Patent News

新型嘧啶-4-酰基-3-氨基吡咯[3,4-C]吡唑治疗疾病的蛋白激酶C抑制剂

卷 31, 期 8, 2024

发表于: 22 June, 2023

页: [1036 - 1039] 页: 4

弟呕挨: 10.2174/0929867330666230531164754

摘要

本专利描述了该系列化合物及其药学上可接受的盐,如化合物K7(作为具有代表性的有效化合物)。这些蛋白激酶C选择性抑制剂可用于治疗糖尿病及其并发症、癌症、缺血、炎症、中枢神经系统疾病、心血管疾病、阿尔茨海默病、皮肤病、病毒性疾病、炎症性疾病或以肝脏为靶器官的疾病。

关键词: 蛋白激酶C,嘧啶-吡罗吡唑,癌症,阿尔茨海默病,心血管疾病,中枢神经系统疾病,炎症。

Next »
[1]
Sipka, S.; Bíró, T.; Czifra, G.; Griger, Z.; Gergely, P.; Brugós, B.; Tarr, T. The role of protein kinase C isoenzymes in the pathogenesis of human autoimmune diseases. Clin. Immunol., 2022, 241, 109071.
[http://dx.doi.org/10.1016/j.clim.2022.109071] [PMID: 35781096]
[2]
Li, H.; Nukui, S.; Scales, S.A.; Teng, M.; Yin, C. Npyrimidin- 4-yl-3-amino-pyrrolo[3,4-c]pyrazole derivatives as PKC kinase inhibitors. US Patent, US8877761B2, 2014.
[3]
Botrous, I.; Hong, Y.; Li, H.; Liu, K.K.C.; Nukui, S.; Teng, M. 3-amido-pyrrolo[3,4-c]pyrazole-5(1h, 4h,6h) carbaldehyde derivatives as inhibitors of protein kinase c. European Patent, EP2195321B1, 2016.
[4]
Cooke, M.; Kazanietz, M.G. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci. Signal., 2022, 15(729), eabo0264.
[http://dx.doi.org/10.1126/scisignal.abo0264] [PMID: 35412850]
[5]
He, S.; Li, Q.; Huang, Q.; Cheng, J. Targeting protein kinase C for cancer therapy. Cancers , 2022, 14(5), 1104.
[http://dx.doi.org/10.3390/cancers14051104] [PMID: 35267413]
[6]
Miao, L.; Pan, D.; Shi, J.; Du, J.; Chen, P.; Gao, J.; Yu, Y.; Shi, D.Z.; Guo, M. Role and mechanism of PKC-δ for cardiovascular disease: Current status and perspective. Front. Cardiovasc. Med., 2022, 9, 816369.
[http://dx.doi.org/10.3389/fcvm.2022.816369] [PMID: 35242825]
[7]
Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.H. Activators and inhibitors of protein kinase C (PKC): Their applications in clinical trials. Pharmaceutics, 2021, 13(11), 1748.
[http://dx.doi.org/10.3390/pharmaceutics13111748] [PMID: 34834162]
[8]
Sharifinejad, N.; Azizi, G.; Behniafard, N.; Zaki-Dizaji, M.; Jamee, M.; Yazdani, R.; Abolhassani, H.; Aghamohammadi, A. Protein Kinase C-Delta defect in Autoimmune Lymphoproliferative syndrome-like disease: First case from the national iranian registry and review of the literature. Immunol. Invest., 2022, 51(2), 331-342.
[http://dx.doi.org/10.1080/08820139.2020.1829638] [PMID: 33047643]
[9]
Pilo, C.A.; Newton, A.C. Two sides of the same coin: Protein Kinase C β in cancer and neurodegeneration. Front. Cell Dev. Biol., 2022, 10, 929510.
[http://dx.doi.org/10.3389/fcell.2022.929510] [PMID: 35800893]
[10]
Jalil, S.J.; Sacktor, T.C.; Shouval, H.Z. Atypical PKCs in memory maintenance: The roles of feedback and redundancy. Learn. Mem., 2015, 22(7), 344-353.
[http://dx.doi.org/10.1101/lm.038844.115] [PMID: 26077687]
[11]
Kadir, R.R.A.; Alwjwaj, M.; Bayraktutan, U. Protein kinase C-β distinctly regulates blood-brain barrier-forming capacity of brain microvascular endothelial cells and outgrowth endothelial cells. Metab. Brain Dis., 2022, 37(6), 1815-1827.
[http://dx.doi.org/10.1007/s11011-022-01041-1] [PMID: 35763197]
[12]
Zhao, H.; Gong, L.; Wu, S.; Jing, T.; Xiao, X.; Cui, Y.; Xu, H.; Lu, H.; Tang, Y.; Zhang, J.; Zhou, Q.; Ma, D.; Li, X. The inhibition of Protein Kinase Cβ contributes to the pathogenesis of preeclampsia by activating autophagy. EBioMedicine, 2020, 56, 102813.
[http://dx.doi.org/10.1016/j.ebiom.2020.102813] [PMID: 32544612]
[13]
Starosyla, S.A.; Volynets, G.P.; Protopopov, M.V.; Bdzhola, V.G.; Pashevin, D.O.; Polishchuk, V.O.; Kozak, T.O.; Stroi, D.O.; Dosenko, V.E.; Yarmoluk, S.M. Pharmacophore modeling, docking and molecular dynamics simulation for identification of novel human protein kinase C beta (PKCβ) inhibitors. Struct. Chem., 2022, 2022, 1-15.
[http://dx.doi.org/10.1007/s11224-022-02075-y] [PMID: 36248344]
[14]
Melnyk, J.E.; Steri, V.; Nguyen, H.G.; Hwang, Y.C.; Gordan, J.D.; Hann, B.; Feng, F.Y.; Shokat, K.M. Targeting a splicing-mediated drug resistance mechanism in prostate cancer by inhibiting transcriptional regulation by PKCβ1. Oncogene, 2022, 41(11), 1536-1549.
[http://dx.doi.org/10.1038/s41388-022-02179-z] [PMID: 35087237]
[15]
Renkhold, L.; Kollmann, R.; Inderwiedenstraße, L.; Kienitz, M.C. PKC-isoform specific regulation of receptor desensitization and KCNQ1/KCNE1 K+ channel activity by mutant α1B-adrenergic receptors. Cell. Signal., 2022, 91, 110228.
[http://dx.doi.org/10.1016/j.cellsig.2021.110228] [PMID: 34958868]
[16]
von Heydebrand, F.; Fuchs, M.; Kunz, M.; Voelkl, S.; Kremer, A.N.; Oostendorp, R.A.J.; Wilke, J.; Leitges, M.; Egle, A.; Mackensen, A.; Lutzny-Geier, G. Protein kinase C-β-dependent changes in the glucose metabolism of bone marrow stromal cells of chronic lymphocytic leukemia. Stem Cells, 2021, 39(6), 819-830.
[http://dx.doi.org/10.1002/stem.3352] [PMID: 33539629]
[17]
Berardi, D.E.; Ariza Bareño, L.; Amigo, N.; Cañonero, L.; Pelagatti, M.N.; Motter, A.N.; Taruselli, M.A.; Díaz Bessone, M.I.; Cirigliano, S.M.; Edelstein, A.; Peters, M.G.; Diament, M.; Urtreger, A.J.; Todaro, L.B. All-trans retinoic acid and protein kinase C α/β1 inhibitor combined treatment targets cancer stem cells and impairs breast tumor progression. Sci. Rep., 2021, 11(1), 6044.
[http://dx.doi.org/10.1038/s41598-021-85344-w] [PMID: 33723318]
[18]
Isakov, N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin. Cancer Biol., 2018, 48, 36-52.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.012] [PMID: 28571764]

© 2024 Bentham Science Publishers | Privacy Policy