones: An important class of organic compounds with diverse biological activities. Int. J. Pharm. Pharm. Sci., 2015, 7(3), 19-27.
[75]
Paul, S.; Gupta, M. Selective Fries Rearrangement Catalyzed by Zinc Powder. Synthesis, 2004, 2004(11), 1789-1792.
[http://dx.doi.org/10.1055/s-2004-829152]
[76]
Nozaki, H.; Okada, T.; Noyori, R.; Kawanisi, M. Photochemical rearrangement of arenesulphonanilides to p-aminodiarylsulphones. Tetrahedron, 1966, 22(7), 2177-2180.
[http://dx.doi.org/10.1016/S0040-4020(01)82138-4]
[77]
Das, B.; Madhusudhan, P.; Venkataiah, B. Fries rearrangement of Arylsulfonates and Sulfonanilides under Microwave Irradiation. J. Chem. Res., 2000, 2000(4), 200-201.
[http://dx.doi.org/10.3184/030823400103166968]
[78]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K.C.; Fink, S.J.; O’Donnell, C.J. Synthetic Approaches to the New Drugs Approved During 2015. J. Med. Chem., 2017, 60(15), 6480-6515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00010] [PMID: 28421763]
[79]
Das, B.; Madhusudhan, P.; Das, R. An improved one-pot conversion of aldehydes into nitriles under microwave irradiation using ammonium acetate. Synlett, 2000, 2000(11), 1599-1600.
[http://dx.doi.org/10.1055/s-2000-7931]
[80]
Das, B.; Ravindranath, N.; Venkataiah, B.; Madhusudhan, P. A convenient and efficient one-pot conversion of ketones into amides under microwave irradiation using silica gel supported Na-HSO<SUB>4</SUB> catalyst. J. Chem. Res., 2000, 2000(10), 482-483.
[http://dx.doi.org/10.3184/030823400103165806]
[81]
Das, B.; Srinivas, K.V.N.S.; Madhusudhan, P. Microwave Assisted Afficient and Rapid One-Pot Conversions of Aldehydes into Nitriles and Ketones into Amides Using Various Heterogeneous Catalysts. 7th Int. Electron. Conf. Synth. Org. Chem. (ECSOC-7)., SwitzerlandE-009.,
[82]
Diana, G.D.; Cutcliffe, D.; Volkots, D.L.; Mallamo, J.P.; Bailey, T.R.; Vescio, N.; Oglesby, R.C.; Nitz, T.J.; Wetzel, J.; Giranda, V. Antipicornavirus activity of tetrazole analogs related to disoxaril. J. Med. Chem., 1993, 36(22), 3240-3250.
[http://dx.doi.org/10.1021/jm00074a004] [PMID: 8230114]
[83]
Khanna, I.K.; Weier, R.M.; Yu, Y.; Xu, X.D.; Koszyk, F.J.; Collins, P.W.; Koboldt, C.M.; Veenhuizen, A.W.; Perkins, W.E.; Casler, J.J.; Masferrer, J.L.; Zhang, Y.Y.; Gregory, S.A.; Seibert, K.; Isakson, P.C. 1,2-Diarylimidazoles as potent, cyclooxygenase-2 selective, and orally active antiinflammatory agents. J. Med. Chem., 1997, 40(11), 1634-1647.
[http://dx.doi.org/10.1021/jm9700225] [PMID: 9171873]
[84]
Wang, E.C.; Lin, G.J. A new one pot method for the conversion of aldehydes into nitriles using hydroxyamine and phthalic anhydride. Tetrahedron Lett., 1998, 39(23), 4047-4050.
[http://dx.doi.org/10.1016/S0040-4039(98)00654-6]
[85]
Olah Alexander, P.; Synthetic Methods, G.A.F. Synthesis, 1979, 1979(07), 537-538.
[http://dx.doi.org/10.1055/s-1979-28752]
[86]
Srinivas, K.V.N.S.; Das, B. Microwave assisted Convenient and Facile Regeneration of Carbonyl Compounds from Oximes, Semicarbazones and Phenylhydrazones using Silica Supported Ceric Ammonium Nitrate. J. Chem. Res., 2002, 2002(11), 556-557.
[http://dx.doi.org/10.3184/030823402103170745]
[87]
Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant activity and profile of phenolic compounds in selected herbal plants. Plant Foods Hum. Nutr., 2022, 77(3), 383-389.
[http://dx.doi.org/10.1007/s11130-022-00989-w] [PMID: 35780286]
[88]
Kocieneski, P.J. Protective groups in synthetic organic chemistry, 3rd ed.; Georg Thieme Verlag: Stuttgart, 2004, p. 679.
[89]
Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. A convenient, rapid, highly selective and eco-friendly method for deprotection of aryl acetates using silica gel supported ammonium formate under microwave irradiationPart 20 in the series ‘Studies on Novel Synthetic Methodologies’, for part 19, see ref. 1. Green Chem., 2003, 5(1), 68-70.
[http://dx.doi.org/10.1039/b208811h]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy