Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Amine-Functionalized SBA-15 Mesoporous Silica-Anchored Ni Nanocatalyst for CO2 Hydrogenation Reaction

Author(s): Vivek Srivastava*

Volume 20, Issue 12, 2023

Published on: 13 July, 2023

Page: [1114 - 1123] Pages: 10

DOI: 10.2174/1570178620666230608160836

Price: $65

Abstract

In this study, we successfully synthesized amine-functionalized SBA-15 mesoporous silicasupported Nickel nanoparticles (Ni NPs) and investigated their potential for CO2 transition to formic acid via high-pressure hydrogenation reaction. The metal-support interface between the Ni NPs and the amine-functionalized SBA-15 mesoporous silica was examined using various techniques, including BET, TEM, and XPS analyses. Our findings reveal a robust metal-support interaction between the NiNPs and the mesoporous silica substrate, highlighting the suitability of the catalyst for the CO2 conversion reaction. Additionally, the catalyst CAT$Ni-1 exhibited good catalytic activity over CAT$Ni-2 and CAT$Ni-3, and we were able to recycle them up to five runs with no significant reduction in catalytic activity. These results suggest that the synthesized Ni NP catalysts have the potential for large-scale CO2 conversion, contributing to the development of sustainable technologies for reducing greenhouse gas emissions.

Keywords: Ni metal, SBA-15, mesoporous silica, CO2 conversion, formic acid, CO2 hydrogenation reaction.

Graphical Abstract
[1]
Hietala, J.; Vuori, A.; Johnsson, P.; Pollari, I.; Reutemann, W.; Kieczka, H. Formic Acid; Ullmann’s Encyclopedia of Industrial Chemistry, 2016, pp. 1-22.
[2]
Gibson, H.W. Chem. Rev., 1969, 69(5), 673-692.
[http://dx.doi.org/10.1021/cr60261a005]
[3]
Schlussel, S.; Kwon, S. Korean J. Chem. Eng., 2022, 39(11), 2883-2895.
[http://dx.doi.org/10.1007/s11814-022-1276-z]
[4]
Thijs, B.; Rongé, J.; Martens, J.A. Green Chem., 2022, 24(6), 2287-2295.
[http://dx.doi.org/10.1039/D1GC04791D]
[5]
Chatterjee, S.; Dutta, I.; Huang, K.W. Power to Fuel, How to Speed Up a Hydrogen Economy; Elsevier, 2021.
[6]
Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Appl. Sci., 2018, 8, 914.
[7]
Reymond, H.; Corral-Pérez, J.J.; Urakawa, A.; Rudolf von Rohr, P. React. Chem. Eng., 2018, 3(6), 912-919.
[http://dx.doi.org/10.1039/C8RE00142A]
[8]
Sato, R.; Choudhary, H.; Nishimura, S.; Ebitani, K. Org. Process Res. Dev., 2015, 19(3), 449-453.
[http://dx.doi.org/10.1021/op5004083]
[9]
Moret, S.; Dyson, P.J.; Laurenczy, G. Nat. Commun., 2014, 5(1), 1-7.
[10]
Zhang, J.; Guo, C.; Fang, S.; Zhao, X.; Li, L.; Jiang, H.; Liu, Z.; Fan, Z.; Xu, W.; Xiao, J.; Zhong, M. Nat. Commun., 2023, 14(1), 1298.
[http://dx.doi.org/10.1038/s41467-023-36926-x] [PMID: 36894571]
[11]
Li, L.; Liu, Z.; Yu, X.; Zhong, M. Angew. Chem. Int. Ed., 2023, 62(21), e202300226.
[http://dx.doi.org/10.1002/anie.202300226] [PMID: 36810852]
[12]
Zhang, J.; Guo, C.; Fang, S.; Zhao, X.; Li, L.; Jiang, H.; Liu, Z.; Fan, Z.; Xu, W.; Xiao, J.; Zhong, M. 2023, 14(1), 1-11.
[13]
Li, Z.; Liu, J.; Shi, R.; Waterhouse, G.I.N.; Wen, X.D.; Zhang, T. Adv. Energy Mater., 2021, 11(12), 2002783.
[http://dx.doi.org/10.1002/aenm.202002783]
[14]
Li, Z.; Shi, R.; Zhao, J.; Zhang, T. Nano Res., 2021, 14(12), 4828-4832.
[http://dx.doi.org/10.1007/s12274-021-3436-6]
[15]
Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Int. J. Hydrogen Energy, 2016, 41(37), 16444-16462.
[http://dx.doi.org/10.1016/j.ijhydene.2016.05.199]
[16]
Patle, D.S.; Gadhamsetti, A.P.; Sharma, S.; Agrawal, V.; Rangaiah, G.P. Ind. Eng. Chem. Res., 2018, 57(40), 13478-13489.
[http://dx.doi.org/10.1021/acs.iecr.8b02654]
[17]
Guan, C.; Pan, Y.; Zhang, T.; Ajitha, M.J.; Huang, K.W. Chem. Asian J., 2020, 15(7), 937-946.
[http://dx.doi.org/10.1002/asia.201901676] [PMID: 32030903]
[18]
Zhang, J.Z.; Li, Z.; Wang, H.; Wang, C.Y. J. Mol. Catal. Chem., 1996, 112(1), 9-14.
[http://dx.doi.org/10.1016/1381-1169(96)00185-9]
[19]
Jessop, P.G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1996, 118(2), 344-355.
[http://dx.doi.org/10.1021/ja953097b]
[20]
Johnee Britto, N.; Rajpurohit, A.S.; Jagan, K.; Jaccob, M. J. Phys. Chem. C, 2019, 123(41), 25061-25073.
[http://dx.doi.org/10.1021/acs.jpcc.9b05880]
[21]
Kawanami, H.; Iguchi, M.; Himeda, Y. Inorg. Chem., 2020, 59(7), 4191-4199.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01624] [PMID: 32064868]
[22]
Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Angew. Chem. Int. Ed., 2011, 50(52), 12551-12554.
[http://dx.doi.org/10.1002/anie.201105481] [PMID: 22057843]
[23]
Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; Si, R.; Ma, C. Zeng. J. Nat. Nanotechnol., 2018, 13(5), 411-417.
[http://dx.doi.org/10.1038/s41565-018-0089-z] [PMID: 29556007]
[24]
Upadhyay, P.R.; Srivastava, V. RSC Advances, 2016, 6(48), 42297-42306.
[http://dx.doi.org/10.1039/C6RA03660K]
[25]
Gautam, P.; Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2019, 149(6), 1464-1475.
[http://dx.doi.org/10.1007/s10562-019-02773-z]
[26]
Kanega, R.; Ertem, M.Z.; Onishi, N.; Szalda, D.J.; Fujita, E.; Himeda, Y. Organometallics, 2020, 39(9), 1519-1531.
[http://dx.doi.org/10.1021/acs.organomet.9b00809]
[27]
Chiang, C.L.; Lin, K.S.; Chuang, H.W. J. Clean. Prod., 2018, 172, 1957-1977.
[http://dx.doi.org/10.1016/j.jclepro.2017.11.229]
[28]
Srivastava, V. Catal. Lett., 2014, 144(12), 2221-2226.
[http://dx.doi.org/10.1007/s10562-014-1392-4]
[29]
Xu, Z.; McNamara, N.D.; Neumann, G.T.; Schneider, W.F.; Hicks, J.C. ChemCatChem, 2013, 5(7), 1769-1771.
[http://dx.doi.org/10.1002/cctc.201200839]
[30]
Pandey, P.H.; Pawar, H.S. J. CO2 Utilizat., 2020, 41, 101267.
[31]
Bulushev, D.A.; Ross, J.R.H. Catal. Rev., 2018, 60, 566-593.
[http://dx.doi.org/10.1080/01614940.2018.1476806]
[32]
Mori, K.; Hata, H.; Yamashita, H. Appl. Catal. B, 2023, 320.
[33]
Verma, P.; Zhang, S.; Song, S.; Mori, K.; Kuwahara, Y.; Wen, M.; Yamashita, H.; An, T. J. CO2 Util., 2021, 54, 101765.
[34]
Zhang, W.; Wang, S.; Zhao, Y.; Ma, X. Fuel Process. Technol., 2018, 178, 98-103.
[http://dx.doi.org/10.1016/j.fuproc.2018.05.024]
[35]
Liu, Q.; Yang, X.; Li, L.; Miao, S.; Li, Y.; Li, Y.; Wang, X.; Huang, Y.; Zhang, T. Nat. Commun., 2017, 8(1), 1-8.
[36]
Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev., 2018, 118(2), 434-504.
[http://dx.doi.org/10.1021/acs.chemrev.7b00435] [PMID: 29220170]
[37]
Burkart, M.D.; Hazari, N.; Tway, C.L.; Zeitler, E.L. ACS Catal., 2019, 9(9), 7937-7956.
[http://dx.doi.org/10.1021/acscatal.9b02113]
[38]
Gao, D.; Li, W.; Wang, H.; Wang, G.; Cai, R. Transac. Tianjin Uni., 2022, 28(4), 245-264.
[http://dx.doi.org/10.1007/s12209-022-00326-x]
[39]
Srivastava, V. Catal. Lett., 2021, 151(12), 3704-3720.
[http://dx.doi.org/10.1007/s10562-021-03609-5]
[40]
Martínez, M.L.; Ponte, M.V.; Beltramone, A.R.; Anunziata, O.A. Mater. Lett., 2014, 134, 95-98.
[http://dx.doi.org/10.1016/j.matlet.2014.07.075]
[41]
Sadjadi, S.; Heravi, M.M. RSC Advances, 2017, 7(49), 30815-30838.
[http://dx.doi.org/10.1039/C7RA04833E]
[42]
Zhu, Y.; Li, H.; Zheng, Q.; Xu, J.; Li, X. Langmuir, 2012, 28(20), 7843-7850.
[http://dx.doi.org/10.1021/la300560j] [PMID: 22548464]
[43]
Laskowski, Ł.; Laskowska, M.; Bałanda, M.; Fitta, M.; Kwiatkowska, J.; Dziliński, K.; Karczmarska, A. Microporous Mesoporous Mater., 2014, 200, 253-259.
[http://dx.doi.org/10.1016/j.micromeso.2014.08.041]
[44]
Srivastava, V. Catal. Surv. Asia, 2021, 25(2), 192-205.
[http://dx.doi.org/10.1007/s10563-021-09325-9]
[45]
Liu, Z.; Liu, D.; Wang, L.; Zhang, J.; Zhang, N. Int. J. Mol. Sci., 2011, 12(3), 1684-1696.
[http://dx.doi.org/10.3390/ijms12031684] [PMID: 21673916]
[46]
Wieder, G.M. J. Chem. Educ., 1986, 63(11), 988-989.
[http://dx.doi.org/10.1021/ed063p988]
[47]
Akhtar, A.J.; Gupta, A.; Saha, S.K. RSC Advances, 2015, 5(13), 9594-9599.
[http://dx.doi.org/10.1039/C4RA13387K]
[48]
Kwawu, C.R.; Aniagyei, A.; Konadu, D.; Antwi, B.Y. Mater. Renew. Sustain. Energy, 2021, 10(2), 9.
[http://dx.doi.org/10.1007/s40243-021-00194-w]
[49]
Ruiz-García, J.R.; Fierro-Gonzalez, J.C.; Handy, B.E.; Hinojosa-Reyes, L.; De Haro Del Río, D.A.; Lucio-Ortiz, C.J.; Valle-Cervantes, S.; Flores-Escamilla, G.A. ChemistrySelect, 2019, 4(14), 4206-4216.
[http://dx.doi.org/10.1002/slct.201900361]
[50]
Weilhard, A.; Argent, S.P.; Sans, V. Nat. Commun., 2021, 12(1), 1-7.
[51]
Ricke, S.C.; Dittoe, D.K.; Richardson, K.E. Front. Vet. Sci., 2020, 7, 563.
[http://dx.doi.org/10.3389/fvets.2020.00563] [PMID: 33088825]
[52]
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev., 2017, 117(14), 9804-9838.
[http://dx.doi.org/10.1021/acs.chemrev.6b00816] [PMID: 28656757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy