Research Article

肾透明细胞癌中ERK/MAPK信号通路通过ETS1调控MMP2

卷 24, 期 6, 2024

发表于: 12 July, 2023

页: [780 - 789] 页: 10

弟呕挨: 10.2174/1566524023666230529143837

价格: $65

摘要

背景:c-ETS-1 (ETS1)在透明细胞肾细胞癌(ccRCC)组织中高表达;然而,它如何影响ccRCC目前尚不清楚。 方法:利用在线STRING web源构建与ETS1相互作用的蛋白质网络。使用细胞计数试剂盒-8检测细胞活力。克隆生成法、创面愈合法和Transwell法检测细胞增殖、侵袭和迁移能力。Western blot检测蛋白表达。 结果:数据显示,与癌旁组织相比,ccRCC组织中ETS1的表达显著升高(p<0.05)。20 ~ 100岁ccRCC患者中ETS1阳性表达与邻近正常组织比较,差异有统计学意义(p<0.05)。ccRCC组织中ETS1阳性表达程度(1 ~ 4)及淋巴结转移程度(N1)明显高于癌旁正常组织(p<0.05)。ETS1阳性表达的ccRCC患者肿瘤分期(1-4期)明显高于癌旁正常组织(p<0.05)。敲低ETS1和PERK抑制剂可显著抑制ccRCC细胞的增殖、迁移和侵袭。敲低ETS1抑制MMP-2的表达,细胞外信号相关激酶(ERK)抑制剂抑制ETS1和MMP-2的表达。 结论:ETS1的高表达与ccRCC的进展有关。本研究提示,ETS1通过增加MMP2在ccRCC中的表达来促进细胞增殖,而联合敲低ETS1和抑制ERK可显著抑制ccRCC的增殖、迁移和侵袭。ETS1可能是肾细胞癌的治疗和预后靶点。

关键词: 肾透明细胞癌,ETS1, pERK, MMP2,细胞增殖,迁移。

[1]
Schrader AJ, Rustemeier J, Rustemeier JC, et al. Overweight is associated with improved cancer-specific survival in patients with organ-confined renal cell carcinoma. J Cancer Res Clin Oncol 2009; 135(12): 1693-9.
[http://dx.doi.org/10.1007/s00432-009-0616-2] [PMID: 19543914]
[2]
Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J Clin 2017; 67(6): 507-24.
[http://dx.doi.org/10.3322/caac.21411] [PMID: 28961310]
[3]
Grange C, Collino F, Tapparo M, Camussi G. Oncogenic micro-RNAs and renal cell carcinoma. Front Oncol 2014; 4: 49.
[http://dx.doi.org/10.3389/fonc.2014.00049] [PMID: 24672771]
[4]
Singh D. Current updates and future perspectives on the management of renal cell carcinoma. Life Sci 2021; 264: 118632.
[http://dx.doi.org/10.1016/j.lfs.2020.118632] [PMID: 33115605]
[5]
Tetsu O, McCormick F. ETS‐targeted therapy: An it substitute for MEK inhibitors? Clin Transl Med 2017; 6(1): 16.
[http://dx.doi.org/10.1186/s40169-017-0147-4] [PMID: 28474232]
[6]
Klatte T, Rossi SH, Stewart GD. Prognostic factors and prognostic models for renal cell carcinoma: A literature review. World J Urol 2018; 36(12): 1943-52.
[http://dx.doi.org/10.1007/s00345-018-2309-4] [PMID: 29713755]
[7]
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17(4): 245-61.
[http://dx.doi.org/10.1038/s41581-020-00359-2] [PMID: 33144689]
[8]
Hashiya N, Jo N, Aoki M, et al. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation 2004; 109(24): 3035-41.
[http://dx.doi.org/10.1161/01.CIR.0000130643.41587.DB] [PMID: 15173033]
[9]
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription factors in cancer development and therapy. Cancers 2020; 12(8): 2296.
[http://dx.doi.org/10.3390/cancers12082296] [PMID: 32824207]
[10]
Yang X, Zhang Y, Fan H. Downregulation of SBF2-AS1 functions as a tumor suppressor in clear cell renal cell carcinoma by inhibiting miR-338-3p-targeted ETS1. Cancer Gene Ther 2021; 28(7-8): 813-27.
[http://dx.doi.org/10.1038/s41417-020-0197-4] [PMID: 32719443]
[11]
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17(6): 337-51.
[http://dx.doi.org/10.1038/nrc.2017.20] [PMID: 28450705]
[12]
Wasylyk B, Wasylyk C, Flores P, Begue A, Leprince D, Stehelin D. The c-ets proto-oncogenes encode transcription factors that cooperate with c-Fos and c-Jun for transcriptional activation. Nature 1990; 346(6280): 191-3.
[http://dx.doi.org/10.1038/346191a0] [PMID: 2114554]
[13]
Watabe T, Yoshida K, Shindoh M, et al. The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int J Cancer 1998; 77(1): 128-37.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980703)77:1<128::AID-IJC20>3.0.CO;2-9] [PMID: 9639404]
[14]
Westermarck J, Seth A, Kähäri VM. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene 1997; 14(22): 2651-60.
[http://dx.doi.org/10.1038/sj.onc.1201111] [PMID: 9178763]
[15]
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 2020; 19(3): 1997-2007.
[http://dx.doi.org/10.3892/etm.2020.8454] [PMID: 32104259]
[16]
Sheng K, Wu Y, Lin H, et al. Transcriptional regulation of siglec-15 by ETS-1 and ETS-2 in hepatocellular carcinoma cells. Int J Mol Sci 2023; 24(1): 792.
[http://dx.doi.org/10.3390/ijms24010792] [PMID: 36614238]
[17]
Wen T, Barham W, Li Y, et al. NKG7 Is a T-cell–Intrinsic therapeutic target for improving antitumor cytotoxicity and cancer immunotherapy. Cancer Immunol Res 2022; 10(2): 162-81.
[http://dx.doi.org/10.1158/2326-6066.CIR-21-0539] [PMID: 34911739]
[18]
Sanyal S, Amin SA, Adhikari N, Jha T. Ligand-based design of anticancer MMP2 inhibitors: A review. Future Med Chem 2021; 13(22): 1987-2013.
[http://dx.doi.org/10.4155/fmc-2021-0262] [PMID: 34634916]
[19]
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 2020; 21(24): 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[20]
Zhang Q, Han Q, Yang Z, et al. G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS-MAPK axis pathway. Int J Oncol 2020; 57(1): 197-212.
[http://dx.doi.org/10.3892/ijo.2020.5041] [PMID: 32319593]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy