Research Article

setd1a介导的H3K4me3甲基化通过调节WTAPP1/WTAP轴抑制非小细胞肺癌铁下沉

卷 31, 期 21, 2024

发表于: 15 August, 2023

页: [3217 - 3231] 页: 15

弟呕挨: 10.2174/0929867330666230525143252

价格: $65

摘要

介绍:SETD1A在非小细胞肺癌(NSCLC)组织中上调。本研究探讨SETD1A/WTAPP1/WTAP轴在NSCLC中的分子机制。 方法:铁死亡是一种独特的细胞死亡模式,由铁依赖性磷脂过氧化作用驱动,受到多种细胞代谢途径的调节,包括氧化还原稳态、铁代谢、线粒体活性以及氨基酸、脂质和糖的代谢。因此,我们在体外测量了铁凋亡标志物(MDA、SOD、GSH)的水平,并评估了NSCLC细胞的行为。分析setd1a介导的H3K4me3甲基化。在裸鼠模型中验证了setd1a对铁下垂和肿瘤生长的影响。 结果:SETD1A在NSCLC细胞中高表达。沉默SETD1A可抑制NSCLC细胞的增殖和迁移,抑制MDA,提高GPX4、SOD和GSH水平。SETD1A通过介导WTAPP1启动子区域的H3K4me3甲基化,通过上调WTAPP1来提高WTAP的表达。WTAPP1过表达部分避免了沉默SETD1A对NSCLC细胞铁凋亡的促进作用。WTAP干扰消除了WTAPP1对NSCLC细胞铁下垂的抑制作用。沉默SETD1A通过WTAPP1/WTAP轴促进裸鼠铁下垂并加速肿瘤生长。 结论:SETD1A通过介导WTAPP1启动子区域的H3K4me3修饰,通过上调WTAPP1来扩增WTAP的表达,从而促进NSCLC细胞的增殖迁移,抑制铁凋亡。

关键词: 非小细胞肺癌,SETD1A, H3K4me3,表观遗传学,WTAPP1, WTAP,铁下垂。

[1]
Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung cancer. Med. Clin. North Am., 2019, 103(3), 463-473.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
VanderLaan, P.A.; Roy-Chowdhuri, S. Current and future trends in non–small cell lung cancer biomarker testing: The American experience. Cancer Cytopathol., 2020, 128(9), 629-636.
[http://dx.doi.org/10.1002/cncy.22313] [PMID: 32885913]
[4]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[5]
Schegoleva, A.A.; Khozyainova, A.A.; Fedorov, A.A.; Gerashchenko, T.S.; Rodionov, E.O.; Topolnitsky, E.B.; Shefer, N.A.; Pankova, O.V.; Durova, A.A.; Zavyalova, M.V.; Perelmuter, V.M.; Denisov, E.V. Prognosis of different types of non-small cell lung cancer progression: Current state and perspectives. Cell. Physiol. Biochem., 2021, 55(S2), 29-48.
[http://dx.doi.org/10.33594/000000340] [PMID: 33687819]
[6]
Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer. JAMA, 2019, 322(8), 764-774.
[http://dx.doi.org/10.1001/jama.2019.11058] [PMID: 31454018]
[7]
Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy, 2021, 17(9), 2054-2081.
[http://dx.doi.org/10.1080/15548627.2020.1810918] [PMID: 32804006]
[8]
Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524, 13-30.
[http://dx.doi.org/10.1016/j.ab.2016.10.021] [PMID: 27789233]
[9]
Fujii, J.; Homma, T.; Osaki, T. Superoxide radicals in the execution of cell death. Antioxidants, 2022, 11(3), 501.
[http://dx.doi.org/10.3390/antiox11030501] [PMID: 35326151]
[10]
Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res., 2016, 26(9), 1021-1032.
[http://dx.doi.org/10.1038/cr.2016.95] [PMID: 27514700]
[11]
Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[12]
Zhang, Y.; Liu, X.; Zeng, L.; Zhao, X.; Chen, Q.; Pan, Y.; Bai, Y.; Shao, C.; Zhang, J. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br. J. Cancer, 2022, 127(10), 1760-1772.
[http://dx.doi.org/10.1038/s41416-022-01956-7] [PMID: 36050447]
[13]
Zou, J.; Wang, L.; Tang, H.; Liu, X.; Peng, F.; Peng, C. Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it. Int. J. Mol. Sci., 2021, 22(24), 13335.
[http://dx.doi.org/10.3390/ijms222413335] [PMID: 34948133]
[14]
Feng, Y.; Xu, J.; Shi, M.; Liu, R.; Zhao, L.; Chen, X.; Li, M.; Zhao, Y.; Chen, J.; Du, W.; Liu, P. COX7A1 enhances the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via regulating mitochondrial metabolism. Cell Death Dis., 2022, 13(11), 988.
[http://dx.doi.org/10.1038/s41419-022-05430-3] [PMID: 36418320]
[15]
Wang, L.; Fu, H.; Song, L.; Wu, Z.; Yu, J.; Guo, Q.; Chen, C.; Yang, X.; Zhang, J.; Wang, Q.; Duan, Y.; Yang, Y. Overcoming AZD9291 resistance and metastasis of NSCLC via ferroptosis and multitarget interference by nanocatalytic sensitizer plus AHP-DRI-12. Small, 2023, 19(4), 2204133.
[http://dx.doi.org/10.1002/smll.202204133] [PMID: 36420659]
[16]
Zhao, X.; Cui, L.; Zhang, Y.; Guo, C.; Deng, L.; Wen, Z.; Lu, Z.; Shi, X.; Xing, H.; Liu, Y.; Zhang, Y. Screening for potential therapeutic agents for non-small cell lung cancer by targeting ferroptosis. Front. Mol. Biosci., 2022, 9, 917602.
[http://dx.doi.org/10.3389/fmolb.2022.917602] [PMID: 36203872]
[17]
Van Den Broeck, A.; Ozenne, P.; Eymin, B.; Gazzeri, S. Lung cancer. Cell Adhes. Migr., 2010, 4(1), 107-113.
[http://dx.doi.org/10.4161/cam.4.1.10885] [PMID: 20139698]
[18]
Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect., 2006, 114(3), A160-A167.
[http://dx.doi.org/10.1289/ehp.114-a160] [PMID: 16507447]
[19]
Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348), eaal2380.
[http://dx.doi.org/10.1126/science.aal2380] [PMID: 28729483]
[20]
Piunti, A.; Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science, 2016, 352(6290), aad9780.
[http://dx.doi.org/10.1126/science.aad9780] [PMID: 27257261]
[21]
Marques, A.C.; Hughes, J.; Graham, B.; Kowalczyk, M.S.; Higgs, D.R.; Ponting, C.P. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol., 2013, 14(11), R131.
[http://dx.doi.org/10.1186/gb-2013-14-11-r131] [PMID: 24289259]
[22]
Batie, M.; Rocha, S. Gene transcription and chromatin regulation in hypoxia. Biochem. Soc. Trans., 2020, 48(3), 1121-1128.
[http://dx.doi.org/10.1042/BST20191106] [PMID: 32369557]
[23]
Shilatifard, A. The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem., 2012, 81(1), 65-95.
[http://dx.doi.org/10.1146/annurev-biochem-051710-134100] [PMID: 22663077]
[24]
Wang, H.; Fan, Z.; Shliaha, P.V.; Miele, M.; Hendrickson, R.C.; Jiang, X.; Helin, K. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature, 2023, 615(7951), 339-348.
[http://dx.doi.org/10.1038/s41586-023-05780-8] [PMID: 36859550]
[25]
Lauberth, S.M.; Nakayama, T.; Wu, X.; Ferris, A.L.; Tang, Z.; Hughes, S.H.; Roeder, R.G. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell, 2013, 152(5), 1021-1036.
[http://dx.doi.org/10.1016/j.cell.2013.01.052] [PMID: 23452851]
[26]
Vermeulen, M.; Eberl, H.C.; Matarese, F.; Marks, H.; Denissov, S.; Butter, F.; Lee, K.K.; Olsen, J.V.; Hyman, A.A.; Stunnenberg, H.G.; Mann, M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell, 2010, 142(6), 967-980.
[http://dx.doi.org/10.1016/j.cell.2010.08.020] [PMID: 20850016]
[27]
Wang, R.; Liu, J.; Li, K.; Yang, G.; Chen, S.; Wu, J.; Xie, X.; Ren, H.; Pang, Y. An SETD1A/Wnt/β-catenin feedback loop promotes NSCLC development. J. Exp. Clin. Cancer Res., 2021, 40(1), 318.
[http://dx.doi.org/10.1186/s13046-021-02119-x] [PMID: 34645486]
[28]
Kang, J.Y.; Park, J.W.; Hwang, Y.; Hahm, J.Y.; Park, J.; Park, K.S.; Seo, S.B. The H3K4 methyltransferase SETD1A is required for proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochem. Biophys. Res. Commun., 2021, 561, 120-127.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.026] [PMID: 34023776]
[29]
Jin, M.L.; Kim, Y.W.; Jin, H.L.; Kang, H.; Lee, E.K.; Stallcup, M.R.; Jeong, K.W. Aberrant expression of SETD1A promotes survival and migration of estrogen receptor α-positive breast cancer cells. Int. J. Cancer, 2018, 143(11), 2871-2883.
[http://dx.doi.org/10.1002/ijc.31853] [PMID: 30191958]
[30]
Hoshii, T.; Cifani, P.; Feng, Z.; Huang, C.H.; Koche, R.; Chen, C.W.; Delaney, C.D.; Lowe, S.W.; Kentsis, A.; Armstrong, S.A. A non-catalytic function of SETD1A regulates cyclin K and the DNA damage response. Cell, 2018, 172(5), 1007-1021.e17.
[http://dx.doi.org/10.1016/j.cell.2018.01.032] [PMID: 29474905]
[31]
Salz, T.; Li, G.; Kaye, F.; Zhou, L.; Qiu, Y.; Huang, S. hSETD1A regulates Wnt target genes and controls tumor growth of colorectal cancer cells. Cancer Res., 2014, 74(3), 775-786.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1400] [PMID: 24247718]
[32]
Wu, J.; Chai, H.; Xu, X.; Yu, J.; Gu, Y. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Mol. Oncol., 2020, 14(6), 1397-1409.
[http://dx.doi.org/10.1002/1878-0261.12689] [PMID: 32291851]
[33]
Wang, L.; Ma, L.; Xu, F.; Zhai, W.; Dong, S.; Yin, L.; Liu, J.; Yu, Z. Role of long non-coding RNA in drug resistance in non-small cell lung cancer. Thorac. Cancer, 2018, 9(7), 761-768.
[http://dx.doi.org/10.1111/1759-7714.12652] [PMID: 29726094]
[34]
Fang, C.; Wang, L.; Gong, C.; Wu, W.; Yao, C.; Zhu, S. Long non-coding RNAs: How to regulate the metastasis of non–small-cell lung cancer. J. Cell. Mol. Med., 2020, 24(6), 3282-3291.
[http://dx.doi.org/10.1111/jcmm.15054] [PMID: 32048814]
[35]
Herrera-Solorio, A.M.; Peralta-Arrieta, I.; Armas López, L.; Hernández-Cigala, N.; Mendoza Milla, C.; Ortiz Quintero, B.; Catalán Cárdenas, R.; Pineda Villegas, P.; Rodríguez Villanueva, E.; Trejo Iriarte, C.G.; Zúñiga, J.; Arrieta, O.; Ávila-Moreno, F. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol. Oncol., 2021, 15(4), 1110-1129.
[http://dx.doi.org/10.1002/1878-0261.12875] [PMID: 33433063]
[36]
Zhang, L.; Jin, C.; Yang, G.; Wang, B.; Hua, P.; Zhang, Y. LncRNA WTAPP1 promotes cancer cell invasion and migration in NSCLC by downregulating lncRNA HAND2-AS1. BMC Pulm. Med., 2020, 20(1), 153.
[http://dx.doi.org/10.1186/s12890-020-01180-0] [PMID: 32473628]
[37]
Weng, L.; Qiu, K.; Gao, W.; Shi, C.; Shu, F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulm. Med., 2020, 20(1), 213.
[http://dx.doi.org/10.1186/s12890-020-01240-5] [PMID: 32787827]
[38]
Cheng, H.; Wang, S.J.; Li, Z.; Ma, Y.; Song, Y.R. ING2-WTAP is a potential therapeutic target in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2022, 605, 31-38.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.041] [PMID: 35306362]
[39]
Li, B.Q.; Huang, S.; Shao, Q.Q.; Sun, J.; Zhou, L.; You, L.; Zhang, T.P.; Liao, Q.; Guo, J.C.; Zhao, Y.P. WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma. Oncol. Lett., 2017, 13(4), 2531-2538.
[http://dx.doi.org/10.3892/ol.2017.5784] [PMID: 28454430]
[40]
Zhang, J.; Tsoi, H.; Li, X.; Wang, H.; Gao, J.; Wang, K.; Go, M.Y.Y.; Ng, S.C.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP–WT1–TBL1 axis. Gut, 2016, 65(9), 1482-1493.
[http://dx.doi.org/10.1136/gutjnl-2014-308614] [PMID: 26071132]
[41]
Deng, J.; Zhang, J.; Ye, Y.; Liu, K.; Zeng, L.; Huang, J.; Pan, L.; Li, M.; Bai, R.; Zhuang, L.; Huang, X.; Wu, G.; Wei, L.; Zheng, Y.; Su, J.; Zhang, S.; Chen, R.; Lin, D.; Zheng, J. N6 -methyladenosine–Mediated upregulation of WTAPP1 promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Res., 2021, 81(20), 5268-5283.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0494] [PMID: 34362795]
[42]
Tong, X.; Su, P.; Yang, H.; Chi, F.; Shen, L.; Feng, X.; Jiang, H.; Zhang, X.; Wang, Z. MicroRNA‑598 inhibits the proliferation and invasion of non‑small cell lung cancer cells by directly targeting ZEB2. Exp. Ther. Med., 2018, 16(6), 5417-5423.
[http://dx.doi.org/10.3892/etm.2018.6825] [PMID: 30542503]
[43]
Tan, Z.; Wang, W.; Peng, J.; Zhou, Z.; Pan, J.; Peng, A.; Cao, H.; Fan, W. Impact of amarogentin on gastric carcinoma cell multiplication, apoptosis and migration via circKIF4A/miR-152-3p. J. Immunol. Res., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/2156204] [PMID: 35747689]
[44]
Sayegh, J.; Cao, J.; Zou, M.R.; Morales, A.; Blair, L.P.; Norcia, M.; Hoyer, D.; Tackett, A.J.; Merkel, J.S.; Yan, Q. Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. J. Biol. Chem., 2013, 288(13), 9408-9417.
[http://dx.doi.org/10.1074/jbc.M112.419861] [PMID: 23408432]
[45]
Hu, A.; Hong, F.; Li, D.; Jin, Y.; Kon, L.; Xu, Z.; He, H.; Xie, Q. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J. Transl. Med., 2021, 19(1), 95.
[http://dx.doi.org/10.1186/s12967-020-02682-5] [PMID: 33653378]
[46]
Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0221] [PMID: 31575553]
[47]
Bajbouj, K.; Al-Ali, A.; Ramakrishnan, R.K.; Saber-Ayad, M.; Hamid, Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int. J. Mol. Sci., 2021, 22(21), 11701.
[http://dx.doi.org/10.3390/ijms222111701] [PMID: 34769131]
[48]
Du, M.; Gong, P.; Zhang, Y.; Liu, Y.; Liu, X.; Zhang, F.; Wang, X. Histone methyltransferase SETD1A participates in lung cancer progression. Thorac. Cancer, 2021, 12(16), 2247-2257.
[http://dx.doi.org/10.1111/1759-7714.14065] [PMID: 34219384]
[49]
Guo, F.; Guo, R.; Zhang, L. Downregulation of lncRNA FOXD2-AS1 confers radiosensitivity to gastric cancer cells via miR-1913/SETD1A axis. Cytogenet. Genome Res., 2022, 162(1-2), 10-27.
[http://dx.doi.org/10.1159/000522653] [PMID: 35354145]
[50]
Ishii, T.; Akiyama, Y.; Shimada, S.; Kabashima, A.; Asano, D.; Watanabe, S.; Ishikawa, Y.; Ueda, H.; Akahoshi, K.; Ogawa, K.; Ono, H.; Kudo, A.; Tanabe, M.; Tanaka, S. Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer. Cancer Sci., 2022.
[PMID: 36271761]
[51]
Matsumura, Y.; Nakaki, R.; Inagaki, T.; Yoshida, A.; Kano, Y.; Kimura, H.; Tanaka, T.; Tsutsumi, S.; Nakao, M.; Doi, T.; Fukami, K.; Osborne, T.F.; Kodama, T.; Aburatani, H.; Sakai, J. H3K4/H3K9me3 Bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell, 2015, 60(4), 584-596.
[http://dx.doi.org/10.1016/j.molcel.2015.10.025] [PMID: 26590716]
[52]
Yang, X; Mei, C; Raza, SHA; Ma, X; Wang, J; Du, J; Zan, L Interactive regulation of DNA demethylase gene TET1 and m(6)A methyltransferase gene METTL3 in myoblast differentiation. Int J Biol Macromol, 2022, 223(Pt A), 916-930.
[53]
Yang, J.; Peng, S.; Zhang, K. ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum. Exp. Toxicol., 2022, 41
[http://dx.doi.org/10.1177/09603271221135064] [PMID: 36366750]
[54]
Shi, X.Y.; Lin, J.J.; Ge, X.J.; Shi, Y. LncRNA WTAPP1 promotes proliferation of laryngeal carcinoma cells through regulating microRNA-592. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9532-9540.
[PMID: 33015795]
[55]
Li, Q.; Wang, C.; Dong, W.; Su, Y.; Ma, Z. WTAP facilitates progression of endometrial cancer via CAV-1/NF-κB axis. Cell Biol. Int., 2021, 45(6), 1269-1277.
[http://dx.doi.org/10.1002/cbin.11570] [PMID: 33559954]
[56]
Ni, L.; Bai, R.; Zhou, Q.; Yuan, C.; Zhou, L.T.; Wu, X. The correlation between ferroptosis and m6A methylation in patients with acute kidney injury. Kidney Blood Press. Res., 2022, 47(8), 523-533.
[http://dx.doi.org/10.1159/000524900] [PMID: 35569444]
[57]
Jin, M.L.; Yang, L.; Jeong, K.W. SETD1A-SOX2 axis is involved in tamoxifen resistance in estrogen receptor α-positive breast cancer cells. Theranostics, 2022, 12(13), 5761-5775.
[http://dx.doi.org/10.7150/thno.72599] [PMID: 35966598]
[58]
Chen, Y.; Peng, C.; Chen, J.; Chen, D.; Yang, B.; He, B.; Hu, W.; Zhang, Y.; Liu, H.; Dai, L.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol. Cancer, 2019, 18(1), 127.
[http://dx.doi.org/10.1186/s12943-019-1053-8] [PMID: 31438961]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy