Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

A Comprehensive Review on Exosome: Recent Progress and Outlook

Author(s): Paras Agarwal, Adiba Anees, Raval Kavit Harsiddharay, Pranesh Kumar and Pushpendra Kumar Tripathi*

Volume 12, Issue 1, 2024

Published on: 13 July, 2023

Page: [2 - 13] Pages: 12

DOI: 10.2174/2211738511666230523114311

Price: $65

Open Access Journals Promotions 2
Abstract

Exosomes are intrinsic membrane-based vesicles that play a key role in both normal and pathological processes. Since their discovery, exosomes have been investigated as viable drug delivery systems and clinical indicators because of their magnitude and effectiveness in delivering biological components to targeted cells. Exosome characteristics are biocompatible, prefer tumor recruitment, have tunable targeting efficiency, and are stable, making them outstanding and eye-catching medication delivery systems for cancer and other disorders. There is great interest in using cell-released tiny vesicles that activate the immune system in the age of the fast development of cancer immunotherapy. Exosomes, which are cell-derived nanovesicles, have a lot of potential for application in cancer immunotherapy due to their immunogenicity and molecular transfer function. More significantly, exosomes can transfer their cargo to specified cells and so affect the phenotypic and immune-regulation capabilities of those cells. In this article, we summarize exosomes' biogenesis, isolation techniques, drug delivery, applications, and recent clinical updates. The use of exosomes as drug-delivery systems for small compounds, macromolecules, and nucleotides has recently advanced. We have tried to give holistic and exhaustive pieces of information showcasing current progress and clinical updates of exosomes.

Keywords: Exosomes, drug delivery, biogenesis, isolation, anticancer therapeutics, targeting methodology.

Graphical Abstract
[1]
Kalra H, Adda CG, Liem M, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 2013; 13(22): 3354-64.
[http://dx.doi.org/10.1002/pmic.201300282] [PMID: 24115447]
[2]
Lobb RJ, Becker M, Wen S, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4(1): 27031.
[http://dx.doi.org/10.3402/jev.v4.27031] [PMID: 26194179]
[3]
Zhou M, Sarah RW, Zhao Y, Chen H, Sundstrom JM. Methods for exosome isolation and characterization. In: Edelstein L, Ed. Exosomes. Academic Press 2020; pp. 23-38.
[http://dx.doi.org/10.1016/B978-0-12-816053-4.00002-X]
[4]
Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126(4): 1208-15.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[5]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[6]
Aryani A, Denecke B. Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol Neurobiol 2016; 53(2): 818-34.
[http://dx.doi.org/10.1007/s12035-014-9054-5] [PMID: 25502465]
[7]
van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: A common pathway for a specialized function. J Biochem 2006; 140(1): 13-21.
[http://dx.doi.org/10.1093/jb/mvj128] [PMID: 16877764]
[8]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[9]
Ruivo CF, Adem B, Silva M, Melo SA. The biology of cancer exosomes: Insights and new perspectives. Cancer Res 2017; 77(23): 6480-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0994] [PMID: 29162616]
[10]
Alderton GK. Metastasis. Exosomes drive premetastatic niche formation. Nat Rev Cancer 2012; 12(7): 447.
[http://dx.doi.org/10.1038/nrc3304]
[11]
Schubert D. A brief history of adherons: The discovery of brain exosomes. Int J Mol Sci 2020; 21(20): 7673.
[http://dx.doi.org/10.3390/ijms21207673] [PMID: 33081326]
[12]
Alderton GK. Fishing for exosomes. Nat Rev Cancer 2015; 15(8): 453-3.
[http://dx.doi.org/10.1038/nrc3990] [PMID: 26205334]
[13]
Somasundaram R, Herlyn M. Melanoma exosomes: Messengers of metastasis. Nat Med 2012; 18(6): 853-4.
[http://dx.doi.org/10.1038/nm.2775] [PMID: 22673991]
[14]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[15]
da Costa VR, Araldi RP, Vigerelli H, et al. Exosomes in the tumor microenvironment: From biology to clinical applications. Cells 2021; 10(10): 2617.
[http://dx.doi.org/10.3390/cells10102617] [PMID: 34685596]
[16]
Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev Cell 2019; 49(3): 347-60.
[http://dx.doi.org/10.1016/j.devcel.2019.04.011] [PMID: 31063754]
[17]
Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res 2015; 25(1): 24-38.
[http://dx.doi.org/10.1038/cr.2014.135] [PMID: 25342562]
[18]
Meehan B, Rak J, Di Vizio D. Oncosomes – large and small: what are they, where they came from? J Extracell Vesicles 2016; 5(1): 33109.
[http://dx.doi.org/10.3402/jev.v5.33109] [PMID: 27680302]
[19]
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727.
[http://dx.doi.org/10.3390/cells8070727]
[20]
Xia Y, Chen T, Chen G, et al. A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection. Talanta 2020; 214: 120851.
[http://dx.doi.org/10.1016/j.talanta.2020.120851] [PMID: 32278412]
[21]
Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177-82.
[http://dx.doi.org/10.1038/nature14581] [PMID: 26106858]
[22]
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7(3): 297-303.
[http://dx.doi.org/10.1038/85438] [PMID: 11231627]
[23]
Hu X, Qiu Y. Exosomes reveal the dual nature of radiotherapy in tumor immunology. Cancer Sci 2022; 113: 1105-12.
[http://dx.doi.org/10.1111/cas.15314]
[24]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[25]
Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015; 7(9): 5066-83.
[http://dx.doi.org/10.3390/v7092862] [PMID: 26393640]
[26]
Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol 2016; 1448: 201-16.
[http://dx.doi.org/10.1007/978-1-4939-3753-0_15]
[27]
Baietti MF, Zhang Z, Mortier E, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14(7): 677-85.
[http://dx.doi.org/10.1038/ncb2502] [PMID: 22660413]
[28]
Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hypoxic exosomes orchestrate tumorigenesis: Molecular mechanisms and therapeutic implications. J Transl Med 2020; 18(1): 474.
[http://dx.doi.org/10.1186/s12967-020-02662-9] [PMID: 33302971]
[29]
Riva P, Battaglia C, Venturin M. Emerging role of genetic alterations affecting exosome biology in neurodegenerative diseases. Int J Mol Sci 2019; 20(17): 4113.
[http://dx.doi.org/10.3390/ijms20174113] [PMID: 31450727]
[30]
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in ageing and motor neurone disease: Biogenesis, uptake mechanisms, modifications in disease and uses in the development of biomarkers and therapeutics. Cells 2021; 10(11): 2930.
[http://dx.doi.org/10.3390/cells10112930] [PMID: 34831153]
[31]
Li S, Lin Z, Jiang X, Yu X. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin 2018; 39(4): 542-51.
[http://dx.doi.org/10.1038/aps.2017.178] [PMID: 29417947]
[32]
Gu H, Overstreet AMC, Yang Y. Exosomes biogenesis and potentials in disease diagnosis and drug delivery. Nano Life 2014; 4(4): 1441017.
[http://dx.doi.org/10.1142/S1793984414410177]
[33]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation Techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[34]
Bu H, He D, He X, Wang K. Exosomes: Isolation, analysis, and applications in cancer detection and therapy. ChemBioChem 2019; 20(4): 451-61.
[http://dx.doi.org/10.1002/cbic.201800470] [PMID: 30371016]
[35]
Yamashita T, Takahashi Y, Nishikawa M, Takakura Y. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 2016; 98: 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.017] [PMID: 26545617]
[36]
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019; 20(19): 4684.
[http://dx.doi.org/10.3390/ijms20194684] [PMID: 31546622]
[37]
Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10(8): 3684-707.
[http://dx.doi.org/10.7150/thno.41580] [PMID: 32206116]
[38]
Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019; 8(4): 307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[39]
Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp 2012; (59): e3037.
[PMID: 22257828]
[40]
Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13(1): 152.
[http://dx.doi.org/10.1186/s13045-020-00987-y] [PMID: 33168028]
[41]
Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically-active exosomes from human plasma. J Immunol Methods 2014; 411: 55-65.
[http://dx.doi.org/10.1016/j.jim.2014.06.007] [PMID: 24952243]
[42]
Alzhrani GN, Alanazi ST, Alsharif SY, et al. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol Int 2021; 45(9): 1807-31.
[http://dx.doi.org/10.1002/cbin.11620] [PMID: 33913604]
[43]
Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of exosomes: A review. Mol Biotechnol 2021; 63(4): 249-66.
[http://dx.doi.org/10.1007/s12033-021-00300-3] [PMID: 33492613]
[44]
Rekker K, Saare M, Roost AM, et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 2014; 47(1-2): 135-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.10.020] [PMID: 24183884]
[45]
Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods 2018; 2(9): 1800021.
[http://dx.doi.org/10.1002/smtd.201800021]
[46]
Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: Conventional practice, microfluidics, and commercial kits. Biotechnol Adv 2022; 54: 107814.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107814] [PMID: 34389465]
[47]
Cho S, Yang HC, Rhee WJ. Development and comparative analysis of human urine exosome isolation strategies. Process Biochem 2020; 88: 197-203.
[http://dx.doi.org/10.1016/j.procbio.2019.09.017]
[48]
Hou R, Li Y, Sui Z, et al. Advances in exosome isolation methods and their applications in proteomic analysis of biological samples. Anal Bioanal Chem 2019; 411(21): 5351-61.
[http://dx.doi.org/10.1007/s00216-019-01982-0] [PMID: 31267193]
[49]
Li B, Pan W, Liu C, et al. Homogenous magneto-fluorescent nanosensor for tumor-derived exosome isolation and analysis. ACS Sens 2020; 5(7): 2052-60.
[http://dx.doi.org/10.1021/acssensors.0c00513] [PMID: 32594744]
[50]
Li M, Rai AJ, Joel DeCastro G, et al. An optimized procedure for exosome isolation and analysis using serum samples: Application to cancer biomarker discovery. Methods 2015; 87: 26-30.
[http://dx.doi.org/10.1016/j.ymeth.2015.03.009] [PMID: 25814440]
[51]
Coughlan C, Bruce KD, Burgy O, et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol 2020; 88(1): e110.
[http://dx.doi.org/10.1002/cpcb.110] [PMID: 32633898]
[52]
Fang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform. Anal Chem 2018; 90(4): 2787-95.
[http://dx.doi.org/10.1021/acs.analchem.7b04861] [PMID: 29381333]
[53]
Ludwig N, Razzo BM, Yerneni SS, Whiteside TL. Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Exp Cell Res 2019; 378(2): 149-57.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.014] [PMID: 30857972]
[54]
Dewia HA. RSC Advances RSCPublishing.
[55]
Wendler F, Bota-Rabassedas N, Franch-Marro X. Cancer becomes wasteful: Emerging roles of exosomes † in cell-fate determination. J Extracell Vesicles 2013; 2(1): 22390.
[http://dx.doi.org/10.3402/jev.v2i0.22390] [PMID: 24223259]
[56]
Ahn SH, Ryu SW. Manufacturing therapeutic exosomes: From bench to industry. Mol Cells 2022; 45(5): 284-90.
[57]
Huang T, He J. Characterization of extracellular vesicles by size-exclusion high-performance liquid chromatography (HPLC). Methods Mol Biol 2017; 1660: 191-9.
[58]
Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2014; 3(1): 23430.
[http://dx.doi.org/10.3402/jev.v3.23430] [PMID: 25279113]
[59]
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy. Adv Mater 2020; 32(51): 2002440.
[http://dx.doi.org/10.1002/adma.202002440] [PMID: 33015883]
[60]
Busatto S, Vilanilam G, Ticer T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 2018; 7(12): 273.
[http://dx.doi.org/10.3390/cells7120273] [PMID: 30558352]
[61]
Bracewell DG, Francis R, Smales CM. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk‐based management for their control. Biotechnol Bioeng 2015; 112(9): 1727-37.
[http://dx.doi.org/10.1002/bit.25628] [PMID: 25998019]
[62]
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-omics data integration in extracellular vesicle biology—utopia or future reality? Int J Mol Sci 2020; 21(22): 8550.
[http://dx.doi.org/10.3390/ijms21228550] [PMID: 33202771]
[63]
Song Y, Kim Y, Ha S, et al. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2021; 85(2): e13329.
[http://dx.doi.org/10.1111/aji.13329] [PMID: 32846024]
[64]
Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles 2013; 2(1): 19861.
[http://dx.doi.org/10.3402/jev.v2i0.19861] [PMID: 24009896]
[65]
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[66]
Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol 2015; 160(1): 46-58.
[http://dx.doi.org/10.1016/j.clim.2015.03.021] [PMID: 25842185]
[67]
Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release 2021; 329: 894-906.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.020] [PMID: 33058934]
[68]
Peng H, Ji W, Zhao R, et al. Exosome: A significant nano-scale drug delivery carrier. J Mater Chem B Mater Biol Med 2020; 8(34): 7591-608.
[http://dx.doi.org/10.1039/D0TB01499K] [PMID: 32697267]
[69]
Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: A novel class of drug delivery systems. Int J Nanomedicine 2012; 7: 1525-41.
[PMID: 22619510]
[70]
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2021; 29(1): 13-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.11.030] [PMID: 33278566]
[71]
Xi X-M, Xia S-J, Lu R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie 2021; 76(2): 61-7.
[PMID: 33714281]
[72]
Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V, Tasciotti E. Exosome-like nanovectors for drug delivery in cancer. Curr Med Chem 2019; 26(33): 6132-48.
[http://dx.doi.org/10.2174/0929867325666180831150259] [PMID: 30182846]
[73]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[74]
Zhang L, Fan C, Hao W, et al. NSCs migration promoted and drug delivered exosomes‐collagen scaffold via a bio‐specific peptide for one‐step spinal cord injury repair. Adv Healthc Mater 2021; 10(8): 2001896.
[http://dx.doi.org/10.1002/adhm.202001896] [PMID: 33522126]
[75]
Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev 2013; 65(3): 342-7.
[http://dx.doi.org/10.1016/j.addr.2012.07.002] [PMID: 22776312]
[76]
Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun 2016; 472(1): 53-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.058] [PMID: 26902116]
[77]
Ou Y-H, Zou S, Goh W-J, et al. Cell-derived nanovesicles as exosome-mimetics for drug delivery purposes: Uses and recommendationsBio-Carrier Vectors. Springer 2021; pp. 147-70.
[http://dx.doi.org/10.1007/978-1-0716-0943-9_11]
[78]
Anusha R, Priya S. Dietary exosome‐like nanoparticles: An updated review on their pharmacological and drug delivery applications. Mol Nutr Food Res 2022; 66(14): 2200142.
[http://dx.doi.org/10.1002/mnfr.202200142] [PMID: 35593481]
[79]
Gong C, Zhang X, Shi M, et al. Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor. Adv Sci 2021; 8(10): 2002787.
[http://dx.doi.org/10.1002/advs.202002787] [PMID: 34026432]
[80]
Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S. Exosomes as drug carriers for cancer therapy. Mol Pharm 2019; 16(5): 1789-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00104] [PMID: 30951627]
[81]
Liang S, Xu H, Ye BC. Membrane-decorated exosomes for combination drug delivery and improved glioma therapy. Langmuir 2022; 38(1): 299-308.
[http://dx.doi.org/10.1021/acs.langmuir.1c02500] [PMID: 34936368]
[82]
Kumar DN, Chaudhuri A, Aqil F, et al. Exosomes as emerging drug delivery and diagnostic modality for breast cancer: Recent advances in isolation and application. Cancers 2022; 14(6): 1435.
[http://dx.doi.org/10.3390/cancers14061435] [PMID: 35326585]
[83]
Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep 2015; 5(1): 10112.
[http://dx.doi.org/10.1038/srep10112] [PMID: 26011176]
[84]
Zhu Q, Ling X, Yang Y, et al. Embryonic stem cells‐derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv Sci 2019; 6(6): 1801899.
[http://dx.doi.org/10.1002/advs.201801899] [PMID: 30937268]
[85]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[86]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[87]
Lee J, Lee H, Goh U, et al. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles. ACS Appl Mater Interfaces 2016; 8(11): 6790-5.
[http://dx.doi.org/10.1021/acsami.6b01315] [PMID: 26954538]
[88]
Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 2016; 10(3): 3323-33.
[http://dx.doi.org/10.1021/acsnano.5b06939] [PMID: 26938862]
[89]
Cancer Sci 2016.
[90]
Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M, Emiliani C. Exosome-based strategies for diagnosis and therapy. Recent Patents CNS Drug Discov 2015; 10(1): 10-27.
[http://dx.doi.org/10.2174/1574889810666150702124059] [PMID: 26133463]
[91]
Sun YF, Pi J, Xu JF. Emerging role of exosomes in tuberculosis: From immunity regulations to vaccine and immunotherapy. Front Immunol 2021; 12: 628973.
[http://dx.doi.org/10.3389/fimmu.2021.628973] [PMID: 33868247]
[92]
Castaño C, Novials A. Exosomes and diabetes. Diabetes Metab Res Rev 2019; 35(3): e3107.
[http://dx.doi.org/10.1002/dmrr.3107]
[93]
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J Transl Med 2022; 20(1): 125.
[http://dx.doi.org/10.1186/s12967-022-03325-7] [PMID: 35287692]
[94]
Kalluri R. The biology and function of urine exosomes in bladder cancer. J Clin Invest 2016; 4(2362): 10.1172.
[95]
Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci 2015; 72(4): 659-71.
[http://dx.doi.org/10.1007/s00018-014-1764-3] [PMID: 25336151]
[96]
Munson P, Shukla A. Exosomes: Potential in cancer diagnosis and therapy. Medicines 2015; 2(4): 310-27.
[http://dx.doi.org/10.3390/medicines2040310] [PMID: 27088079]
[97]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[98]
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol Cancer 2019; 18(1): 58.
[http://dx.doi.org/10.1186/s12943-019-0970-x] [PMID: 30925921]
[99]
Kruh-Garcia NA, Wolfe LM, Dobos KM. Deciphering the role of exosomes in tuberculosis. Tuberculosis 2015; 95(1): 26-30.
[http://dx.doi.org/10.1016/j.tube.2014.10.010] [PMID: 25496995]
[100]
Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 2019; 4(1): 47.
[http://dx.doi.org/10.1038/s41392-019-0080-7] [PMID: 31728212]
[101]
Lee BC, Kang I, Yu KR. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med 2021; 10(4): 711.
[http://dx.doi.org/10.3390/jcm10040711] [PMID: 33670202]
[102]
Navabi H, Croston D, Hobot J, et al. Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol Dis 2005; 35(2): 149-52.
[http://dx.doi.org/10.1016/j.bcmd.2005.06.008] [PMID: 16061407]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy