Review Article

壳聚糖为基础的黑色素瘤药物递送系统的研究进展

卷 31, 期 23, 2024

发表于: 03 July, 2023

页: [3488 - 3501] 页: 14

弟呕挨: 10.2174/0929867330666230518143654

价格: $65

摘要

黑色素瘤占皮肤癌病例的少数。然而,它是皮肤癌亚型中死亡率最高的。在疾病早期,患者术后预后良好,但发生转移导致患者5年生存率显著下降。尽管这种疾病的治疗方法取得了进展,但黑色素瘤的治疗仍然面临着一些障碍。系统性毒性、水不溶性、不稳定性、缺乏适当的生物分布、细胞渗透不足和快速清除是黑色素瘤治疗领域应该解决的一些挑战。虽然已经开发了各种递送系统来规避这些挑战,但基于壳聚糖的递送平台已经取得了重大成功。壳聚糖是由几丁质去乙酰化产生的,由于其特性,壳聚糖可以配制成不同的材料(如纳米颗粒、薄膜和水凝胶)。体外和体内研究都报道了壳聚糖基材料可用于给药系统,同时为该领域的常见问题提供了解决方案,例如增强生物分布和皮肤渗透以及药物的缓释。在此,我们回顾了壳聚糖作为一种药物传递系统在黑色素瘤中的作用,并讨论了这些药物系统如何成功地用于传递化疗药物(如阿霉素和紫杉醇)、基因(如TRAIL)和rna(如miRNA199a和STAT3 siRNA)。此外,我们还研究了壳聚糖纳米颗粒在中子捕获治疗中的作用。

关键词: 壳聚糖,药物输送,黑色素瘤,化疗,中子俘获疗法,皮肤癌。

[1]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[2]
Nabavi, S.M.; Russo, G.L.; Tedesco, I.; Daglia, M.; Orhan, I.E.; Nabavi, S.F.; Bishayee, A.; Nagulapalli, V.K.C.; Abdollahi, M.; Hajheydari, Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer, 2018, 70(2), 164-175.
[http://dx.doi.org/10.1080/01635581.2018.1412485] [PMID: 29300102]
[3]
Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; Stebbings, L.; Menzies, A.; Widaa, S.; Stratton, M.R.; Jones, P.H.; Campbell, P.J. High burden and pervasive positive selection of somatic mutations in normal human skin. Science, 2015, 348(6237), 880-886.
[http://dx.doi.org/10.1126/science.aaa6806] [PMID: 25999502]
[4]
Robles-Espinoza, C.D.; Roberts, N.D.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Timothy, B.D.; Adams, D.J. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun., 2016, 7(1), 12064.
[http://dx.doi.org/10.1038/ncomms12064] [PMID: 27403562]
[5]
Williams, P.F.; Olsen, C.M.; Hayward, N.K.; Whiteman, D.C. Melanocortin 1 receptor and risk of cutaneous melanoma: A meta-analysis and estimates of population burden. Int. J. Cancer, 2011, 129(7), 1730-1740.
[http://dx.doi.org/10.1002/ijc.25804] [PMID: 21128237]
[6]
Alshamsan, A.; Hamdy, S.; Haddadi, A.; Samuel, J.; El-Kadi, A.O.S.; Uludağ, H.; Lavasanifar, A. STAT3 knockdown in b16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl. Oncol., 2011, 4(3), 178-188.
[http://dx.doi.org/10.1593/tlo.11100] [PMID: 21633673]
[7]
Lens, M.B.; Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol., 2004, 150(2), 179-185.
[http://dx.doi.org/10.1111/j.1365-2133.2004.05708.x] [PMID: 14996086]
[8]
Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. Lancet, 2005, 365(9460), 687-701.
[http://dx.doi.org/10.1016/S0140-6736(05)17951-3] [PMID: 15721476]
[9]
Gowda, R.; Robertson, B.M.; Iyer, S.; Barry, J.; Dinavahi, S.S.; Robertson, G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev., 2020, 85, 101975.
[http://dx.doi.org/10.1016/j.ctrv.2020.101975] [PMID: 32050108]
[10]
Liu, Q.; Das, M.; Liu, Y.; Huang, L. Targeted drug delivery to melanoma. Adv. Drug Deliv. Rev., 2018, 127, 208-221.
[http://dx.doi.org/10.1016/j.addr.2017.09.016] [PMID: 28939379]
[11]
Mundra, V.; Li, W.; Mahato, R.I. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10(16), 2613-2633.
[http://dx.doi.org/10.2217/nnm.15.111] [PMID: 26244818]
[12]
Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34(2), 161-179.
[http://dx.doi.org/10.3109/07388551.2012.743503] [PMID: 23294062]
[13]
Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104.
[http://dx.doi.org/10.1088/1468-6996/11/1/014104] [PMID: 27877319]
[14]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[15]
Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol., 2017, 37(4), 492-509.
[http://dx.doi.org/10.1080/07388551.2016.1185389] [PMID: 27248312]
[16]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[17]
Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process., 2013, 1(1), 16.
[http://dx.doi.org/10.1186/2043-7129-1-16]
[18]
Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater., 2020, 32(51), 2002197.
[http://dx.doi.org/10.1002/adma.202002197] [PMID: 33051905]
[19]
Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int. J. Biol. Macromol., 2020, 147, 1268-1277.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.254] [PMID: 31770556]
[20]
Kiti, K.; Suwantong, O. The potential use of curcumin-β- cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol., 2020, 164, 3250-3258.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.190] [PMID: 32860794]
[21]
Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[22]
Xie, M.; Huang, K.; Yang, F.; Wang, R.; Han, L.; Yu, H.; Ye, Z.; Wu, F. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications. Int. J. Biol. Macromol., 2020, 151, 1116-1125.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.154] [PMID: 31751717]
[23]
Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1358-1368.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.087] [PMID: 28735006]
[24]
Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 2019, 27, 6-10.
[http://dx.doi.org/10.1016/j.nantod.2019.06.001]
[25]
Hoda, J.M.; Mohammad, A.G.J.; Aydin, B. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4)
[26]
Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774.
[PMID: 21589644]
[27]
Pang, Y.; Qin, A.; Lin, X.; Yang, L.; Wang, Q.; Wang, Z.; Shan, Z.; Li, S.; Wang, J.; Fan, S.; Hu, Q. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget, 2017, 8(22), 35583-35591.
[http://dx.doi.org/10.18632/oncotarget.14709] [PMID: 28103580]
[28]
Liu, J.; Meng, C.; Liu, S.; Kan, J.; Jin, C. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll., 2017, 63, 457-466.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.035]
[29]
Gallaher, C.M.; Munion, J.; Gallaher, D.D.; Hesslink, R., Jr; Wise, J. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr., 2000, 130(11), 2753-2759.
[http://dx.doi.org/10.1093/jn/130.11.2753] [PMID: 11053517]
[30]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[31]
Lee, W.; Song, G.; Bae, H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs, 2022, 20(8), 473.
[http://dx.doi.org/10.3390/md20080473] [PMID: 35892941]
[32]
Mahajan, U.M.; Li, Q.; Alnatsha, A.; Maas, J.; Orth, M.; Maier, S.H.; Peterhansl, J.; Regel, I.; Sendler, M.; Wagh, P.R.; Mishra, N.; Xue, Y.; Allawadhi, P.; Beyer, G.; Kühn, J.P.; Marshall, T.; Appel, B.; Lämmerhirt, F.; Belka, C.; Müller, S.; Weiss, F.U.; Lauber, K.; Lerch, M.M.; Mayerle, J. Tumor-specific delivery of 5-fluorouracil–incorporated epidermal growth factor receptor–targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 2021, 161(3), 996-1010.e1.
[http://dx.doi.org/10.1053/j.gastro.2021.05.055] [PMID: 34097885]
[33]
Nomura, H.; Tsuji, D.; Ueno, S.; Kojima, T.; Fujii, S.; Yano, T.; Daiko, H.; Demachi, K.; Itoh, K.; Kawasaki, T. Relevance of pharmacogenetic polymorphisms with response to docetaxel, cisplatin, and 5-fluorouracil chemotherapy in esophageal cancer. Invest. New Drugs, 2022, 40(2), 420-429.
[http://dx.doi.org/10.1007/s10637-021-01199-y] [PMID: 34792690]
[34]
Mafi, A.; Rezaee, M.; Hedayati, N.; Hogan, S.D.; Reiter, R.J.; Aarabi, M.H.; Asemi, Z. Melatonin and 5-fluorouracil combination chemotherapy: Opportunities and efficacy in cancer therapy. Cell Commun. Signal., 2023, 21(1), 33.
[http://dx.doi.org/10.1186/s12964-023-01047-x] [PMID: 36759799]
[35]
Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv., 2015, 22(6), 795-802.
[http://dx.doi.org/10.3109/10717544.2014.902146] [PMID: 24735246]
[36]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.007] [PMID: 23195490]
[37]
Sahu, P.; Kashaw, S.K.; Sau, S.; Kushwah, V.; Jain, S.; Agrawal, R.K.; Iyer, A.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces, 2019, 174, 232-245.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.018] [PMID: 30465998]
[38]
Hu, W.; Zhang, C.; Fang, Y.; Lou, C. Anticancer properties of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vitro and in vivo. Toxicol. In Vitro, 2011, 25(2), 513-520.
[http://dx.doi.org/10.1016/j.tiv.2010.11.009] [PMID: 21093576]
[39]
Li, J.; Xu, W.; Li, D.; Liu, T.; Zhang, Y.S.; Ding, J.; Chen, X. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano, 2018, 12(7), 6685-6699.
[http://dx.doi.org/10.1021/acsnano.8b01729] [PMID: 29874035]
[40]
Guo, H.; Li, F.; Xu, W.; Chen, J.; Hou, Y.; Wang, C.; Ding, J.; Chen, X. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5(6), 1800004.
[http://dx.doi.org/10.1002/advs.201800004] [PMID: 29938183]
[41]
Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11, 317.
[http://dx.doi.org/10.3389/fphar.2020.00317] [PMID: 32231576]
[42]
Fan, X.; Song, J.; Zhao, Z.; Chen, M.; Tu, J.; Lu, C.; Wu, F.; Zhang, D.; Weng, Q.; Zheng, L.; Xu, M.; Ji, J. Piplartine suppresses proliferation and invasion of hepatocellular carcinoma by LINC01391-modulated Wnt/β-catenin pathway inactivation through ICAT. Cancer Lett., 2019, 460, 119-127.
[http://dx.doi.org/10.1016/j.canlet.2019.06.008] [PMID: 31207322]
[43]
Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194.
[http://dx.doi.org/10.1016/j.redox.2018.10.006] [PMID: 30359932]
[44]
Fofaria, N.M.; Qhattal, H.S.S.; Liu, X.; Srivastava, S.K. Nanoemulsion formulations for anti-cancer agent piplartine-Characterization, toxicological, pharmacokinetics and efficacy studies. Int. J. Pharm., 2016, 498(1-2), 12-22.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.045] [PMID: 26642946]
[45]
Giacone, D.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int J Biol Macromol, 2020, 165(Pt A), 1055-1065.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.167]
[46]
Ji, Z.; Xu, J.; Li, M.; Wang, H.; Xu, B.; Yang, Y.; Hu, Y. The mechanisms of immune-chemotherapy with nanocomplex codelivery of pTRP-2 and adjuvant of paclitaxel against melanoma. Drug Dev. Ind. Pharm., 2021, 47(11), 1744-1752.
[http://dx.doi.org/10.1080/03639045.2022.2045306] [PMID: 35193436]
[47]
Liu, X.; Xu, Y.; Yin, L.; Hou, Y.; Zhao, S. Chitosan-Poly(Acrylic Acid) nanoparticles loaded with R848 and MnCl2 inhibit melanoma via regulating macrophage polarization and dendritic cell maturation. Int. J. Nanomed., 2021, 16, 5675-5692.
[http://dx.doi.org/10.2147/IJN.S318363] [PMID: 34456564]
[48]
He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; Meng, J.; Zhou, N.; Lu, X.; Zhao, Y. Folate-modified chitosan nanoparticles containing the ip-10 gene enhance melanoma-specific cytotoxic CD8+ CD28+ T lymphocyte responses. Theranostics, 2016, 6(5), 752-761.
[http://dx.doi.org/10.7150/thno.14527] [PMID: 27022421]
[49]
Li, X.; Dong, W.; Nalin, A.P.; Wang, Y.; Pan, P.; Xu, B.; Zhang, Y.; Tun, S.; Zhang, J.; Wang, L.S.; He, X.; Caligiuri, M.A.; Yu, J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 2018, 7(6), e1431085.
[http://dx.doi.org/10.1080/2162402X.2018.1431085] [PMID: 29872557]
[50]
Won, J.E.; Wi, T.I.; Lee, C.M.; Lee, J.H.; Kang, T.H.; Lee, J.W.; Shin, B.C.; Lee, Y.; Park, Y.M.; Han, H.D. NIR irradiation-controlled drug release utilizing injectable hydrogels containing gold-labeled liposomes for the treatment of melanoma cancer. Acta Biomater., 2021, 136, 508-518.
[http://dx.doi.org/10.1016/j.actbio.2021.09.062] [PMID: 34626819]
[51]
Mirzaei, H.; Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[52]
Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0035] [PMID: 15930333]
[53]
Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; Han, R.; Li, P.; Sun, X.; Wang, G.; Shi, G.; Zhu, S. Boron neutron capture therapy for malignant melanoma: First clinical case report in China. Chin. J. Cancer Res., 2016, 28(6), 634-640.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2016.06.10] [PMID: 28174492]
[54]
Wang, L.W.; Liu, Y.W.H.; Chou, F.I.; Jiang, S.H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua open pool reactor. Cancer Commun., 2018, 38(1), 37.
[http://dx.doi.org/10.1186/s40880-018-0295-y] [PMID: 29914577]
[55]
Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun., 2018, 38(1), 36.
[http://dx.doi.org/10.1186/s40880-018-0280-5] [PMID: 29914575]
[56]
Miyatake, S.I.; Wanibuchi, M.; Hu, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. J. Neurooncol., 2020, 149(1), 1-11.
[http://dx.doi.org/10.1007/s11060-020-03586-6] [PMID: 32676954]
[57]
Takeuchi, I.; Ariyama, M.; Makino, K. Chitosan coating effect on cellular uptake of PLGA nanoparticles for boron neutron capture therapy. J. Oleo Sci., 2019, 68(4), 361-368.
[http://dx.doi.org/10.5650/jos.ess18239] [PMID: 30867387]
[58]
Ichikawa, H.; Watanabe, T.; Tokumitsu, H.; Fukumori, Y. Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr. Drug Deliv., 2007, 4(2), 131-140.
[http://dx.doi.org/10.2174/156720107780362294] [PMID: 17456032]
[59]
Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113.
[http://dx.doi.org/10.1016/j.apradiso.2013.12.018] [PMID: 24462286]
[60]
Zhou, J.; Xu, D.; Xie, H.; Tang, J.; Liu, R.; Li, J.; Wang, S.; Chen, X.; Su, J.; Zhou, X.; Xia, K.; He, Q.; Chen, J.; Xiong, W.; Cao, P.; Cao, K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol. Ther., 2015, 16(6), 846-855.
[http://dx.doi.org/10.1080/15384047.2015.1030545] [PMID: 25891797]
[61]
Xu, D.; Tan, J.; Zhou, M.; Jiang, B.; Xie, H.; Nie, X.; Xia, K.; Zhou, J. Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells. Oncol. Lett., 2012, 4(5), 941-946.
[http://dx.doi.org/10.3892/ol.2012.878] [PMID: 23162627]
[62]
Uchino, K.; Ochiya, T.; Takeshita, F. RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn. J. Clin. Oncol., 2013, 43(6), 596-607.
[http://dx.doi.org/10.1093/jjco/hyt052] [PMID: 23592885]
[63]
Liu, C.A.; Chang, C.Y.; Hsueh, K.W.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J. Migration/invasion of malignant gliomas and implications for therapeutic treatment. Int. J. Mol. Sci., 2018, 19(4), 1115.
[http://dx.doi.org/10.3390/ijms19041115] [PMID: 29642503]
[64]
Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol., 2021, 905, 174178.
[http://dx.doi.org/10.1016/j.ejphar.2021.174178] [PMID: 34044011]
[65]
Petrocca, F.; Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol., 2011, 29(6), 747-754.
[http://dx.doi.org/10.1200/JCO.2009.27.6287] [PMID: 21079135]
[66]
Rahman, M.A.; Amin, A.R.M.R.; Wang, X.; Zuckerman, J.E.; Choi, C.H.J.; Zhou, B.; Wang, D.; Nannapaneni, S.; Koenig, L.; Chen, Z.; Chen, Z.G.; Yen, Y.; Davis, M.E.; Shin, D.M. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J. Control. Release, 2012, 159(3), 384-392.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.045] [PMID: 22342644]
[67]
Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.S.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Burris, H.A., III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0429] [PMID: 23358650]
[68]
Nguyen, J.; Szoka, F.C. Nucleic acid delivery: The missing pieces of the puzzle? Acc. Chem. Res., 2012, 45(7), 1153-1162.
[http://dx.doi.org/10.1021/ar3000162] [PMID: 22428908]
[69]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026] [PMID: 24389132]
[70]
Kortylewski, M.; Jove, R.; Yu, H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev., 2005, 24(2), 315-327.
[http://dx.doi.org/10.1007/s10555-005-1580-1] [PMID: 15986140]
[71]
Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2674] [PMID: 16540670]
[72]
Labala, S.; Jose, A.; Venuganti, V.V.K. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf. B Biointerfaces, 2016, 146, 188-197.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.076] [PMID: 27318964]
[73]
Zhuang, L.; Lee, C.S.; Scolyer, R.A.; McCarthy, S.W.; Zhang, X.D.; Thompson, J.F.; Screaton, G.; Hersey, P. Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factor–related apoptosis-inducing ligand. Hum. Pathol., 2006, 37(10), 1286-1294.
[http://dx.doi.org/10.1016/j.humpath.2006.04.026] [PMID: 16949935]
[74]
Alvizo-Baez, C.A.; Luna-Cruz, I.E.; Vilches-Cisneros, N.; Rodríguez-Padilla, C.; Alcocer-González, J.M. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field. Int. J. Nanomed., 2016, 11, 6449-6458.
[http://dx.doi.org/10.2147/IJN.S118343] [PMID: 27980403]
[75]
Chen, Y.Z.; Yao, X.L.; Ruan, G.X.; Zhao, Q.Q.; Tang, G.P.; Tabata, Y.; Gao, J.Q. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol. Appl. Biochem., 2012, 59(5), 346-352.
[http://dx.doi.org/10.1002/bab.1036] [PMID: 23586911]
[76]
Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull., 2019, 9(2), 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[77]
Kim, J.H.; Kim, Y.S.; Kim, S.; Park, J.H.; Kim, K.; Choi, K.; Chung, H.; Jeong, S.Y.; Park, R.W.; Kim, I.S.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control. Release, 2006, 111(1-2), 228-234.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.013] [PMID: 16458988]
[78]
Bae, K.H.; Moon, C.W.; Lee, Y.; Park, T.G. Intracellular delivery of heparin complexed with chitosan-g-poly(ethylene glycol) for inducing apoptosis. Pharm. Res., 2009, 26(1), 93-100.
[http://dx.doi.org/10.1007/s11095-008-9713-1] [PMID: 18777202]
[79]
Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater., 2013, 9(1), 4546-4557.
[http://dx.doi.org/10.1016/j.actbio.2012.08.017] [PMID: 22906624]
[80]
Li, S.; Zhang, F.; Yu, Y.; Zhang, Q. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr. Polym., 2020, 235, 115983.
[http://dx.doi.org/10.1016/j.carbpol.2020.115983] [PMID: 32122513]
[81]
Sharma, S.; Verma, A.; Pandey, G.; Mittapelly, N.; Mishra, P.R. Investigating the role of pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: Impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater., 2015, 26, 169-183.
[http://dx.doi.org/10.1016/j.actbio.2015.08.005] [PMID: 26265061]
[82]
Liu, X.; Zhou, S.; Li, X.; Chen, X.; Zhao, X.; Qian, Z.; Zhou, L.; Li, Z.; Wang, Y.; Zhong, Q.; Yi, T.; Li, Z.; He, X.; Wei, Y. Anti-tumor activity of N-trimethyl chitosan-encapsulated camptothecin in a mouse melanoma model. J. Exp. Clin. Cancer Res., 2010, 29(1), 76.
[http://dx.doi.org/10.1186/1756-9966-29-76] [PMID: 20565783]
[83]
Joshi, N.; Saha, R.; Shanmugam, T.; Balakrishnan, B.; More, P.; Banerjee, R. Carboxymethyl-chitosan-tethered lipid vesicles: Hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules, 2013, 14(7), 2272-2282.
[http://dx.doi.org/10.1021/bm400406x] [PMID: 23721348]
[84]
Mandala Rayabandla, S.K.; Aithal, K.; Anandam, A.; Shavi, G.; Nayanabhirama, U.; Arumugam, K.; Musmade, P.; Bhat, K.; Bola, S.S.R. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv., 2010, 17(3), 103-113.
[http://dx.doi.org/10.3109/10717540903548447] [PMID: 20100068]
[85]
Venâncio, J.H.; Andrade, L.M.; Esteves, N.L.S.; Brito, L.B.; Valadares, M.C.; Oliveira, G.A.R.; Lima, E.M.; Marreto, R.N.; Gratieri, T.; Taveira, S.F. Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers. J. Pharm. Pharmacol., 2017, 69(10), 1318-1326.
[http://dx.doi.org/10.1111/jphp.12772] [PMID: 28703281]
[86]
Liu, F.; Feng, L.; Zhang, L.; Zhang, X.; Zhang, N. Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel. Int. J. Pharm., 2013, 451(1-2), 41-49.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.020] [PMID: 23608199]
[87]
Battogtokh, G.; Ko, Y.T. Self-assembled polymeric nanoparticle of PEGylated chitosan–ceramide conjugate for systemic delivery of paclitaxel. J. Drug Target., 2014, 22(9), 813-821.
[http://dx.doi.org/10.3109/1061186X.2014.930469] [PMID: 24964055]
[88]
Loch-Neckel, G.; Santos-Bubniak, L.; Mazzarino, L.; Jacques, A.V.; Moccelin, B.; Santos-Silva, M.C.; Lemos-Senna, E. Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J. Pharm. Sci., 2015, 104(10), 3524-3534.
[http://dx.doi.org/10.1002/jps.24548] [PMID: 26085173]
[89]
Liu, F.; Li, M.; Liu, C.; Liu, Y.; Liang, Y.; Wang, F.; Zhang, N. Tumor-specific delivery and therapy by double- targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res., 2014, 31(2), 475-488.
[http://dx.doi.org/10.1007/s11095-013-1176-3] [PMID: 24043295]
[90]
Ferraz, L.S.; Watashi, C.M.; Colturato-Kido, C.; Pelegrino, M.T.; Paredes-Gamero, E.J.; Weller, R.B.; Seabra, A.B.; Rodrigues, T. Antitumor potential of s-nitrosothiol- containing polymeric nanoparticles against melanoma. Mol. Pharm., 2018, 15(3), 1160-1168.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01001] [PMID: 29378125]
[91]
Battogtokh, G.; Ko, Y.T. Self-assembled chitosan-ceramide nanoparticle for enhanced oral delivery of paclitaxel. Pharm. Res., 2014, 31(11), 3019-3030.
[http://dx.doi.org/10.1007/s11095-014-1395-2] [PMID: 24825757]
[92]
Mazzarino, L.; Otsuka, I.; Halila, S.; Bubniak, L.S.; Mazzucco, S.; Santos-Silva, M.C.; Lemos-Senna, E.; Borsali, R. Xyloglucan-block-poly(ϵ-caprolactone) copolymer nanoparticles coated with chitosan as biocompatible mucoadhesive drug delivery system. Macromol. Biosci., 2014, 14(5), 709-719.
[http://dx.doi.org/10.1002/mabi.201300465] [PMID: 24469965]
[93]
Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine, 2014, 10(8), 1619-1626.
[http://dx.doi.org/10.1016/j.nano.2014.05.007] [PMID: 24965756]
[94]
Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.201] [PMID: 31063785]
[95]
Shen, H.; Shi, H.; Xie, M.; Ma, K.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Biodegradable chitosan/alginate BSA-gel-capsules for pH-controlled loading and release of doxorubicin and treatment of pulmonary melanoma. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3906-3917.
[http://dx.doi.org/10.1039/c3tb20330a] [PMID: 32261218]
[96]
Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407.
[http://dx.doi.org/10.1016/j.xphs.2019.06.002] [PMID: 31201905]
[97]
Lee, S.Y.; Koo, J.S.; Yang, M.; Cho, H.J. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J. Colloid Interface Sci., 2019, 544, 266-275.
[http://dx.doi.org/10.1016/j.jcis.2019.02.092] [PMID: 30852352]
[98]
Kim, S.; Liu, Y.; Gaber, M.W.; Bumgardner, J.D.; Haggard, W.O.; Yang, Y. Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90B(1), 145-155.
[http://dx.doi.org/10.1002/jbm.b.31266] [PMID: 18985785]
[99]
Ferreira, T.A.; de Carvalho, S.S.M.; Cardoso, B.R.; L Silva, S.M.; Sabino, G.M.A.; B de Lima, A.G.; L Fook, M.V. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials, 2018, 11(10), 2051.
[http://dx.doi.org/10.3390/ma11102051] [PMID: 30347857]
[100]
Stie, M.B.; Thoke, H.S.; Issinger, O.G.; Hochscherf, J.; Guerra, B.; Olsen, L.F. Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids Surf. B Biointerfaces, 2019, 174, 216-223.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.005] [PMID: 30465996]
[101]
Lee, E.H.; Lim, S.J.; Lee, M.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym., 2019, 224, 115143.
[http://dx.doi.org/10.1016/j.carbpol.2019.115143] [PMID: 31472877]
[102]
Bragta, P.; Sidhu, R.K.; Jyoti, K.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Intratumoral administration of carboplatin bearing poly (ε-caprolactone) nanoparticles amalgamated with in situ gel tendered augmented drug delivery, cytotoxicity, and apoptosis in melanoma tumor. Colloids Surf. B Biointerfaces, 2018, 166, 339-348.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.009] [PMID: 29627747]
[103]
Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm., 2019, 556, 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.070] [PMID: 30529664]
[104]
Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002.
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[105]
Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol., 2018, 116, 378-384.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.161] [PMID: 29723626]
[106]
Nawaz, A.; Wong, T.W. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: Microwave modulated uptake by skin and melanoma cells. J. Invest. Dermatol., 2018, 138(11), 2412-2422.
[http://dx.doi.org/10.1016/j.jid.2018.04.037] [PMID: 29857069]
[107]
Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to hot: Binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl. Mater. Interfaces, 2020, 12(29), 32259-32269.
[http://dx.doi.org/10.1021/acsami.0c05090] [PMID: 32406239]
[108]
Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res., 1999, 16(12), 1830-1835.
[http://dx.doi.org/10.1023/A:1018995124527] [PMID: 10644070]
[109]
Tokumitsu, H.; Hiratsuka, J.; Sakurai, Y.; Kobayashi, T.; Ichikawa, H.; Fukumori, Y. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: In vivo growth suppression of experimental melanoma solid tumor. Cancer Lett., 2000, 150(2), 177-182.
[http://dx.doi.org/10.1016/S0304-3835(99)00388-2] [PMID: 10704740]
[110]
Andoh, T.; Nakatani, Y.; Suzuki, M.; Sakurai, Y.; Fujimoto, T.; Ichikawa, H. Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl. Radiat. Isot., 2020, 164, 109270.
[http://dx.doi.org/10.1016/j.apradiso.2020.109270] [PMID: 32819508]
[111]
Shikata, F.; Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm., 2002, 53(1), 57-63.
[http://dx.doi.org/10.1016/S0939-6411(01)00198-9] [PMID: 11777753]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy