Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Biological Effects and Mechanisms of Taurine in Various Therapeutics

Author(s): Shikha Sharma*, Biswa Mohan Sahoo and Bimal Krishna Banik

Volume 20, Issue 6, 2023

Published on: 04 August, 2023

Article ID: e250523217306 Pages: 19

DOI: 10.2174/1570163820666230525101353

Price: $65

Open Access Journals Promotions 2
Abstract

More than two hundred years ago, taurine was first isolated from materials derived from animals. It is abundantly found in a wide range of mammalian and non-mammalian tissues and diverse environments. Taurine was discovered to be a by-product of the metabolism of sulfur only a little over a century and a half ago. Recently, there has been a renewed academic interest in researching and exploring various uses of the amino acid taurine, and recent research has indicated that it may be useful in the treatment of a variety of disorders, including seizures, high blood pressure, cardiac infarction, neurodegeneration, and diabetes. Taurine is currently authorised for the therapy of congestive heart failure in Japan, and it has shown promising results in the management of several other illnesses as well. Moreover, it was found to be effective in some clinical trials, and hence it was patented for the same. This review compiles the research data that supports the prospective usage of taurine as an antibacterial, antioxidant, anti-inflammatory, diabetic, retinal protective, and membrane stabilizing agent, amongst other applications

Keywords: Biological effects, mechanisms, taurine, amino acid, therapeutics, antioxidant.

Graphical Abstract
[1]
Bathurst NO. The free amino-acids and peptides of plant tissues. J Sci Food Agric 1953; 4(5): 221-6.
[http://dx.doi.org/10.1002/jsfa.2740040502]
[2]
Reynoso GT, de Gamboa BA. Salt tolerance in the freshwater algae Chlamydomon as reinhardii: Effect of proline and taurine. Comp Biochem Physiol A Comp Physiol 1982; 73(1): 95-9.
[http://dx.doi.org/10.1016/0300-9629(82)90098-6]
[3]
Jpn Kokai Tokyo Koho 1986; 61: 50957.
[4]
Demarcay H. Ueber die Natur der Galle Ann. Pharm 1938; 27: 270-91.
[5]
Huxtable R, Iwata H. Sulfur Amino Acids Biochemical Aspects. New York, NY, USA: Alan R. Liss 1983; pp. 5-37.
[6]
Brosnan JT, Brosnan ME. The sulfur-containing amino acids: An overview. J Nutr 2006; 136(6) (Suppl.): S1636-40.
[http://dx.doi.org/10.1093/jn/136.6.1636S] [PMID: 16702333]
[7]
Bayarmaa B, Otgonsuren D, Odonmajig P. Synthesis and characterization of Taurine. Mongolian J Chem 2014; 14: 57-60.
[http://dx.doi.org/10.5564/mjc.v14i0.200]
[8]
Waterfield CJ, Turton JA, Scales MDC, Timbrell JA. Taurine, a possible urinary marker of liver damage: A study of taurine excretion in carbon tetrachloride-treated rats. Arch Toxicol 1991; 65(7): 548-55.
[http://dx.doi.org/10.1007/BF01973715] [PMID: 1685880]
[9]
Okaya Y. Refinement of the crystal structure of taurine, 2-amino-ethylsulfonic acid an example of computer-controlled experimentation. Acta Crystallogr 1996; 21: 726-9.
[10]
Jacobsen JG, Smith LH. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 1968; 48(2): 424-511.
[http://dx.doi.org/10.1152/physrev.1968.48.2.424] [PMID: 4297098]
[11]
Marnela KM, Morris HR, Panico M, Timonen M, Lähdesmäki P. Glutamyl-taurine is the predominant synaptic taurine peptide. J Neurochem 1985; 44(3): 752-4.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb12878.x] [PMID: 3973591]
[12]
Sturman JA, Hayes KC. The biology of taurine in nutrition and development. Adv Nutr Res 1980; 3: 231-99.
[http://dx.doi.org/10.1007/978-1-4757-4448-4_9]
[13]
Hayes KC, Carey RE, Schmidt SY. Retinal degeneration associated with taurine deficiency in the cat. Science 1975; 188(4191): 949-51.
[http://dx.doi.org/10.1126/science.1138364] [PMID: 1138364]
[14]
Hofmann AF, Small DM. Detergent properties of bile salts: Correlation with physiological function. Annu Rev Med 1967; 18(1): 333-76.
[http://dx.doi.org/10.1146/annurev.me.18.020167.002001] [PMID: 5337530]
[15]
Thurston JH, Hauhart RE, Dirgo JA. Taurine: A role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 1980; 26(19): 1561-8.
[http://dx.doi.org/10.1016/0024-3205(80)90358-6] [PMID: 7382728]
[16]
Sebring LA, Huxtable RJ. Taurine modulation of calcium binding to cardiac sarcolemma. J Pharmacol Exp Ther 1985; 232(2): 445-51.
[PMID: 3918160]
[17]
Gaull GE, Wright CE, Tallan HH. Taurine in human lymphoblastoid cells: Uptake and role in proliferation. Prog Clin Biol Res 1983; 125: 297-303.
[PMID: 6878410]
[18]
Bernardi N. On the role of taurine in the cerebellar cortex: A reappraisal. Acta Physiol Pharmacol Latinoam 1985; 35(2): 153-64.
[PMID: 3008501]
[19]
Kulakowski EC, Maturo J. Hypoglycemic properties of taurine: Not mediated by enhanced insulin release. Biochem Pharmacol 1984; 33(18): 2835-8.
[http://dx.doi.org/10.1016/0006-2952(84)90204-1] [PMID: 6383406]
[20]
Emudianughe TS, Caldwell J, Smith RL. The utilization of exogenous taurine for the conjugation of xenobiotic acids in the ferret. Xenobiotica 1983; 13(3): 133-8.
[http://dx.doi.org/10.3109/00498258309052246] [PMID: 6613158]
[21]
Jang H, Lee S, Choi SL, Kim HY, Baek S, Kim Y. Taurine directly binds to oligomeric amyloid-β and recovers cognitive deficits in Alzheimer model mice. Adv Exp Med Biol 2017; 975(Pt 1): 233-41.
[http://dx.doi.org/10.1007/978-94-024-1079-2_21] [PMID: 28849459]
[22]
Che Y, Hou L, Sun F, et al. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis 2018; 9(4): 435.
[http://dx.doi.org/10.1038/s41419-018-0468-2] [PMID: 29568078]
[23]
Tadros MG, Khalifa AE, Abdel-Naim AB, Arafa HMM. Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington’s disease phenotype. Pharmacol Biochem Behav 2005; 82(3): 574-82.
[http://dx.doi.org/10.1016/j.pbb.2005.10.018] [PMID: 16337998]
[24]
Pasantes-Morales H, Wright CE, Gaull GE. Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 1985; 34(12): 2205-7.
[http://dx.doi.org/10.1016/0006-2952(85)90419-8] [PMID: 4004939]
[25]
Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72(1): 137-74.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161712] [PMID: 12543708]
[26]
Sun Q, Wang B, Li Y, et al. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension. Hypertension 2016; 67(3): 541-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06624] [PMID: 26781281]
[27]
Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J 1992; 123(2): 339-45.
[http://dx.doi.org/10.1016/0002-8703(92)90644-B] [PMID: 1736568]
[28]
Guzzetti S, Calzari L, Buccarello L, et al. Taurine administration recovers motor and learning deficits in an angelman syndrome mouse model. Int J Mol Sci 2018; 19(4): 1088.
[http://dx.doi.org/10.3390/ijms19041088] [PMID: 29621152]
[29]
Zhang Q, Liu Y, Wang H, et al. The preventive effects of taurine on neural tube defects through the Wnt/PCP-Jnk-dependent pathway. Amino Acids 2017; 49(9): 1633-40.
[http://dx.doi.org/10.1007/s00726-017-2462-x] [PMID: 28718066]
[30]
Azuma J. Long-term effect of taurine in congestive heart failure: Preliminary report. Adv Exp Med Biol 1994; 359: 425-33.
[http://dx.doi.org/10.1007/978-1-4899-1471-2_46] [PMID: 7887286]
[31]
Zhao H, Qu J, Li Q, et al. Taurine supplementation reduces neuroinflammation and protects against white matter injury after intracerebral hemorrhage in rats. Amino Acids 2018; 50(3-4): 439-51.
[http://dx.doi.org/10.1007/s00726-017-2529-8] [PMID: 29256178]
[32]
Giri SN, Wang Q. Taurine and niacin offer a novel therapeutic modality in prevention of chemically-induced pulmonary fibrosis in hamsters. Adv Exp Med Biol 1992; 315: 329-40.
[http://dx.doi.org/10.1007/978-1-4615-3436-5_39] [PMID: 1380762]
[33]
De Carvalho FG, Brandao CFC, Muñoz VR, et al. Taurine supplementation in conjunction with exercise modulated cytokines and improved subcutaneous white adipose tissue plasticity in obese women. Amino Acids 2021; 53(9): 1391-403.
[http://dx.doi.org/10.1007/s00726-021-03041-4] [PMID: 34255136]
[34]
Yeon JA, Kim SJ. Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells. Biomol Ther 2010; 18(1): 24-31.
[http://dx.doi.org/10.4062/biomolther.2010.18.1.024]
[35]
Nakajima Y, Osuka K, Seki Y, et al. Taurine reduces inflammatory responses after spinal cord injury. J Neurotrauma 2010; 27(2): 403-10.
[http://dx.doi.org/10.1089/neu.2009.1044] [PMID: 19831872]
[36]
Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis 2010; 208(1): 19-25.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.002] [PMID: 19592001]
[37]
Chan-Palay V, Lin CT, Palay S, Yamamoto M, Wu JY. Taurine in the mammalian cerebellum: Demonstration by autoradiography with [ 3 H]taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase. Proc Natl Acad Sci USA 1982; 79(8): 2695-9.
[http://dx.doi.org/10.1073/pnas.79.8.2695] [PMID: 6953423]
[38]
Magnusson KR, Clements JR, Wu JY, Beitz AJ. Colocalization of taurine- and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 1989; 4(1): 55-69.
[http://dx.doi.org/10.1002/syn.890040107] [PMID: 2772839]
[39]
Chung M, Malatesta P, Bosquesi P, Yamasaki P, Santos JL, Vizioli E. Advances in drug design based on the amino Acid approach: Taurine analogues for the treatment of CNS diseases. Pharmaceuticals 2012; 5(10): 1128-46.
[http://dx.doi.org/10.3390/ph5101128] [PMID: 24281261]
[40]
Zhang M, Bi LF, Fang JH, et al. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 2004; 26(3): 267-71.
[http://dx.doi.org/10.1007/s00726-003-0059-z] [PMID: 15221507]
[41]
Sturman JA, Messing JM. High dietary taurine effects on feline tissue taurine concentrations and reproductive performance. J Nutr 1992; 122(1): 82-8.
[http://dx.doi.org/10.1093/jn/122.1.82] [PMID: 1729475]
[42]
Sumizu K. Oxidation of hypotaurine in rat liver. Biochim Biophys Acta 1962; 63(1): 210-2.
[http://dx.doi.org/10.1016/0006-3002(62)90357-8] [PMID: 13979247]
[43]
Oja SS, Kontro P. Oxidation of hypotaurine in vitro by mouse liver and brain tissues. Biochim Biophys Acta, Gen Subj 1981; 677(3-4): 350-7.
[http://dx.doi.org/10.1016/0304-4165(81)90246-4] [PMID: 7295801]
[44]
Huxtable RJ. Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 1989; 32(6): 471-533.
[http://dx.doi.org/10.1016/0301-0082(89)90019-1] [PMID: 2664881]
[45]
Fiori A, Costa M. Ossidazione della ipotaurina con H2O2. Acta Vitaminol Enzymol 1969; 23(6): 204-7.
[PMID: 5408877]
[46]
Ricci G, Dupré S, Federici G, Spoto G, Matarese RM, Cavallini D. Oxidation of hypotaurine to taurine by ultraviolet irradiation. Physiol Chem Phys 1978; 10(5): 435-41.
[PMID: 35803]
[47]
Fellman JH, Green TR, Eicher AL. The oxidation of hypotaurine to taurine: Bis-aminoethyl-alpha-disulfone, a metabolic intermediate in mammalian tissue. Adv Exp Med Biol 1987; 217: 39-48.
[http://dx.doi.org/10.1007/978-1-4899-0405-8_4] [PMID: 2829516]
[48]
Barnett JA. Beginnings of microbiology and biochemistry: The contribution of yeast research. Microbiology 2003; 149(3): 557-67.
[http://dx.doi.org/10.1099/mic.0.26089-0] [PMID: 12634325]
[49]
Peskin AV, Winterbourn CC. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic Biol Med 2006; 40(1): 45-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.019] [PMID: 16337878]
[50]
Rapport MM, Mead JF, Maynard JT, Senear AE, Koepfli JB. Derivatives of Taurine and β-Alanine. J Am Chem Soc 1947; 69(10): 2561-3.
[http://dx.doi.org/10.1021/ja01202a511] [PMID: 20268314]
[51]
Yazdanbakhsh M, Roos D, Eckmann CM. Killing of schistosomula by taurine chloramine and taurine bromamine. Am J Trop Med Hyg 1987; 37(1): 106-10.
[http://dx.doi.org/10.4269/ajtmh.1987.37.106] [PMID: 3605492]
[52]
Nagl M, Hess MW, Pfaller K, Hengster P, Gottardi W. Activity of Micromolar N-Chlorotaurine: Evidence for its antimicrobial function in the human defense system. Antimicrob Agents Chem 2000; 37: 106-10.
[53]
Islambulchilar M, Sattari MR, Sardashti M, Lotfipour F. Effect of Taurine on the antimicrobial efficiency of Gentamicin. Adv Pharm Bull 2011; 1(2): 69-74.
[PMID: 24312759]
[54]
Strus M, Walczewska M, Machul A, Mikołajczyk D, Marcinkiewicz J. Taurine haloamines and biofilm. part i: antimicrobial activity of taurine bromamine and chlorhexidine against biofilm forming Pseudomonas aeruginosa. Adv Exp Med Biol 2015; 803: 121-32.
[http://dx.doi.org/10.1007/978-3-319-15126-7_11] [PMID: 25833493]
[55]
Akgül O, Ateş A, Ermertcan S. Activity Evalution of Newly Synthesized N,N-Disubstituted Taurin amido benzenesulfonamide Derivative. J Turkish Chem Soc Sect A: Chem 2021; 8(1): 321-8.
[56]
Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 1988; 256(1): 251-5.
[http://dx.doi.org/10.1042/bj2560251] [PMID: 2851980]
[57]
Surai PF, Kochish II, Kidd MT. Taurine in poultry nutrition. Anim Feed Sci Technol 2020; 260114339.
[http://dx.doi.org/10.1016/j.anifeedsci.2019.114339]
[58]
Baliou S, Adamaki M, Ioannou P, et al. Protective role of taurine against oxidative stress.(Review). Mol Med Rep 2021; 24(2): 605.
[http://dx.doi.org/10.3892/mmr.2021.12242] [PMID: 34184084]
[59]
Bosevski M, Stojanovska L, Apostolopoulos V. Inflammatory biomarkers: Impact for diabetes and diabetic vascular disease. Acta Biochim Biophys Sin 2015; 47(12): 1029-31.
[http://dx.doi.org/10.1093/abbs/gmv109] [PMID: 26511092]
[60]
Hanna J, Chahine R, Aftimos G, et al. Protective effect of taurine against free radicals damage in the rat myocardium. Exp Toxicol Pathol 2004; 56(3): 189-94.
[http://dx.doi.org/10.1016/j.etp.2004.08.004] [PMID: 15625788]
[61]
Kilic F, Bhardwaj R, Caulfeild J, Trevithick JR. Modelling cortical cataractogenesis 22: Is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity? Exp Eye Res 1999; 69(3): 291-300.
[http://dx.doi.org/10.1006/exer.1999.0697] [PMID: 10471337]
[62]
Oliveira MWS, Minotto JB, de Oliveira MR, et al. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 2010; 62(1): 185-93.
[http://dx.doi.org/10.1016/S1734-1140(10)70256-5] [PMID: 20360629]
[63]
Messina SA, Dawson R Jr. Attenuation of oxidative damage to DNA by taurine and taurine analogs. Adv Exp Med Biol 2002; 483: 355-67.
[http://dx.doi.org/10.1007/0-306-46838-7_40] [PMID: 11787620]
[64]
Gupta RC. Taurine analogues and taurine transport: Therapeutic advantages. Adv Exp Med Biol 2006; 583: 449-67.
[http://dx.doi.org/10.1007/978-0-387-33504-9_52] [PMID: 17153633]
[65]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[66]
Sekine S, Ichijo H. Mitochondrial proteolysis: Its emerging roles in stress responses. Biochim Biophys Acta, Gen Subj 2015; 1850(2): 274-80.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.012] [PMID: 25459516]
[67]
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res 2018; 122(6): 877-902.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311401] [PMID: 29700084]
[68]
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38(5): BSR20171492.
[http://dx.doi.org/10.1042/BSR20171492] [PMID: 30201689]
[69]
Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of mitochondrial tRNAs: New insights into the functions of taurine and human mitochondrial diseases. EMBO J 2002; 21(23): 6581-9.
[http://dx.doi.org/10.1093/emboj/cdf656] [PMID: 12456664]
[70]
Kirino Y, Yasukawa T, Ohta S, et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci 2004; 101(42): 15070-5.
[http://dx.doi.org/10.1073/pnas.0405173101] [PMID: 15477592]
[71]
Pasantes-Morales H, Cruz C. Protective effect of taurine and zinc on peroxidation-induced damage in photoreceptor outer segments. J Neurosci Res 1984; 11(3): 303-11.
[http://dx.doi.org/10.1002/jnr.490110310] [PMID: 6737519]
[72]
Bouckenooghe T, Remacle C, Reusens B. Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 2006; 9(6): 728-33.
[http://dx.doi.org/10.1097/01.mco.0000247469.26414.55] [PMID: 17053427]
[73]
Huxtable RJ. Physiological actions of taurine. Physiol Rev 1992; 72(1): 101-63.
[http://dx.doi.org/10.1152/physrev.1992.72.1.101] [PMID: 1731369]
[74]
Schuller-Levis G, Mehta PD, Rudelli R, Sturman J. Immunologic consequences of taurine deficiency in cats. J Leukoc Biol 1990; 47(4): 321-31.
[http://dx.doi.org/10.1002/jlb.47.4.321] [PMID: 2319206]
[75]
Clemens MR, Waller HD. Lipid peroxidation in erythrocytes. Chem Phys Lipids 1987; 45(2-4): 251-68.
[http://dx.doi.org/10.1016/0009-3084(87)90068-5] [PMID: 3319229]
[76]
Epstein FH, Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320(6): 365-76.
[http://dx.doi.org/10.1056/NEJM198902093200606] [PMID: 2536474]
[77]
Beutler E, Robson M, Buttenwieser E. The mechanism of glutathione destruction and protection in drug-sensitive and non-sensitive erythrocytes; in vitro studies. J Clin Invest 1957; 36(4): 617-28.
[http://dx.doi.org/10.1172/JCI103461] [PMID: 13416392]
[78]
Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetesThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue). Can J Physiol Pharmacol 2009; 87(2): 91-9.
[http://dx.doi.org/10.1139/Y08-110] [PMID: 19234572]
[79]
Wang L. Na, Zhao.; Fang Zhang, Wang Yue Liang M. Effect of taurine on leukocyte function. Eur J Pharmacol 2009; 616: 275-80.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.027] [PMID: 19490912]
[80]
Park E, Schuller-Levis G, Jia JH, Quinn MR. Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS mRNA. J Leukoc Biol 1997; 61(2): 161-6.
[http://dx.doi.org/10.1002/jlb.61.2.161] [PMID: 9021921]
[81]
Green TR, Fellman JH, Eicher AL, Pratt KL. Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta, Gen Subj 1991; 1073(1): 91-7.
[http://dx.doi.org/10.1016/0304-4165(91)90187-L] [PMID: 1846756]
[82]
Park E, Quinn MR, Wright CE, Schuller-Levis G. Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol 1993; 54(2): 119-24.
[http://dx.doi.org/10.1002/jlb.54.2.119] [PMID: 7689627]
[83]
Barua M, Liu Y, Quinn MR. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: Decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 2001; 167(4): 2275-81.
[http://dx.doi.org/10.4049/jimmunol.167.4.2275] [PMID: 11490015]
[84]
Pokhrel PK, Lau-Cam CA. In vitro and in vivo effects of taurine and structurally related sulfur-containing compounds against phenylhydrazine-induced oxidative damage to erythrocytes. Adv Exp Med Biol 2002; 483: 503-22.
[http://dx.doi.org/10.1007/0-306-46838-7_56] [PMID: 11787637]
[85]
Pion PD, Kittleson MD, Rogers QR, Morris JG. Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy. Science 1987; 237(4816): 764-8.
[http://dx.doi.org/10.1126/science.3616607] [PMID: 3616607]
[86]
Kittleson MD, Keene B, Pion PD, Loyer CG. Results of the multicenter spaniel trial (MUST): Taurine- and carnitine-responsive dilated cardiomyopathy in American cocker spaniels with decreased plasma taurine concentration. J Vet Intern Med 1997; 11(4): 204-11.
[http://dx.doi.org/10.1111/j.1939-1676.1997.tb00092.x] [PMID: 9298474]
[87]
Moise NS, Pacioretty LM, Kallfelz FA, Stipanuk MH, King JM, Gilmour RF Jr. Dietary taurine deficiency and dilated cardiomyopathy in the fox. Am Heart J 1991; 121(2): 541-7.
[http://dx.doi.org/10.1016/0002-8703(91)90724-V] [PMID: 1990761]
[88]
Lombardini JB. Increased phosphorylation of specific rat cardiac and retinal proteins in taurine-depleted animals: Isolation and identification of the phosphoproteins. Taurine 3 1998; 441-7.
[http://dx.doi.org/10.1007/978-1-4899-0117-0_54]
[89]
Mozaffari MS, Tan BH, Lucia MA, Schaffer SW. Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharmacol 1986; 35(6): 985-9.
[http://dx.doi.org/10.1016/0006-2952(86)90087-0] [PMID: 3082336]
[90]
Lombardini JB. The inhibitory effects of taurine on protein phosphorylation: Comparison of various characteristics of the taurine-affected phosphoproteins present in rat retina, brain and heart. Adv Exp Med Biol 1994; 359: 9-17.
[http://dx.doi.org/10.1007/978-1-4899-1471-2_2] [PMID: 7887292]
[91]
Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 2006; 296(15): 1885-99.
[http://dx.doi.org/10.1001/jama.296.15.1885] [PMID: 17047219]
[92]
Yamori Y, Nara Y, Ikeda K, Mizushima S. Is taurine a preventive nutritionTaurine 2. Boston, MA: Springer 1965.
[93]
Niu LG, Zhang MS, Liu Y, et al. Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol 2008; 580(1-2): 169-74.
[http://dx.doi.org/10.1016/j.ejphar.2007.10.039] [PMID: 17997400]
[94]
Schaffer SW, Ju Jong C, Kc R, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci 2010; 17((Suppl 1)(Suppl. 1)): S2.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S2] [PMID: 20804594]
[95]
Alfieri RR, Cavazzoni A, Petronini PG, et al. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. J Physiol 2002; 540(2): 499-508.
[http://dx.doi.org/10.1113/jphysiol.2001.013395] [PMID: 11956339]
[96]
Giugliano D, Maiorino MI, Longo M, Bellastella G, Chiodini P, Esposito K. Type 2 diabetes and risk of heart failure: A systematic review and meta-analysis from cardiovascular outcome trials. Endocrine 2019; 65(1): 15-24.
[http://dx.doi.org/10.1007/s12020-019-01931-y] [PMID: 31028667]
[97]
Higuchi S, Kohsaka S, Shiraishi Y, et al. Association of renin-angiotensin system inhibitors with long-term outcomes in patients with systolic heart failure and moderate-to-severe kidney function impairment. Eur J Intern Med 2019; 62: 58-66.
[http://dx.doi.org/10.1016/j.ejim.2019.01.014] [PMID: 30737061]
[98]
Cheng YJ, Imperatore G, Geiss LS, et al. Trends and disparities in cardiovascular mortality among U.S. adults with and without self-reported diabetes mellitus 1988–2015. Diabetes Care 2018; 41(11): 2306-15.
[http://dx.doi.org/10.2337/dc18-0831] [PMID: 30131397]
[99]
Soares DS, Pinto GH, Lopes A, et al. Cardiac hypertrophy in mice submitted to a swimming protocol: Influence of training volume and intensity on myocardial renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2019; 316(6): R776-82.
[http://dx.doi.org/10.1152/ajpregu.00205.2018] [PMID: 31042418]
[100]
Xiao HL, Zhao LX, Yang J, et al. Imbalance of angiotensin-converting enzymes affects myocardial apoptosis during cardiac arrest in-duced by acute pulmonary embolism in a porcine model. Int J Mol Med 2019; 43(4): 1575-84.
[http://dx.doi.org/10.3892/ijmm.2019.4109] [PMID: 30816437]
[101]
Mavromoustakos T, Apostolopoulos V, Matsoukas J. Antihypertensive drugs that act on Renin-Angiotensin System with emphasis in AT(1) antagonists. Mini Rev Med Chem 2001; 1(2): 207-17.
[http://dx.doi.org/10.2174/1389557013407115] [PMID: 12369985]
[102]
Qaradakhi T, Apostolopoulos V, Zulli A. Angiotensin (1-7) and Alamandine: Similarities and differences. Pharmacol Res 2016; 111: 820-6.
[http://dx.doi.org/10.1016/j.phrs.2016.07.025] [PMID: 27456244]
[103]
Qaradakhi T, Gadanec LK, McSweeney KR, et al. The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol 2020; 47(5): 751-8.
[http://dx.doi.org/10.1111/1440-1681.13251] [PMID: 31901211]
[104]
Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. Int J Mol Sci 2016; 17(7): 1098.
[http://dx.doi.org/10.3390/ijms17071098] [PMID: 27447621]
[105]
Takahashi K, Azuma M, Taira K, et al. Effect of taurine on angiotensin II-induced hypertrophy of neonatal rat cardiac cells. J Cardiovasc Pharmacol 1997; 30(6): 725-30.
[http://dx.doi.org/10.1097/00005344-199712000-00004] [PMID: 9436809]
[106]
Azuma M, Takahashi K, Fukuda T, et al. Taurine attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac myocytes. Eur J Pharmacol 2000; 403(3): 181-8.
[http://dx.doi.org/10.1016/S0014-2999(00)00483-0] [PMID: 10973617]
[107]
Quinn MR, Barua M, Liu Y, Serban V. Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages; a tale of two pathways: Part I, NF-kappaB signaling. Adv Exp Med Biol 2003; 526: 341-8.
[http://dx.doi.org/10.1007/978-1-4615-0077-3_42] [PMID: 12908618]
[108]
Beyranvand MR, Kadkhodai Khalafi M, Roshan VD, Choobineh S, Parsa SA, Piranfar MA. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 2011; 57(3): 333-7.
[http://dx.doi.org/10.1016/j.jjcc.2011.01.007] [PMID: 21334852]
[109]
Koyama M, Naramoto K, Nakajima T, Aoyama T, Watanabe M, Nakamura K. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. J Agric Food Chem 2013; 61(12): 3013-21.
[http://dx.doi.org/10.1021/jf305157y] [PMID: 23432021]
[110]
Birdsall TC. Therapeutic applications of taurine. Altern Med Rev 1998; 3(2): 128-36.
[PMID: 9577248]
[111]
Jeejeebhoy F, Keith M, Freeman M, et al. Nutritional supplementation with MyoVive repletes essential cardiac myocyte nutrients and reduces left ventricular size in patients with left ventricular dysfunction. Am Heart J 2002; 143(6): 1092-100.
[http://dx.doi.org/10.1067/mhj.2002.121927] [PMID: 12075268]
[112]
Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 1992; 56(1): 95-9.
[http://dx.doi.org/10.1253/jcj.56.95] [PMID: 1538580]
[113]
Ansar M, Ranza E, Shetty M, et al. Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Hum Mol Genet 2020; 29(4): 618-23.
[http://dx.doi.org/10.1093/hmg/ddz303] [PMID: 31903486]
[114]
Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: Experimental and clinical studies. Amino Acids 2002; 23(4): 381-93.
[http://dx.doi.org/10.1007/s00726-002-0212-0] [PMID: 12436205]
[115]
Van Hove JLK, Freehauf CL, Ficicioglu C, et al. Biomarkers of oxidative stress, inflammation, and vascular dysfunction in inherited cystathionine β‐synthase deficient homocystinuria and the impact of taurine treatment in a phase 1/2 human clinical trial. J Inherit Metab Dis 2019; 42(3): jimd.12085.
[http://dx.doi.org/10.1002/jimd.12085] [PMID: 30873612]
[116]
Lima L, Cubillos S. Taurine-stimulated outgrowth from the retina is impaired by protein kinase C activators and phosphatase inhibitors. Adv Exp Med Biol 1998; 442: 423-30.
[http://dx.doi.org/10.1007/978-1-4899-0117-0_52] [PMID: 9635059]
[117]
Ripps H, Shen W. Review: Taurine: A “very essential” amino acid. Mol Vis 2012; 18: 2673-86.
[PMID: 23170060]
[118]
Pasantes-Morales H, Klethi J, Ledig M, Mandel P. Free amino acids of chicken and rat retina. Brain Res 1972; 41(2): 494-7.
[http://dx.doi.org/10.1016/0006-8993(72)90523-9] [PMID: 5038343]
[119]
Rascher K, Servos G, Berthold G, et al. Light deprivation slows but does not prevent the loss of photoreceptors in taurine transporter knockout mice. Vision Res 2004; 44(17): 2091-100.
[http://dx.doi.org/10.1016/j.visres.2004.03.027] [PMID: 15149840]
[120]
Hadj-Saïd W, Fradot V, Ivkovic I, Sahel JA, Picaud S, Froger N. Taurine promotes retinal ganglion cell survival through GABAB receptor activation. Adv Exp Med Biol 2017; 975(Pt 2): 687-701.
[http://dx.doi.org/10.1007/978-94-024-1079-2_54] [PMID: 28849492]
[121]
El-Sherbeny A, Naggar H, Miyauchi S, et al. Osmoregulation of taurine transporter function and expression in retinal pigment epithelial, ganglion, and müller cells. Invest Ophthalmol Vis Sci 2004; 45(2): 694-701.
[http://dx.doi.org/10.1167/iovs.03-0503] [PMID: 14744916]
[122]
Ryter SW, Otterbein LE, Morse D, Choi AMK. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol Cell Biochem 2002; 234/235(1): 249-63.
[http://dx.doi.org/10.1023/A:1015957026924] [PMID: 12162441]
[123]
Froger N, Cadetti L, Lorach H, et al. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One 2012; 7(10): e42017.
[http://dx.doi.org/10.1371/journal.pone.0042017] [PMID: 23115615]
[124]
García-Ayuso D, Di Pierdomenico J, Hadj-Said W, et al. Taurine Depletion causes ipRGC loss and increases light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2018; 59(3): 1396-409.
[http://dx.doi.org/10.1167/iovs.17-23258] [PMID: 29625463]
[125]
Tao Y, He M, Yang Q, et al. Systemic taurine treatment provides neuroprotection against retinal photoreceptor degeneration and visual function impairments. Drug Des Devel Ther 2019; 13: 2689-702.
[http://dx.doi.org/10.2147/DDDT.S194169] [PMID: 31496648]
[126]
Agarwal R, Nor Arfuzir NN, Iezhitsa I, Agarwal P, Sidek S, Ismail N. Taurine protects against retinal and optic nerve damage induced by endothelin-1 in rats via antioxidant effects. Neural Regen Res 2018; 13(11): 2014-21.
[http://dx.doi.org/10.4103/1673-5374.239450] [PMID: 30233077]
[127]
Huxtable R, Bressler R. Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta Biomembr 1973; 323(4): 573-83.
[http://dx.doi.org/10.1016/0005-2736(73)90165-X] [PMID: 4271479]
[128]
Schaffer SW, Azuma J, Madura JD. Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 1995; 8(3): 231-46.
[http://dx.doi.org/10.1007/BF00806821] [PMID: 24186401]
[129]
Chovan JP, Kulakowski EC, Benson BW, Schaffer SW. Taurine enhancement of calcium binding to rat heart sarcolemma. Biochim Biophys Acta Biomembr 1979; 551(1): 129-36.
[http://dx.doi.org/10.1016/0005-2736(79)90359-6] [PMID: 427148]
[130]
Hamaguchi T, Azuma J, Schaffer S. Interaction of taurine with methionine: Inhibition of myocardial phospholipid methyltransferase. J Cardiovasc Pharmacol 1991; 18(2): 224-30.
[http://dx.doi.org/10.1097/00005344-199108000-00008] [PMID: 1717783]
[131]
Sapronov NS, Khnychenko LK, Polevshchikov AV. Effects of New Taurine Derivatives on Primary Immune Response in Rats Translat-ed from Byulleten Eksperimentalnoi Biologii Meditsiny. Bulletin of Experimental Biology and Medicine 2001; 131: 142-4.
[132]
Chanet-Ray J, Vessiere R. Synthesis and reactions of β-sultams. A review org prep proced int 1986; 18(3): 157-78.
[133]
Ross and Wilson Anatomy and Physiology in Health and Illness. (11th edition.), 2010.
[134]
Park E, Quinn MR, Schuller-Levis G. Taurine chloramine attenuates the hydrolytic activity of matrix metalloproteinase-9 in LPS-activated murine peritoneal macrophages. Adv Exp Med Biol 2002; 483: 389-98.
[http://dx.doi.org/10.1007/0-306-46838-7_44] [PMID: 11787624]
[135]
Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Novel taurine-containing uridine derivatives and mitochondrial human diseases. Nucleic Acids Symp Ser 2001; 1(1): 257-8.
[http://dx.doi.org/10.1093/nass/1.1.257] [PMID: 12836362]
[136]
Franconi F, Di Leo MAS, Bennardini F, Ghirlanda G. Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 2004; 29(1): 143-50.
[http://dx.doi.org/10.1023/B:NERE.0000010443.05899.2f] [PMID: 14992273]
[137]
Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest 1982; 70(3): 598-607.
[http://dx.doi.org/10.1172/JCI110652] [PMID: 6286728]
[138]
Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 2001; 17(5): 330-46.
[http://dx.doi.org/10.1002/dmrr.229] [PMID: 11747139]
[139]
Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. Food Chemistry: Molecular Sciences 2022; 4100106.
[http://dx.doi.org/10.1016/j.fochms.2022.100106] [PMID: 35769396]
[140]
Franconi F, Bennardini F, Mattana A, et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: Effects of taurine supplementation. Am J Clin Nutr 1995; 61(5): 1115-9.
[http://dx.doi.org/10.1093/ajcn/61.5.1115] [PMID: 7733037]
[141]
Moloney MA, Casey RG, Donnell DHO, Fitzgerald P, Thompson C, Bouchier-Hayes DJ. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetic. Diab Vasc Dis Res 2010; 7(4): 300-10.
[142]
Maleki V, Alizadeh M, Esmaeili F, Mahdavi R. The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Amino Acids 2020; 52(6-7): 905-14.
[http://dx.doi.org/10.1007/s00726-020-02859-8] [PMID: 32472292]
[143]
Esmaeili F, Maleki V, Kheirouri S, Alizadeh M. The effects of taurine supplementation on metabolic profiles, pentosidine, soluble receptor of advanced glycation end products and methylglyoxal in adults with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Canadian J Diabetes 2021; 45(1): 39-46.
[144]
Moludi J, Qaisar SA, Kadhim MM, Ahmadi Y, Davari M. Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: A randomized, clinical trial. Nutr Metab 2022; 19(1): 49.
[http://dx.doi.org/10.1186/s12986-022-00684-2] [PMID: 35870947]
[145]
Baskin SI, Prabhaharan V, Bowman JD, Novak MJ. Effects of Taurine and Thiosulfate on the Spectrophotometric Properties of Rna and Dna Toxicologist 1998; 43: 392.
[146]
Novak MJ, Baskin SI. The effects of inorganic sulfur species on the spec-trophotometric properties of RNA. Toxicol Methods 1997; 7: 193-206.
[147]
Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN, Luk GD, Cejka J. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992; 55(3): 708-11.
[http://dx.doi.org/10.1093/ajcn/55.3.708] [PMID: 1550047]
[148]
Laidlaw SA, Dietrich MF, Lamtenzan MP, Vargas HI, Block JB, Kopple JD. Antimutagenic effects of taurine in a bacterial assay system. Cancer Res 1989; 49(23): 6600-4.
[PMID: 2479467]
[149]
Cunningham C, Tipton FK, Dixon BFH. Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J 1998; 330(2): 939-45.
[http://dx.doi.org/10.1042/bj3300939] [PMID: 9480913]
[150]
Marcinkiewicz J, Grabowska A, Bereta J, Stelmaszynska T. Taurine chloramine, a product of activated neutrophils, inhibits] in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J Leukoc Biol 1995; 58(6): 667-74.
[http://dx.doi.org/10.1002/jlb.58.6.667] [PMID: 7499964]
[151]
Hartley-Asp B. Genotoxicity of tauromustine, a new water soluble taurine-based nitrosourea. I. Mutagenic and clastogenic activity of tauromustine in vitro. Mutagenesis 1992; 7(6): 427-31.
[http://dx.doi.org/10.1093/mutage/7.6.427] [PMID: 1474918]
[152]
Gupta RC, Kim SJ. Taurine, Analogues and bones. Adv Exp Med Biol 2003; 526: 323-8.
[http://dx.doi.org/10.1007/978-1-4615-0077-3_40] [PMID: 12908616]
[153]
Pushpakiran G, Mahalakshmi K, Viswanathan P, Anuradh CV. Taurine prevents ethanol-induced alterations in lipids and ATPases in rat tissues. Pharmacological Reports 2005; 57: 578-87.
[154]
Elvevoll EO, Eilertsen KE, Brox J, et al. Seafood diets: Hypolipidemic and antiatherogenic effects of taurine and n-3 fatty acids. Atherosclerosis 2008; 200(2): 396-402.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.12.021] [PMID: 18242615]
[155]
Chen X, Sebastian BM, Tang H, et al. Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology 2009; 49(5): 1554-62.
[http://dx.doi.org/10.1002/hep.22811] [PMID: 19296466]
[156]
Gentile CL, Nivala AM, Gonzales JC, et al. Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol 2011; 301(6): R1710-22.
[http://dx.doi.org/10.1152/ajpregu.00677.2010]
[157]
Hammes TO, Pedroso GL, Hartmann CR, et al. The effect of taurine on hepatic steatosis induced by thioacetamide in zebrafish (Danio rerio). Dig Dis Sci 2012; 57(3): 675-82.
[http://dx.doi.org/10.1007/s10620-011-1931-4] [PMID: 21997755]
[158]
Wu G, Tang R, Yang J, et al. Taurine accelerates alcohol and fat metabolism of rats with alcoholic Fatty liver disease. Adv Exp Med Biol 2015; 803: 793-805.
[159]
Abdel-Moneim AM, Al-Kahtani MA, El-Kersh MA, Al-Omair MA. Free radical-scavenging, anti-inflammatory/anti-fibrotic and hepato-protective actions of taurine and silymarin against CCl4 induced rat liver damage. PLoS One 2015; 10(12): e0144509.
[http://dx.doi.org/10.1371/journal.pone.0144509] [PMID: 26659465]
[160]
Murakami S, Ono A, Kawasaki A, Takenaga T, Ito T. Taurine attenuates the development of hepatic steatosis through the inhibition of oxidative stress in a model of nonalcoholic fatty liver disease in vivo and in vitro. Amino Acids 2018; 50(9): 1279-88.
[http://dx.doi.org/10.1007/s00726-018-2605-8] [PMID: 29946793]
[161]
Shivaraj MC, Marcy G, Low G, et al. Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 2012; 7(8): e42935.
[http://dx.doi.org/10.1371/journal.pone.0042935] [PMID: 22916184]
[162]
Hernández-Benítez R, Ramos-Mandujano G, Pasantes-Morales H. Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res (Amst) 2012; 9(1): 24-34.
[http://dx.doi.org/10.1016/j.scr.2012.02.004] [PMID: 22484511]
[163]
Gebara E, Udry F, Sultan S, Toni N. Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res (Amst) 2015; 14(3): 369-79.
[http://dx.doi.org/10.1016/j.scr.2015.04.001] [PMID: 25889858]
[164]
Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 2018; 26(3): 225-41.
[http://dx.doi.org/10.4062/biomolther.2017.251] [PMID: 29631391]
[165]
Mattucci-Schiavone L, Ferko AP. Acute effects of taurine and a taurine antagonist on ethanol-induced central nervous system depression. Eur J Pharmacol 1985; 113(2): 275-8.
[http://dx.doi.org/10.1016/0014-2999(85)90746-0] [PMID: 4043213]
[166]
Wu GF, Ren S, Tang RY, et al. Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci Rep 2017; 7(1): 4989-9.
[http://dx.doi.org/10.1038/s41598-017-05051-3] [PMID: 28694433]
[167]
Idrissi AE, Boukarrou L, Heany W, Malliaros G, Sangdee C, Neuwirth L. Effects of taurine on anxiety-like and locomotor behavior of mice. Adv Exp Med Biol 2009; 643: 207-15.
[http://dx.doi.org/10.1007/978-0-387-75681-3_21] [PMID: 19239151]
[168]
Zhu Y, Wang R, Fan Z, Luo D, Cai G. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2022; 2: 1089.
[PMID: 35435537]
[169]
Noor NA, Mohammed HS, Khadrawy YA, Aboul Ezz HS, Radwan NM. Evaluation of the neuroprotective effect of taurine and green tea extract against oxidative stress induced by pilocarpine during status epilepticus. J Basic Appl Zool 2015; 72: 8-15.
[http://dx.doi.org/10.1016/j.jobaz.2015.02.001]
[170]
Pasantes-Morales H, Arzate ME. Effect of taurine on seizures induced by 4-aminopyridine. J Neurosci Res 1981; 6(4): 465-74.
[http://dx.doi.org/10.1002/jnr.490060404] [PMID: 7299851]
[171]
Junyent F, Utrera J, Romero R, et al. Prevention of epilepsy by taurine treatments in mice experimental model. J Neurosci Res 2009; 87(6): 1500-8.
[http://dx.doi.org/10.1002/jnr.21950] [PMID: 19025770]
[172]
El Idrissi A, Messing J, Scalia J, Trenkner E. Prevention of epileptic seizures by taurine. Adv Exp Med Biol 2003; 526: 515-25.
[http://dx.doi.org/10.1007/978-1-4615-0077-3_62] [PMID: 12908638]
[173]
Kumar S, Goel R. Taurine supplementation to anti-seizure drugs as the promising approach to treat pharmacoresistant epilepsy: A pre-clinical study. Int J Epilepsy 2017; 4(2): 119-24.
[http://dx.doi.org/10.1016/j.ijep.2017.07.001]
[174]
Bittner S, Win T, Gupta R. γ-L-glutamyltaurine. Amino Acids 2005; 28(4): 343-56.
[http://dx.doi.org/10.1007/s00726-005-0196-7] [PMID: 15838590]
[175]
Tian J, Dang H, Wallner M, Olsen R, Kaufman DL. Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Sci Rep 2018; 8(1): 16555-5.
[http://dx.doi.org/10.1038/s41598-018-32733-3] [PMID: 30410049]
[176]
Ahtee L, Auvinen H, Mäenpää AR, Vahala ML, Lehtinen M, Halmckoski J. Comparison of central nervous system actions of taurine and N-pivaloyltaurine. Acta Pharmacol Toxicol (Copenh) 1985; 57(2): 96-105.
[http://dx.doi.org/10.1111/j.1600-0773.1985.tb00016.x] [PMID: 4061094]
[177]
Sapronov NS, Bul’on VV, Krylova IB, Gavrovskaya LK, Selina EN, Evdokimova NR. Cerebroprotective effect of a new taurine derivative during cerebral ischemia. Bull Exp Biol Med 2006; 141(1): 44-7.
[http://dx.doi.org/10.1007/s10517-006-0089-0] [PMID: 16929961]
[178]
Ricci L, Frosini M, Gaggelli N, et al. Inhibition of rabbit brain 4-aminobutyrate transaminase by some taurine analogues: A kinetic analysis. Biochem Pharmacol 2006; 71(10): 1510-9.
[http://dx.doi.org/10.1016/j.bcp.2006.02.007] [PMID: 16540097]
[179]
Kontro P, Oja SS. Effects of the anticonvulsant taurine derivative, taltrimide, on membrane transport and binding of GABA and taurine in the mouse cerebrum. Neuropharmacology 1987; 26(1): 19-23.
[http://dx.doi.org/10.1016/0028-3908(87)90039-6] [PMID: 3031533]
[180]
Sang Z, Wang K, Wang H, et al. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multi-functional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2017; 27(22): 5053-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.055] [PMID: 29033232]
[181]
Bick K, Amaducci L, Pepeu G, Eds. Alzheimer A characteristic disease of the cerebral cortex.The early story of Alzheimer’s disease. Padova: Liviana Press 1907; pp. 1-3.
[182]
Alzheimer’s disease Education and Referral Center Web site Alzheimer’s disease-unraveling the mystery http://www.nia nih.gov/alzheimers/publication/alzheimers-disease-unravelingmystery/prefac
[183]
MacDermott AB, Dale N. Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids. Trends Neurosci 1987; 10(7): 280-4.
[http://dx.doi.org/10.1016/0166-2236(87)90173-1]
[184]
Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 1998; 53: 127-40.
[http://dx.doi.org/10.1007/978-3-7091-6467-9_11] [PMID: 9700651]
[185]
Burdick D, Soreghan B, Kwon M, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 1992; 267(1): 546-54.
[http://dx.doi.org/10.1016/S0021-9258(18)48529-8] [PMID: 1730616]
[186]
Haass C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1993; 75(6): 1039-42.
[http://dx.doi.org/10.1016/0092-8674(93)90312-E] [PMID: 8261505]
[187]
Haass C. Take five-BACE and the c-secretase quartet conduct Alzheimer’s amyloid b-peptide generation. EMBO J 2004; 23(3): 483-8.
[http://dx.doi.org/10.1038/sj.emboj.7600061]
[188]
Haass C, Strooper BD. The presenilins in Alzheimer’s disease--proteolysis holds the key. Science 1999; 286(5441): 916-9.
[http://dx.doi.org/10.1126/science.286.5441.916] [PMID: 10542139]
[189]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[190]
Roselli F, Tirard M, Lu J, et al. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005; 25(48): 11061-70.
[http://dx.doi.org/10.1523/JNEUROSCI.3034-05.2005] [PMID: 16319306]
[191]
Lesné S, Koh MT, Kotilinek L, et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 2006; 440(7082): 352-7.
[http://dx.doi.org/10.1038/nature04533] [PMID: 16541076]
[192]
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 2007; 8(2): 101-12.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[193]
Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 2007; 27(11): 2866-75.
[http://dx.doi.org/10.1523/JNEUROSCI.4970-06.2007] [PMID: 17360908]
[194]
Shankar GM, Li S, Mehta TH, et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837-42.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[195]
Bitan G, Fradinger EA, Spring SM, Teplow DB. Neurotoxic protein oligomers — what you see is not always what you get. Amyloid 2005; 12(2): 88-95.
[http://dx.doi.org/10.1080/13506120500106958] [PMID: 16011984]
[196]
Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel RE. Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J Neurosci 2005; 25(5): 1071-80.
[http://dx.doi.org/10.1523/JNEUROSCI.2381-04.2005] [PMID: 15689542]
[197]
Hepler RW, Grimm KM, Nahas DD, et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 2006; 45(51): 15157-67.
[http://dx.doi.org/10.1021/bi061850f] [PMID: 17176037]
[198]
Kuperstein I, Broersen K, Benilova I, et al. Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 2010; 29(19): 3408-20.
[http://dx.doi.org/10.1038/emboj.2010.211] [PMID: 20818335]
[199]
Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. N-Methyl-d-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 2001; 182(2): 151-9.
[http://dx.doi.org/10.1016/S0022-510X(00)00467-6] [PMID: 11137521]
[200]
Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm (Vienna) 2006; 113(11): 1625-44.
[http://dx.doi.org/10.1007/s00702-006-0579-2] [PMID: 17039298]
[201]
Teaktong T, Graham AJ, Court JA, et al. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology. J Neurol Sci 2004; 225(1-2): 39-49.
[http://dx.doi.org/10.1016/j.jns.2004.06.015] [PMID: 15465084]
[202]
Geula C, Nagykery N, Nicholas A, Wu CK. Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67(4): 309-18.
[http://dx.doi.org/10.1097/NEN.0b013e31816a1df3] [PMID: 18379437]
[203]
Kumar R. Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 2009; 491(1-2): 1-6.
[http://dx.doi.org/10.1016/j.abb.2009.09.007] [PMID: 19769937]
[204]
Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors:] in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 2001; 21(12): 4125-33.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04125.2001] [PMID: 11404397]
[205]
Bear MF, Abraham WC. Long-term depression in hippocampus. Annu Rev Neurosci 1996; 19(1): 437-62.
[http://dx.doi.org/10.1146/annurev.ne.19.030196.002253] [PMID: 8833450]
[206]
Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 1993; 260(5114): 1661-4.
[http://dx.doi.org/10.1126/science.8389057] [PMID: 8389057]
[207]
Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 1998; 92(1): 25-37.
[http://dx.doi.org/10.1016/S0092-8674(00)80896-X] [PMID: 9489697]
[208]
Schulz S, Siemer H, Krug M, Höllt V. Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. J Neurosci 1999; 19(13): 5683-92.
[http://dx.doi.org/10.1523/JNEUROSCI.19-13-05683.1999] [PMID: 10377374]
[209]
Kawahara M, Kuroda Y. Molecular mechanism of neurodegeneration induced by Alzheimer’s β-amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Res Bull 2000; 53(4): 389-97.
[http://dx.doi.org/10.1016/S0361-9230(00)00370-1] [PMID: 11136994]
[210]
Lin H, Bhatia R, Lal R. Amyloid β protein forms ion channels: Implications for Alzheimer’s disease pathophysiology. FASEB J 2001; 15(13): 2433-44.
[http://dx.doi.org/10.1096/fj.01-0377com] [PMID: 11689468]
[211]
Goodman Y, Mattson MP. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 1994; 128(1): 1-12.
[http://dx.doi.org/10.1006/exnr.1994.1107] [PMID: 8070512]
[212]
Okamoto K, Kimura H, Sakai Y. Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res 1983; 259(2): 319-23.
[http://dx.doi.org/10.1016/0006-8993(83)91266-0] [PMID: 6297677]
[213]
Albrecht J, Schousboe A. Taurine interaction with neurotransmitter receptors in the CNS: An update. Neurochem Res 2005; 30(12): 1615-21.
[http://dx.doi.org/10.1007/s11064-005-8986-6] [PMID: 16362781]
[214]
Louzada PR, Lima ACP, Mendonca-Silva DL, Noël F, De Mello FG, Ferreira ST. Taurine prevents the neurotoxicity of β‐amyloid and glutamate receptor agonists: Activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological dis-orders. FASEB J 2004; 18(3): 511-8.
[http://dx.doi.org/10.1096/fj.03-0739com] [PMID: 15003996]
[215]
Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST. Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of β-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 2005; 49(8): 1140-8.
[http://dx.doi.org/10.1016/j.neuropharm.2005.06.015] [PMID: 16150468]
[216]
Wu JY, Johansen FF, Lin CT, Liu JW. Taurine system in the normal and ischemic rat hippocampus. Adv Exp Med Biol 1987; 217: 265-74.
[http://dx.doi.org/10.1007/978-1-4899-0405-8_28] [PMID: 3324670]
[217]
Wu JY, Chen W, Tang XW, et al. Mode of action of taurine and regulation dynamics of its synthesis in the CNS. Adv Exp Med Biol 2002; 483: 35-44.
[http://dx.doi.org/10.1007/0-306-46838-7_4] [PMID: 11787619]
[218]
Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY. Mode of action of taurine as a neuroprotector. Brain Res 2005; 1038(2): 123-31.
[http://dx.doi.org/10.1016/j.brainres.2005.01.058] [PMID: 15757628]
[219]
Tang XW, Deupree DL, Sun Y, Wu JY. Biphasic effect of taurine on excitatory amino acid-induced neurotoxicityTaurine 2 Advances in Experimental Medicine and Biology. Boston: Springer 1963; p. 403.
[220]
El Idrissi A. Taurine increases mitochondrial buffering of calcium: Role in neuroprotection. Amino Acids 2008; 34(2): 321-8.
[http://dx.doi.org/10.1007/s00726-006-0396-9] [PMID: 16955229]
[221]
Santa-María I, Hernández F, Moreno FJ, Avila J. Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neurosci Lett 2007; 429(2-3): 91-4.
[http://dx.doi.org/10.1016/j.neulet.2007.09.068] [PMID: 17976912]
[222]
Kim HY, Kim HV, Yoon JH, Kang BR, Cho SM, Lee S. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease. Sci Rep 2014; 4: 7467.
[223]
McCarty MF, O’Keefe JH, DiNicolantonio JJ. A diet rich in taurine, cysteine, folate, B12 and betaine may lessen risk for Alzheimer’s disease by boosting brain synthesis of hydrogen sulfide. Med Hypotheses 2019; 132109356.
[http://dx.doi.org/10.1016/j.mehy.2019.109356] [PMID: 31450076]
[224]
Oh SJ, Lee HJ, Jeong YJ, et al. Evaluation of the neuroprotective effect of taurine in Alzheimer’s disease using functional molecular imaging. Sci Rep 2020; 10(1): 15551.
[http://dx.doi.org/10.1038/s41598-020-72755-4] [PMID: 32968166]
[225]
Abdulkadir TS, Isa AS, Dawud FA, Ayo JO, Mohammed MD. Effect of taurine and camel milk on amyloid beta peptide concentration and oxidative stress changes in aluminium chloride‐induced Alzheimer’s disease rats. Alzheimers Dement 2021; 17(S12): 12.
[http://dx.doi.org/10.1002/alz.058642]
[226]
Rossato RC, Granato AEC, Pinto JC, Moraes CDGDO, Salles GN, Soares CP. Neuroprotective effects of taurine on SH-SY5Y cells under hydrocortisone induced stress. Research, Society and Development 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy