Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanomedicines: Impactful Approaches for Targeting Pulmonary Diseases

Author(s): Shivang Dhoundiyal, Md Aftab Alam*, Awaneet Kaur and Shaweta Sharma

Volume 12, Issue 1, 2024

Published on: 07 July, 2023

Page: [14 - 31] Pages: 18

DOI: 10.2174/2211738511666230525151106

Price: $65

Open Access Journals Promotions 2
Abstract

In both developing and developed nations, pulmonary diseases are the major cause of mortality and disability. There has been a worldwide increase in the incidence of both acute and chronic respiratory illnesses, which poses a serious problem for the healthcare system. Lung cancer seems to be just one form of a parenchymal lung disorder, but there are many others, including chronic obstructive pulmonary disease (COPD), asthma, occupational lung diseases (asbestosis, pneumoconiosis), etc. Notably, chronic respiratory disorders cannot be cured, and acute abnormalities are notoriously difficult to treat. As a result, it is possible that therapeutic objectives could be achieved using nanotechnology in the form of either improved pharmacological efficacy or reduced toxicity. In addition, the incorporation of various nanostructures permits the enhancement of medication bioavailability, transport, and administration. Medicines and diagnostics based on nanotechnology have progressed significantly toward clinical application for the treatment of lung cancers. In recent years, scientists have shifted their focus towards exploring the potential of nanostructures in the treatment of other relevant respiratory illnesses. Micelles and polymeric nanoparticles are the two most studied nanostructures in a wide range of diseases. This study concludes with a summary of recent and pertinent research in drug delivery systems for the treatment of various pulmonary disorders, as well as trends, limitations, significance, and treatment and diagnostics employing nanotechnology, as well as future studies in this domain.

Keywords: Pulmonary diseases, nanomaterials, nanotechnology, nanomedicine, nanotheranostics, drug delivery.

Graphical Abstract
[1]
Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[2]
World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases: A comprehensive approach. 2007. Available From: https://digitallibrary.un.org/record/620500?ln=en
[3]
van Rijt SH, Bein T, Meiners S. Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 2014; 44(3): 765-4.
[http://dx.doi.org/10.1183/09031936.00212813]
[4]
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: Current therapies and new targeted treatments. Lancet 2017; 389(10066): 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[5]
Sidhaye VK, Nishida K, Martinez FJ. Precision medicine in COPD: Where are we and where do we need to go? Eur Respir Rev 2018; 27(149): 180022.
[http://dx.doi.org/10.1183/16000617.0022-2018] [PMID: 30068688]
[6]
Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003; 56(6): 588-99.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01892.x] [PMID: 14616418]
[7]
Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol 2007; 25(12): 563-70.
[http://dx.doi.org/10.1016/j.tibtech.2007.09.005] [PMID: 17997181]
[8]
Yan L, Yang Y, Zhang W, Chen X. Advanced materials and nanotechnology for drug delivery. Adv Mater 2014; 26(31): 5533-40.
[http://dx.doi.org/10.1002/adma.201305683] [PMID: 24449177]
[9]
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(4): e1625.
[http://dx.doi.org/10.1002/wnan.1625] [PMID: 32196991]
[10]
Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015; 219: 500-18.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[11]
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1): e1586.
[http://dx.doi.org/10.1002/wnan.1586] [PMID: 31602823]
[12]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[13]
Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharm 1993; 94(1-3): 115-23.
[http://dx.doi.org/10.1016/0378-5173(93)90015-8]
[14]
Muller M, Vehlow D, Torger B, Urban B, Woltmann B, Hempel U. Adhesive drug delivery systems based on Polyelectrolyte Complex Nanoparticles (PEC NP) for bone healing. Curr Pharm Des 2018; 24(13): 1341-8.
[http://dx.doi.org/10.2174/1381612824666171213095523] [PMID: 29237375]
[15]
Thorley AJ, Tetley TD. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2007; 2(4): 409-28.
[PMID: 18268916]
[16]
Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011; 254(2): 72-85.
[http://dx.doi.org/10.1016/j.taap.2009.10.022] [PMID: 21296096]
[17]
Van Eeden SF, Sin DD. Oxidative stress in chronic obstructive pulmonary disease: A lung and systemic process. Can Respir J 2013; 20(1): 27-9.
[http://dx.doi.org/10.1155/2013/509130] [PMID: 23457671]
[18]
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: Implications for chronic airway diseases. Int J Nanomedicine 2020; 15: 3803-26.
[http://dx.doi.org/10.2147/IJN.S242516] [PMID: 32547029]
[19]
Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007; 6(1): 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[20]
Brain JD. Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diabetes Technol Ther 2007; 9(s1) (Suppl. 1): S-4-S-15.
[http://dx.doi.org/10.1089/dia.2007.0228] [PMID: 17563302]
[21]
Edwards DA, Dunbar C. Bioengineering of therapeutic aerosols. Annu Rev Biomed Eng 2002; 4(1): 93-107.
[http://dx.doi.org/10.1146/annurev.bioeng.4.100101.132311] [PMID: 12117752]
[22]
Musante CJ, Schroeter JD, Rosati JA, Crowder TM, Hickey AJ, Martonen TB. Factors affecting the deposition of inhaled porous drug particles. J Pharm Sci 2002; 91(7): 1590-600.
[http://dx.doi.org/10.1002/jps.10152] [PMID: 12115821]
[23]
Wadhwa R, Aggarwal T, Thapliyal N, et al. Nanotechnology in modern animal biotechnologyConcepts and Applications. Philadelphia, USA: Elsevier 2019; p. 59.
[24]
Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 2005; 26(29): 5898-906.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.038] [PMID: 15949555]
[25]
He Y, Liang Y, Han R, Lu WL, Mak JCW, Zheng Y. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release 2019; 314: 48-61.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.035] [PMID: 31644935]
[26]
Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue Barriers 2013; 1(4): e24997.
[http://dx.doi.org/10.4161/tisb.24997] [PMID: 24665407]
[27]
Georas SN, Rezaee F. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol 2014; 134(3): 509-20.
[http://dx.doi.org/10.1016/j.jaci.2014.05.049] [PMID: 25085341]
[28]
Munkholm M, Mortensen J. Mucociliary clearance: Pathophysiological aspects. Clin Physiol Funct Imaging 2014; 34(3): 171-7.
[http://dx.doi.org/10.1111/cpf.12085] [PMID: 24119105]
[29]
Patton JS, Brain JD, Davies LA, et al. The particle has landed--characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv 2010; 23(S2) (Suppl. 2): S-71-87.
[http://dx.doi.org/10.1089/jamp.2010.0836] [PMID: 21133802]
[30]
Patel B, Gupta N, Ahsan F. Barriers that inhaled particles encounter. Textbook of Aerosol Medicine. Werne, North Rhine-Westphalia, Germany.: online publication 2015; p. 707-27.
[31]
Newman SP. Drug delivery to the lungs: Challenges and opportunities. Ther Deliv 2017; 8(8): 647-61.
[http://dx.doi.org/10.4155/tde-2017-0037] [PMID: 28730933]
[32]
Cipolla D. Will pulmonary drug delivery for systemic application ever fulfill its rich promise? Expert Opin Drug Deliv 2016; 13(10): 1337-40.
[http://dx.doi.org/10.1080/17425247.2016.1218466] [PMID: 27464271]
[33]
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics based in mesoporous silica nanoparticles: New formulations for bacterial infection treatment. Pharmaceutics 2021; 13(12): 2033.
[http://dx.doi.org/10.3390/pharmaceutics13122033] [PMID: 34959315]
[34]
Yang W, Peters JI, Williams RO III. Inhaled nanoparticles—A current review. Int J Pharm 2008; 356(1-2): 239-47.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011] [PMID: 18358652]
[35]
Todoroff J, Vanbever R. Fate of nanomedicines in the lungs. Curr Opin Colloid Interface Sci 2011; 16(3): 246-54.
[http://dx.doi.org/10.1016/j.cocis.2011.03.001]
[36]
Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech 2014; 15(4): 882-97.
[http://dx.doi.org/10.1208/s12249-014-0114-y] [PMID: 24728868]
[37]
Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 2011; 63(14-15): 1247-56.
[http://dx.doi.org/10.1016/j.addr.2011.05.004] [PMID: 21605607]
[38]
Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(2): 219-33.
[http://dx.doi.org/10.1002/wnan.1157] [PMID: 22231928]
[39]
Moku G, Gopalsamuthiram VR, Hoye TR, Panyam J. Surface modification of nanoparticles: Methods and applicationsSurface Modification of Polymers: Methods and Applications. The Wiley Network 2019; pp. 317-46.
[http://dx.doi.org/10.1002/9783527819249.ch11]
[40]
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012; 7(12): 779-86.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[41]
Wang L, Rao Y, Liu X, et al. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung. J Nanobiotechnology 2021; 19(1): 56.
[http://dx.doi.org/10.1186/s12951-021-00803-w] [PMID: 33632244]
[42]
Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat 2020; 30(5): 375-87.
[http://dx.doi.org/10.1080/13543776.2020.1741547] [PMID: 32178542]
[43]
Jin X, Song L, Ma CC, Zhang YC, Yu S. RETRACTED: Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28(12): 1655-65.
[http://dx.doi.org/10.1016/j.jsps.2020.10.012] [PMID: 33424258]
[44]
Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother 2019; 112: 108601.
[http://dx.doi.org/10.1016/j.biopha.2019.108601] [PMID: 30780107]
[45]
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm Dev Technol 2021; 26(8): 824-45.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[46]
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: From generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 2013; 1(5): 402-13.
[http://dx.doi.org/10.1016/S2213-2600(13)70072-9] [PMID: 24429205]
[47]
Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J Nanosci Nanotechnol 2004; 4(5): 521-31.
[http://dx.doi.org/10.1166/jnn.2004.081] [PMID: 15503438]
[48]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[49]
Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156(4): 1363-80.
[http://dx.doi.org/10.1016/S0002-9440(10)65006-7] [PMID: 10751361]
[50]
Fasol U, Frost A, Büchert M, et al. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann Oncol 2012; 23(4): 1030-6.
[http://dx.doi.org/10.1093/annonc/mdr300] [PMID: 21693769]
[51]
Hirota K, Hasegawa T, Hinata H, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release 2007; 119(1): 69-76.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.013] [PMID: 17335927]
[52]
Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor targeting via integrin ligands. Front Oncol 2013; 3: 222.
[http://dx.doi.org/10.3389/fonc.2013.00222] [PMID: 24010121]
[53]
Kluza E, van der Schaft DWJ, Hautvast PAI, et al. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett 2010; 10(1): 52-8.
[http://dx.doi.org/10.1021/nl902659g] [PMID: 19968235]
[54]
Chen K, Xie J, Xu H, et al. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials 2009; 30(36): 6912-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.045] [PMID: 19773081]
[55]
Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics. Ther Deliv 2013; 4(3): 369-94.
[http://dx.doi.org/10.4155/tde.13.6] [PMID: 23442082]
[56]
Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41(2): 147-62.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[57]
Wiewrodt R, Thomas AP, Cipelletti L, et al. Size-dependent intracellular immunotargeting of therapeutic cargoes into endothelial cells. Blood 2002; 99(3): 912-22.
[http://dx.doi.org/10.1182/blood.V99.3.912] [PMID: 11806994]
[58]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[59]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[60]
de Menezes BRC, Rodrigues KF, Schatkoski VM, et al. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B Mater Biol Med 2021; 9(7): 1745-61.
[http://dx.doi.org/10.1039/D0TB01783C] [PMID: 33508058]
[61]
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, et al. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70: 103219.
[http://dx.doi.org/10.1016/j.jddst.2022.103219] [PMID: 35280919]
[62]
Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 2013; 65(13-14): 1816-27.
[http://dx.doi.org/10.1016/j.addr.2013.07.020] [PMID: 23932923]
[63]
Morales JO, Fathe KR, Brunaugh A, et al. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. AAPS J 2017; 19(3): 652-68.
[http://dx.doi.org/10.1208/s12248-017-0054-z] [PMID: 28194704]
[64]
Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol 2001; 51(4): 289-99.
[http://dx.doi.org/10.1046/j.1365-2125.2001.01304.x] [PMID: 11318763]
[65]
Borghardt JM, Kloft C, Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can Respir J 2018; 2018: 11.
[http://dx.doi.org/10.1155/2018/2732017]
[66]
Kreyling WG, Hirn S, Schleh C. Nanoparticles in the lung. Nat Biotechnol 2010; 28(12): 1275-6.
[http://dx.doi.org/10.1038/nbt.1735] [PMID: 21139613]
[67]
Choi HS, Ashitate Y, Lee JH, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010; 28(12): 1300-3.
[http://dx.doi.org/10.1038/nbt.1696] [PMID: 21057497]
[68]
Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano 2019; 13(5): 5785-98.
[http://dx.doi.org/10.1021/acsnano.9b01383] [PMID: 30990673]
[69]
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332-48.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[70]
Gustavsson L, Bosquillon C, Gumbleton M, et al. Drug transporters in the lung: Expression and potential impact on pulmonary drug disposition.Semantic scholar. 2016.
[http://dx.doi.org/10.1039/9781782623793-00184]
[71]
Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010; 385(1-2): 113-42.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[72]
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13): 3657-66.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[73]
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[74]
Yunus Basha R. T S SK, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym 2019; 218: 53-62.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.056] [PMID: 31221343]
[75]
Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Technol 2020; 60: 102013.
[http://dx.doi.org/10.1016/j.jddst.2020.102013]
[76]
Abdel-Aziz MM, Elella MHA, Mohamed RR. Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 2020; 142: 244-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.096] [PMID: 31690471]
[77]
Chen Y, Chen C, Zhang X, et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm Sin B 2020; 10(6): 1106-21.
[http://dx.doi.org/10.1016/j.apsb.2019.10.011] [PMID: 32642416]
[78]
Wang X, Parvathaneni V, Shukla SK, et al. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol 2020; 164: 638-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.124] [PMID: 32693132]
[79]
Buhecha MD, Lansley AB, Somavarapu S, Pannala AS. Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug. J Drug Deliv Sci Technol 2019; 53: 101128.
[http://dx.doi.org/10.1016/j.jddst.2019.101128]
[80]
Lin LCW, Huang CY, Yao BY, et al. Viromimetic STING agonist‐loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Adv Funct Mater 2019; 29(28): 1807616.
[http://dx.doi.org/10.1002/adfm.201807616] [PMID: 32313544]
[81]
Nan Y. Lung carcinoma therapy using epidermal growth factor receptor targeted lipid polymeric nanoparticles co loaded with cisplatin and doxorubicin. Oncol Rep 2019; 42(5): 2087-96.
[http://dx.doi.org/10.3892/or.2019.7323] [PMID: 31545462]
[82]
Jo MJ, Lee YJ, Park CW, et al. Evaluation of the physicochemical properties, pharmacokinetics, and in vitro anticancer effects of docetaxel and osthol encapsulated in methoxy poly (ethylene glycol)-b-poly (caprolactone) polymeric micelles. Int J Mol Sci 2020; 22(1): 231.
[http://dx.doi.org/10.3390/ijms22010231] [PMID: 33379376]
[83]
Jo MJ, Jo YH, Lee YJ, et al. Physicochemical, pharmacokinetic, and toxicity evaluation of methoxy poly (ethylene glycol)-b-poly (d, l-Lactide) polymeric micelles encapsulating alpinumisoflavone extracted from unripe Cudrania tricuspidata fruit. Pharmaceutics 2019; 11(8): 366.
[http://dx.doi.org/10.3390/pharmaceutics11080366] [PMID: 31374844]
[84]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010; 6(6): 714-29.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[85]
Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym 2011; 71(3): 227-34.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.009]
[86]
Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int J Biol Macromol 2018; 118(Pt B): 1627-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.008] [PMID: 29981824]
[87]
Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur J Pharm Biopharm 2019; 136: 250-8.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.022] [PMID: 30685506]
[88]
Grotz E, Tateosian NL, Salgueiro J, et al. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J Drug Deliv Sci Technol 2019; 53: 101170.
[http://dx.doi.org/10.1016/j.jddst.2019.101170]
[89]
Pellosi DS, d’Angelo I, Maiolino S, et al. In vitro/in vivo investigation on the potential of Pluronic® mixed micelles for pulmonary drug delivery. Eur J Pharm Biopharm 2018; 130: 30-8.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.006] [PMID: 29890256]
[90]
He W, Xiao W, Zhang X, et al. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int J Nanomedicine 2020; 15: 779-93.
[http://dx.doi.org/10.2147/IJN.S229576] [PMID: 32099365]
[91]
Rezazadeh M, Davatsaz Z, Emami J, Hasanzadeh F, Jahanian-Najafabadi A. Preparation and characterization of spray-dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer. J Pharm Pharm Sci 2018; 21(1s): 200s-14s.
[http://dx.doi.org/10.18433/jpps30048] [PMID: 30321135]
[92]
Praphakar RA, Munusamy MA, Rajan M. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery. Int J Pharm 2017; 524(1-2): 168-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.089] [PMID: 28377319]
[93]
Kim G, Piao C, Oh J, Lee M. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale 2018; 10(18): 8503-14.
[http://dx.doi.org/10.1039/C8NR00427G] [PMID: 29693671]
[94]
Ferreira DS, Lopes SCA, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Ther Deliv 2013; 4(9): 1099-123.
[http://dx.doi.org/10.4155/tde.13.80] [PMID: 24024511]
[95]
Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine 2011; 6(8): 1413-28.
[http://dx.doi.org/10.2217/nnm.11.122] [PMID: 22026379]
[96]
De Leo V, Ruscigno S, Trapani A, et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int J Pharm 2018; 545(1-2): 378-88.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.030] [PMID: 29678545]
[97]
Park YI, Kwon SH, Lee G, et al. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. J Control Release 2021; 330: 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.011] [PMID: 33321157]
[98]
Tai TT, Wu TJ, Wu HD, et al. A strategy to treat COVID‐19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study. Clin Transl Sci 2021; 14(1): 132-6.
[http://dx.doi.org/10.1111/cts.12923] [PMID: 33135382]
[99]
Serrano G, Kochergina I, Gutiérrez R, et al. Liposomal Lactoferrin and Liposomal Lactoferrin plus Zinc Induces Antiinflammatory and Immunomodulatory Effects by Activation of IFNγ. Int J Res Health Sci 2020; 8(4): 25-31.
[http://dx.doi.org/10.5530/ijrhs.8.4.1]
[100]
Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B 2018; 8(3): 440-8.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[101]
Parvathaneni V, Kulkarni NS, Shukla SK, et al. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment. Pharmaceutics 2020; 12(3): 206.
[http://dx.doi.org/10.3390/pharmaceutics12030206] [PMID: 32121070]
[102]
Pooladanda V, Thatikonda S, Sunnapu O, et al. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. Nanomedicine 2021; 33: 102351.
[http://dx.doi.org/10.1016/j.nano.2020.102351] [PMID: 33418136]
[103]
Griffith DE, Eagle G, Thomson R, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med 2018; 198(12): 1559-69.
[http://dx.doi.org/10.1164/rccm.201807-1318OC] [PMID: 30216086]
[104]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[105]
Kandeel M, Al-Taher A, Park BK, Kwon HJ, Al-Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol 2020; 92(9): 1665-70.
[http://dx.doi.org/10.1002/jmv.25928] [PMID: 32330296]
[106]
Bohr A, Tsapis N, Foged C, Andreana I, Yang M, Fattal E. Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model. Eur J Pharm Biopharm 2020; 156: 114-20.
[http://dx.doi.org/10.1016/j.ejpb.2020.08.009] [PMID: 32798665]
[107]
Paull JR, Heery GP, Bobardt MD, et al. Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro. Antiviral Res 2021; 191: 105089.
[108]
Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 2016; 13(7): 2363-75.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126] [PMID: 27253493]
[109]
Amreddy N, Babu A, Panneerselvam J, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 2018; 14(2): 373-84.
[http://dx.doi.org/10.1016/j.nano.2017.11.010] [PMID: 29155362]
[110]
Restani RB, Pires RF, Baptista PV, et al. Nano‐in‐Micro sildenafil dry powder formulations for the treatment of pulmonary arterial hypertension disorders: The synergic effect of POxylated polyurea dendrimers, PLGA, and cholesterol. Part Part Syst Charact 2020; 37(6): 1900447.
[http://dx.doi.org/10.1002/ppsc.201900447]
[111]
Bohr A, Tsapis N, Andreana I, et al. Anti-inflammatory effect of anti-TNF-α sirna cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 2017; 18(8): 2379-88.
[http://dx.doi.org/10.1021/acs.biomac.7b00572] [PMID: 28639789]
[112]
Arora V, Abourehab MAS, Modi G, Kesharwani P. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer. Eur Polym J 2022; 180: 111635.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111635]
[113]
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25(1): 150-9.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[114]
Colson YL, Grinstaff MW. Biologically responsive polymeric nanoparticles for drug delivery. Adv Mater 2012; 24(28): 3878-86.
[http://dx.doi.org/10.1002/adma.201200420] [PMID: 22988558]
[115]
Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: Perspectives and challenges for use in lung diseases. Drug Deliv Transl Res 2013; 3(4): 352-63.
[http://dx.doi.org/10.1007/s13346-013-0132-4] [PMID: 23936754]
[116]
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. Am J Respir Cell Mol Biol 2021; 64(3): 292-307.
[http://dx.doi.org/10.1165/rcmb.2020-0306TR] [PMID: 33095997]
[117]
Yaghi A, Dolovich M. Airway epithelial cell cilia and obstructive lung disease. Cells 2016; 5(4): 40.
[http://dx.doi.org/10.3390/cells5040040] [PMID: 27845721]
[118]
Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am J Respir Cell Mol Biol 2018; 58(2): 157-69.
[http://dx.doi.org/10.1165/rcmb.2017-0200TR] [PMID: 28933915]
[119]
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and regenerating the lung cell by cell. Physiol Rev 2019; 99(1): 513-54.
[http://dx.doi.org/10.1152/physrev.00001.2018] [PMID: 30427276]
[120]
Huertas A, Guignabert C, Barberà JA, et al. Pulmonary vascular endothelium: The orchestra conductor in respiratory diseases. Eur Respir J 2018; 51(4): 1700745.
[http://dx.doi.org/10.1183/13993003.00745-2017] [PMID: 29545281]
[121]
Yun EJ, Lorizio W, Seedorf G, Abman SH, Vu TH. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol 2016; 310(4): L287-98.
[http://dx.doi.org/10.1152/ajplung.00229.2015] [PMID: 26566904]
[122]
Jandl K, Marsh LM, Hoffmann J, et al. Basement membrane remodeling controls endothelial function in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2020; 63(1): 104-17.
[http://dx.doi.org/10.1165/rcmb.2019-0303OC] [PMID: 32160015]
[123]
Kan S, Hariyadi DM, Grainge C, Knight DA, Bartlett NW, Liang M. Airway epithelial-targeted nanoparticles for asthma therapy. Am J Physiol Lung Cell Mol Physiol 2020; 318(3): L500-9.
[http://dx.doi.org/10.1152/ajplung.00237.2019] [PMID: 31913649]
[124]
Brenner JS, Greineder C, Shuvaev V, Muzykantov V. Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opin Drug Deliv 2015; 12(2): 239-61.
[http://dx.doi.org/10.1517/17425247.2015.961418] [PMID: 25394760]
[125]
Da Silva-Candal A, Brown T, Krishnan V, et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J Control Release 2019; 309: 94-105.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.026] [PMID: 31330214]
[126]
Soriano JB, Abajobir AA, Abate KH, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 2017; 5(9): 691-706.
[http://dx.doi.org/10.1016/S2213-2600(17)30293-X] [PMID: 28822787]
[127]
Yhee J, Im J, Nho R. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 2016; 5(9): 82.
[http://dx.doi.org/10.3390/jcm5090082] [PMID: 27657144]
[128]
Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 2009; 11(1): 77-89.
[http://dx.doi.org/10.1007/s11051-008-9446-4]
[129]
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11): 1052-63.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[130]
Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 2002; 19(2): 189-94.
[http://dx.doi.org/10.1023/A:1014276917363] [PMID: 11883646]
[131]
Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater 2015; 2015: 1-13.
[http://dx.doi.org/10.1155/2015/216375]
[132]
Mehta P. Dry powder inhalers: A focus on advancements in novel drug delivery systems. J Drug Deliv 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/8290963] [PMID: 27867663]
[133]
Craparo E, Ferraro M, Pace E, Bondì M, Giammona G, Cavallaro G. Polyaspartamide-based nanoparticles loaded with fluticasone propionate and the in vitro evaluation towards cigarette smoke effects. Nanomaterials 2017; 7(8): 222.
[http://dx.doi.org/10.3390/nano7080222] [PMID: 28805713]
[134]
Givens BE, Geary SM, Salem AK. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy 2018; 10(7): 595-604.
[http://dx.doi.org/10.2217/imt-2017-0142] [PMID: 29569508]
[135]
Davis SS. Biomédical applications of nanotechnology — implications for drug targeting and gene therapy. Trends Biotechnol 1997; 15(6): 217-24.
[http://dx.doi.org/10.1016/S0167-7799(97)01036-6] [PMID: 9183864]
[136]
Vij N. Nano-based theranostics for chronic obstructive lung diseases: Challenges and therapeutic potential. Expert Opin Drug Deliv 2011; 8(9): 1105-9.
[http://dx.doi.org/10.1517/17425247.2011.597381] [PMID: 21711085]
[137]
Gong MN, Thompson BT. Acute respiratory distress syndrome. Curr Opin Crit Care 2016; 22(1): 21-37.
[http://dx.doi.org/10.1097/MCC.0000000000000275] [PMID: 26645554]
[138]
Matthay MA, Zemans RL. The acute respiratory distress syndrome: Pathogenesis and treatment. Annu Rev Pathol 2011; 6(1): 147-63.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130158] [PMID: 20936936]
[139]
Downs C. Ion transport and lung fluid balanceInLung epithelial biology in the pathogenesis of pulmonary disease. Amsterdam, Netherlands: Elsevier 2017; pp. 21-31.
[http://dx.doi.org/10.1016/B978-0-12-803809-3.00002-6]
[140]
Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med 2007; 33(7): 1243-51.
[http://dx.doi.org/10.1007/s00134-007-0661-8] [PMID: 17530222]
[141]
Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: A prospective cohort study of clinical autopsies. Lancet Respir Med 2013; 1(5): 395-401.
[http://dx.doi.org/10.1016/S2213-2600(13)70053-5] [PMID: 24429204]
[142]
Gonzales JN, Lucas R, Verin AD. The acute respiratory distress syndrome: Mechanisms and perspective therapeutic approaches. Austin J Vasc Med 2015; 2(1): 1009.
[143]
Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim Biophys Acta Mol Basis Dis 2013; 1832(7): 1088-103.
[http://dx.doi.org/10.1016/j.bbadis.2012.12.007]
[144]
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in pulmonary immune responses and inflammatory lung diseases. Physiol Rev 2016; 96(4): 1211-59.
[http://dx.doi.org/10.1152/physrev.00038.2015] [PMID: 27489307]
[145]
Rocco PR, Dos Santos C, Pelosi P. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiol 2009; 75(12): 730-40.
[PMID: 19940826]
[146]
Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189(11): 1301-8.
[http://dx.doi.org/10.1164/rccm.201403-0535OE] [PMID: 24881936]
[147]
Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11(8): 519-31.
[http://dx.doi.org/10.1038/nri3024] [PMID: 21785456]
[148]
Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133(2): 235-49.
[http://dx.doi.org/10.1016/j.cell.2008.02.043] [PMID: 18423196]
[149]
Huppert L, Matthay M, Ware L. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med 2019; 40(1): 31-9.
[http://dx.doi.org/10.1055/s-0039-1683996]
[150]
Doll TAPF, Dey R, Burkhard P. Design and optimization of peptide nanoparticles. J Nanobiotechnology 2015; 13(1): 73.
[http://dx.doi.org/10.1186/s12951-015-0119-z] [PMID: 26498651]
[151]
Tarvirdipour S, Schoenenberger CA, Benenson Y, Palivan CG. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. Soft Matter 2020; 16(6): 1678-91.
[http://dx.doi.org/10.1039/C9SM01990A] [PMID: 31967171]
[152]
Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. Eur J Pharmacol 2006; 533(1-3): 341-50.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.068] [PMID: 16434033]
[153]
Sadikot RT, Rubinstein I. Long-acting, multi-targeted nanomedicine: Addressing unmet medical need in acute lung injury. J Biomed Nanotechnol 2009; 5(6): 614-9.
[http://dx.doi.org/10.1166/jbn.2009.1078] [PMID: 20201223]
[154]
Mansour H. Haemosu, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009; 4: 299-319.
[http://dx.doi.org/10.2147/IJN.S4937] [PMID: 20054434]
[155]
Sadikot RT. Peptide nanomedicines for treatment of acute lung injury. Methods Enzymol 2012; 508: 315-24.
[http://dx.doi.org/10.1016/B978-0-12-391860-4.00016-1] [PMID: 22449933]
[156]
Sadikot RT, Kolanjiyil AV, Kleinstreuer C, Rubinstein I. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub 2017; 2(2): 1-12.
[http://dx.doi.org/10.1159/000477086] [PMID: 31988911]
[157]
Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm 2009; 369(1-2): 136-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.016] [PMID: 19015016]
[158]
Spence S, Greene MK, Fay F, et al. Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Sci Transl Med 2015; 7(303): 303ra140.
[http://dx.doi.org/10.1126/scitranslmed.aab3459] [PMID: 26333936]
[159]
Zhang CY, Lin W, Gao J, et al. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl Mater Interfaces 2019; 11(18): 16380-90.
[http://dx.doi.org/10.1021/acsami.9b04051] [PMID: 30973702]
[160]
Sadikot RT, Lim S, Wang X, Christman JW, Onyuksel H, Rubinstein I. Salutary effects of nanomicellar GLP-1 administered after onset of LPS-induced acute lung inflammation in mice. Am J Respir Crit Care Med 2019; 179: A5646.
[161]
Zhang M, Ye L, Huang H, et al. Micelles self-assembled by 3-O-β-d-glucopyranosyl latycodigenin enhance cell membrane permeability, promote antibiotic pulmonary targeting and improve anti-infective efficacy. J Nanobiotechnology 2020; 18(1): 140.
[http://dx.doi.org/10.1186/s12951-020-00699-y] [PMID: 33008413]
[162]
Mitsopoulos P, Omri A, Alipour M, Vermeulen N, Smith MG, Suntres ZE. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. Int J Pharm 2008; 363(1-2): 106-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.015] [PMID: 18694812]
[163]
Gao W, Wang Y, Xiong Y, et al. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater 2019; 85: 203-17.
[http://dx.doi.org/10.1016/j.actbio.2018.12.046] [PMID: 30597258]
[164]
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2021.
[PMID: 34401226]
[165]
Kaviratna AS, Banerjee R. Nanovesicle aerosols as surfactant therapy in lung injury. Nanomedicine 2012; 8(5): 665-72.
[http://dx.doi.org/10.1016/j.nano.2011.08.004] [PMID: 21889480]
[166]
D’Almeida APL, Pacheco de Oliveira MT, de Souza ET, et al. α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. Int J Nanomedicine 2017; 12(5): 4479-91.
[167]
Jiang S, Li S, Hu J, et al. Combined delivery of angiopoietin-1 gene and simvastatin mediated by anti-intercellular adhesion molecule-1 antibody-conjugated ternary nanoparticles for acute lung injury therapy. Nanomedicine 2019; 15(1): 25-36.
[http://dx.doi.org/10.1016/j.nano.2018.08.009] [PMID: 30193816]
[168]
Desai N. Nanoparticle Albumin-Bound Paclitaxel (Abraxane®)Albumin in Medicine. Singapore: Springer 2016.
[169]
Chen HW, Medley CD, Sefah K, et al. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 2008; 3(6): 991-1001.
[http://dx.doi.org/10.1002/cmdc.200800030] [PMID: 18338423]
[170]
Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 2009; 134(9): 1808-14.
[http://dx.doi.org/10.1039/b904476k] [PMID: 19684903]
[171]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[172]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[173]
Wheelock CE, Goss VM, Balgoma D, et al. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur Respir J 2013; 42(3): 802-25.
[http://dx.doi.org/10.1183/09031936.00078812] [PMID: 23397306]
[174]
Aliverti A. Wearable technology: Role in respiratory health and disease. Breathe 2017; 13(2): e27-36.
[http://dx.doi.org/10.1183/20734735.008417] [PMID: 28966692]
[175]
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132: 37-51.
[http://dx.doi.org/10.1016/j.actbio.2021.03.002] [PMID: 33711526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy