Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Research Progress of α-Synuclein Aggregation Inhibitors for Potential Parkinson’s Disease Treatment

Author(s): Iqra Kalsoom, Yuanhao Wang, Bo Li* and Hongliang Wen*

Volume 23, Issue 20, 2023

Published on: 07 July, 2023

Page: [1959 - 1974] Pages: 16

DOI: 10.2174/1389557523666230517163501

Abstract

Introduction: Parkinson’s disease (PD) is characterized by fibrillation of disordered proteins known as Lewy bodies in the substantia nigra that also undergo progressive neurodegeneration. The aggregation of α-synuclein (α-syn) is a hallmark and potentially a critical step in the development of Parkinson’s disease and other synucleinopathies. The synaptic vesicle protein α-syn is a small, abundant, highly conserved disordered protein and the causative agent of neurodegenerative diseases. Several novel pharmacologically active compounds are used to treat PD and other neurodegenerative disorders. Though, the mechanism through which these molecules inhibit the α-syn aggregation is still not fully understood.

Objective: This review article is focused on the recent advancements in compounds that can inhibit the development of α-syn fibrillation and oligomerization.

Methods: The current review article is based on the most recent and frequently cited papers from Google Scholar, SciFinder, and Researchgate sources.

Description: In the progression of PD, the mechanism of α-syn aggregation involves the structural transformation from monomers into amyloid fibrils. As the accumulation of α-syn in the brain has been linked to many disorders, the recent search for disease-modifying medications mainly focused on modifying the α-syn aggregation. This review contains a detailed report of literature findings and illustrates the unique structural features, structure-activity relationship, and therapeutic potential of the natural flavonoids in the inhibition of α-syn are also discussed.

Conclusion: Recently, many naturally occurring molecules such as curcumin, polyphenols, nicotine, EGCG, and stilbene have been recognized to inhibit the fibrillation and toxicity of α-syn. Therefore, knowing the α-synuclein filament's structure and how they originate will help invent particular biomarkers for synucleinopathies and develop reliable and effective mechanism-based therapeutics. We hope the information this review provides may help evaluate novel chemical compounds, such as α- syn aggregation inhibitors, and will contribute to developing novel drugs for treating Parkinson’s disease.

Keywords: Parkinson’s disease, α-Synuclein aggregation, Inhibitors, Structure-activity relationship, Intrinsically disordered protein, Presynaptic.

Graphical Abstract
[1]
Moustafa, A.A.; Chakravarthy, S.; Phillips, J.R.; Gupta, A.; Keri, S.; Polner, B.; Frank, M.J.; Jahanshahi, M. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci. Biobehav. Rev., 2016, 68, 727-740.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.010] [PMID: 27422450]
[2]
Schaeffer, E.; Kluge, A.; Böttner, M.; Zunke, F.; Cossais, F.; Berg, D.; Arnold, P. Alpha synuclein connects the gut-brain axis in Parkinson’s disease patients–a view on clinical aspects, cellular pathology and analytical methodology. Front. Cell Dev. Biol., 2020, 8, 573696.
[http://dx.doi.org/10.3389/fcell.2020.573696] [PMID: 33015066]
[3]
Ma, Q-L. Chan, P.; Yoshii, M.; Uéda, K. α-Synuclein aggregation and neurodegenerative diseases. J. Alzheimers Dis., 2003, 5(2), 139-148.
[http://dx.doi.org/10.3233/JAD-2003-5208] [PMID: 12719631]
[4]
Braak, H.; Del Tredici, K.; Rüb, U.; De Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[5]
Muddapu, V.R.; Chakravarthy, V.S. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci. Rep., 2021, 11(1), 1-36.
[http://dx.doi.org/10.1038/s41598-021-81185-9] [PMID: 33462293]
[6]
Levy, G.; Tang, M-X.; Cote, L.J.; Louis, E.D.; Alfaro, B.; Mejia, H.; Stern, Y.; Marder, K. Motor impairment in PD: Relationship to incident dementia and age. Neurology, 2000, 55(4), 539-544.
[http://dx.doi.org/10.1212/WNL.55.4.539] [PMID: 10953188]
[7]
Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K. Structures of α-synuclein filaments from multiple system atrophy. Nature, 2020, 585(7825), 464-469.
[http://dx.doi.org/10.1038/s41586-020-2317-6] [PMID: 32461689]
[8]
Yang, Y.; Shi, Y.; Schweighauser, M.; Zhang, X.; Kotecha, A.; Murzin, A.G.; Garringer, H.J.; Cullinane, P.W.; Saito, Y.; Foroud, T. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature, 2022, 1-3.
[http://dx.doi.org/10.1038/s41586-022-05319-3] [PMID: 36108674]
[9]
Jasutkar, H.G.; Oh, S.E.; Mouradian, M.M. Therapeutics in the pipeline targeting α-Synuclein for Parkinson’s Disease. Pharmacol. Rev., 2022, 74(1), 207-237.
[http://dx.doi.org/10.1124/pharmrev.120.000133] [PMID: 35017177]
[10]
Brás, I.C.; Outeiro, T.F. Alpha-synuclein: Mechanisms of release and pathology progression in synucleinopathies. Cells, 2021, 10(2), 375.
[11]
Chen, J.J. Parkinson’s disease: Health-related quality of life, economic cost, and implications of early treatment. Am. J. Manag. Care, 2010, 16, S87-S93.
[PMID: 20297871]
[12]
Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[13]
Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F.A. Targeting amyloid aggregation: An overview of strategies and mechanisms. Int. J. Mol. Sci., 2018, 19(9), 2677.
[http://dx.doi.org/10.3390/ijms19092677] [PMID: 30205618]
[14]
Gao, J.; Perera, G.; Bhadbhade, M.; Halliday, G.M.; Dzamko, N. Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J. Biol. Chem., 2019, 294(39), 14241-14256.
[http://dx.doi.org/10.1074/jbc.RA119.008733] [PMID: 31375560]
[15]
Wang, Z.; Gao, G.; Duan, C.; Yang, H. Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed. Pharmacother., 2019, 115, 108843.
[http://dx.doi.org/10.1016/j.biopha.2019.108843] [PMID: 31055236]
[16]
Zharikov, A.; Bai, Q.; De Miranda, B.R.; Van Laar, A.; Greenamyre, J.T.; Burton, E.A. Long-term RNAi knockdown of α-synuclein in the adult rat substantia nigra without neurodegeneration. Neurobiol. Dis., 2019, 125, 146-153.
[http://dx.doi.org/10.1016/j.nbd.2019.01.004] [PMID: 30658149]
[17]
Davidson, W.S.; Jonas, A.; Clayton, D.F.; George, J.M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem., 1998, 273(16), 9443-9449.
[http://dx.doi.org/10.1074/jbc.273.16.9443] [PMID: 9545270]
[18]
Kanaan, N.M.; Manfredsson, F.P. Loss of functional alpha-synuclein: A toxic event in Parkinson’s disease? J. Parkinsons Dis., 2012, 2(4), 249-267.
[http://dx.doi.org/10.3233/JPD-012138] [PMID: 23938255]
[19]
Da Costa, C.A. Paitel, E.; Vincent, B.; Checler, F. α-Synuclein lowers p53-dependent apoptotic response of neuronal cells: Abolishment by 6-hydroxydopamine and implication for parkinson′ s disease. J. Biol. Chem., 2002, 277(52), 50980-50984.
[http://dx.doi.org/10.1074/jbc.M207825200] [PMID: 12397073]
[20]
Villar‐Piqué, A.; Lopes da Fonseca, T.; Outeiro, T.F. Structure, function and toxicity of alpha‐synuclein: The Bermuda triangle in synucleinopathies. J. Neurochem., 2016, 139, 240-255.
[http://dx.doi.org/10.1111/jnc.13249] [PMID: 26190401]
[21]
Biere, A.L.; Wood, S.J.; Wypych, J.; Steavenson, S.; Jiang, Y.; Anafi, D.; Jacobsen, F.W.; Jarosinski, M.A.; Wu, G-M.; Louis, J-C. Parkinson’s disease-associated α-synuclein is more fibrillogenic than β-and γ-synuclein and cannot cross-seed its homologs. J. Biol. Chem., 2000, 275(44), 34574-34579.
[http://dx.doi.org/10.1074/jbc.M005514200] [PMID: 10942772]
[22]
Greenbaum, E.A.; Graves, C.L.; Mishizen-Eberz, A.J.; Lupoli, M.A.; Lynch, D.R.; Englander, S.W.; Axelsen, P.H.; Giasson, B.I. The E46K mutation in α-synuclein increases amyloid fibril formation. J. Biol. Chem., 2005, 280(9), 7800-7807.
[http://dx.doi.org/10.1074/jbc.M411638200] [PMID: 15632170]
[23]
Ostrerova, N. Petrucelli, L.; Farrer, M.; Mehta, N.; Choi, P.; Hardy, J.; Wolozin, B. α-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci., 1999, 19(14), 5782-5791.
[http://dx.doi.org/10.1523/JNEUROSCI.19-14-05782.1999] [PMID: 10407019]
[24]
Tzivion, G.; Luo, Z.; Avruch, J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature, 1998, 394(6688), 88-92.
[http://dx.doi.org/10.1038/27938] [PMID: 9665134]
[25]
Perrin, R.J.; Woods, W.S.; Clayton, D.F.; George, J.M. Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids: structural analysis using site-directed mutagenesis. J. Biol. Chem., 2000, 275(44), 34393-34398.
[http://dx.doi.org/10.1074/jbc.M004851200] [PMID: 10952980]
[26]
Emamzadeh, F.N. Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci.: Off. J. Isfahan Univ. Med. Sci., 2016, 21
[http://dx.doi.org/10.4103/1735-1995.181989]
[27]
Burré, J. Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Südhof, T.C. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 2010, 329(5999), 1663-1667.
[http://dx.doi.org/10.1126/science.1195227] [PMID: 20798282]
[28]
Dettmer, U.; Newman, A.J.; Luth, E.S.; Bartels, T.; Selkoe, D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J. Biol. Chem., 2013, 288(9), 6371-6385.
[http://dx.doi.org/10.1074/jbc.M112.403311] [PMID: 23319586]
[29]
Khurana, R.; Ionescu-Zanetti, C.; Pope, M.; Li, J.; Nielson, L.; Ramírez-Alvarado, M.; Regan, L.; Fink, A.L.; Carter, S.A. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys. J., 2003, 85(2), 1135-1144.
[http://dx.doi.org/10.1016/S0006-3495(03)74550-0] [PMID: 12885658]
[30]
Fink, A.L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res., 2006, 39(9), 628-634.
[http://dx.doi.org/10.1021/ar050073t] [PMID: 16981679]
[31]
Shtilerman, M.D.; Ding, T.T.; Lansbury, P.T. Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry, 2002, 41(12), 3855-3860.
[http://dx.doi.org/10.1021/bi0120906] [PMID: 11900526]
[32]
Munishkina, L.A.; Cooper, E.M.; Uversky, V.N.; Fink, A.L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J. Mol. Recognit., 2004, 17(5), 456-464.
[http://dx.doi.org/10.1002/jmr.699] [PMID: 15362105]
[33]
Vidović M.; Rikalovic, M.G. Alpha-Synuclein aggregation pathway in Parkinson’s Disease: Current status and novel therapeutic approaches. Cells, 2022, 11(11), 1732.
[http://dx.doi.org/10.3390/cells11111732] [PMID: 35681426]
[34]
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S-i.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry, 2006, 45(19), 6085-6094.
[http://dx.doi.org/10.1021/bi0600749] [PMID: 16681381]
[35]
Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav., 2009, 92(4), 642-648.
[http://dx.doi.org/10.1016/j.pbb.2009.03.008] [PMID: 19327378]
[36]
Li, B.Q.; Fu, T.; Gong, W-H.; Dunlop, N.; Kung, H-f.; Yan, Y.; Kang, J.; Wang, J.M. The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacology, 2000, 49(3), 295-306.
[http://dx.doi.org/10.1016/S0162-3109(00)00244-7] [PMID: 10996027]
[37]
Zhu, M.; Rajamani, S.; Kaylor, J.; Han, S.; Zhou, F.; Fink, A.L. The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J. Biol. Chem., 2004, 279(26), 26846-26857.
[http://dx.doi.org/10.1074/jbc.M403129200] [PMID: 15096521]
[38]
Hong, D-P.; Fink, A.L.; Uversky, V.N. Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. J. Mol. Biol., 2008, 383(1), 214-223.
[http://dx.doi.org/10.1016/j.jmb.2008.08.039] [PMID: 18775438]
[39]
Caruana, M.; Högen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett., 2011, 585(8), 1113-1120.
[http://dx.doi.org/10.1016/j.febslet.2011.03.046] [PMID: 21443877]
[40]
Hong, D-P.; Xiong, W.; Chang, J-Y.; Jiang, C. The role of the C-terminus of human α-synuclein: Intra-disulfide bonds between the C-terminus and other regions stabilize non-fibrillar monomeric isomers. FEBS Lett., 2011, 585(3), 561-566.
[http://dx.doi.org/10.1016/j.febslet.2011.01.009] [PMID: 21237164]
[41]
Agerschou, E.D.; Borgmann, V.; Wördehoff, M.M.; Hoyer, W. Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chem. Sci., 2020, 11(41), 11331-11337.
[http://dx.doi.org/10.1039/D0SC04051G] [PMID: 34094375]
[42]
Meng, X.; Munishkina, L. A.; Fink, A. L.; Uversky, V. N. Effects of various flavonoids on the-synuclein fibrillation process. Parkinson’s Dis., 2010, 2010
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[57]
Bartels, T. Choi, J.G.; Selkoe, D.J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 2011, 477(7362), 107-110.
[http://dx.doi.org/10.1038/nature10324] [PMID: 21841800]
[58]
Ahsan, N.; Mishra, S.; Jain, M.K.; Surolia, A.; Gupta, S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein. Scientif. Reports, 2015, 5(1), 1-16.
[http://dx.doi.org/10.1038/srep09862] [PMID: 25985292]
[59]
Jha, N.N.; Ghosh, D.; Das, S.; Anoop, A.; Jacob, R.S.; Singh, P.K.; Ayyagari, N.; Namboothiri, I.N.; Maji, S.K. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity. Sci. Rep., 2016, 6(1), 1-15.
[http://dx.doi.org/10.1038/srep28511] [PMID: 27338805]
[60]
Oliveri, V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur. J. Med. Chem., 2019, 167, 10-36.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.045] [PMID: 30743095]
[61]
Xu, M-m.; Ryan, P.; Rudrawar, S.; Quinn, R.J.; Zhang, H-y.; Mellick, G.D. Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol. Sin., 2020, 41(4), 483-498.
[http://dx.doi.org/10.1038/s41401-019-0304-y] [PMID: 31586134]
[62]
Oliveri, V.; Vecchio, G. Glycoconjugates of quinolines: Application in medicinal chemistry. Mini Rev. Med. Chem., 2016, 16(15), 1185-1194.
[http://dx.doi.org/10.2174/1389557516666160505115634] [PMID: 27145851]
[63]
Singh, N.; Agrawal, M. Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem. Neurosci., 2013, 4(8), 1151-1162.
[http://dx.doi.org/10.1021/cn400094w] [PMID: 23758534]
[64]
Rivière, C.; Papastamoulis, Y.; Fortin, P-Y.; Delchier, N.; Andriamanarivo, S.; Waffo-Teguo, P.; Kapche, G.D.; Amira-Guebalia, H.; Delaunay, J-C.; Mérillon, J-M. New stilbene dimers against amyloid fibril formation. Bioorg. Med. Chem. Lett., 2010, 20(11), 3441-3443.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.074] [PMID: 20452207]
[65]
Temsamani, H.; Krisa, S.; Decossas-Mendoza, M.; Lambert, O.; Mérillon, J-M.; Richard, T. Piceatannol and other wine stilbenes: a pool of inhibitors against α-synuclein aggregation and cytotoxicity. Nutrients, 2016, 8(6), 367.
[http://dx.doi.org/10.3390/nu8060367] [PMID: 27314384]
[66]
Amer, D.A.; Irvine, G.B.; El-Agnaf, O.M. Inhibitors of α-synuclein oligomerization and toxicity: A future therapeutic strategy for Parkinson’s disease and related disorders. Experiment. Brain Res., 2006, 173(2), 223-233.
[http://dx.doi.org/10.1007/s00221-006-0539-y] [PMID: 16733698]
[67]
Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264. 7 macrophages. Food Chem. Toxicol., 2013, 59, 199-206.
[http://dx.doi.org/10.1016/j.fct.2013.05.061] [PMID: 23774261]
[68]
Kwon, T.H.; Kim, T.W.; Kim, C.G.; Park, N.H. Antioxidant activity of various solvent fractions from edible brown alga, Eisenia bicyclis and its active compounds. J. Food Sci., 2013, 78(5), C679-C684.
[http://dx.doi.org/10.1111/1750-3841.12109] [PMID: 23557350]
[69]
Cha, S-H.; Heo, S-J.; Jeon, Y-J.; Park, S.M. Dieckol, an edible seaweed polyphenol, retards rotenone-induced neurotoxicity and α-synuclein aggregation in human dopaminergic neuronal cells. RSC Advances, 2016, 6(111), 110040-110046.
[http://dx.doi.org/10.1039/C6RA21697H]
[70]
Liu, H.; Chen, L.; Zhou, F.; Zhang, Y-X.; Xu, J.; Xu, M.; Bai, S-P. Anti-oligomerization sheet molecules: Design, synthesis and evaluation of inhibitory activities against α-synuclein aggregation. Bioorg. Med. Chem., 2019, 27(14), 3089-3096.
[http://dx.doi.org/10.1016/j.bmc.2019.05.032] [PMID: 31196755]
[71]
Morais, G.R.; Miranda, H.V.; Santos, I.C.; Santos, I.; Outeiro, T.F.; Paulo, A. Synthesis and in vitro evaluation of fluorinated styryl benzazoles as amyloid-probes. Bioorg. Med. Chem., 2011, 19(24), 7698-7710.
[http://dx.doi.org/10.1016/j.bmc.2011.09.065] [PMID: 22078413]
[72]
González-Muñoz, G.C.; Arce, M.P.; López, B.; Pérez, C.; Villarroya, M.; López, M.G.; García, A.G.; Conde, S.; Rodríguez-Franco, M.I. Old phenothiazine and dibenzothiadiazepine derivatives for tomorrow’s neuroprotective therapies against neurodegenerative diseases. Eur. J. Med. Chem., 2010, 45(12), 6152-6158.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.039] [PMID: 20926162]
[73]
Yu, L.; Cui, J.; Padakanti, P.K.; Engel, L.; Bagchi, D.P.; Kotzbauer, P.T.; Tu, Z. Synthesis and in vitro evaluation of α-synuclein ligands. Bioorg. Med. Chem., 2012, 20(15), 4625-4634.
[http://dx.doi.org/10.1016/j.bmc.2012.06.023] [PMID: 22789706]
[74]
Klegeris, A.; Korkina, L.G.; Greenfield, S.A. Autoxidation of dopamine: A comparison of luminescent and spectrophotometric detection in basic solutions. Free Radic. Biol. Med., 1995, 18(2), 215-222.
[http://dx.doi.org/10.1016/0891-5849(94)00141-6] [PMID: 7744304]
[75]
Li, H.T.; Lin, D.H.; Luo, X.Y.; Zhang, F.; Ji, L.N.; Du, H.N.; Song, G.Q.; Hu, J.; Zhou, J.W.; Hu, H.Y. Inhibition of α‐synuclein fibrillization by dopamine analogs via reaction with the amino groups of α‐synuclein: Implication for dopaminergic neurodegeneration. FEBS J., 2005, 272(14), 3661-3672.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04792.x] [PMID: 16008565]
[76]
Conway, K.A.; Rochet, J-C.; Bieganski, R.M.; Lansbury, P.T. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science, 2001, 294(5545), 1346-1349.
[http://dx.doi.org/10.1126/science.1063522] [PMID: 11701929]
[77]
Shukla, V.; C. Phulara, S. Yadav, D.; Tiwari, S.; Kaur, S.; Gupta, M.; Nazir, A.; Pandey, R. Iridoid compound 10-O-trans-pcoumaroylcatalpol extends longevity and reduces alpha synuclein aggregation in Caenorhabditis elegans. CNS Neurol. Disord.-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2012, 11(8), 984-992.
[78]
Chiang, W-C.; Tishkoff, D.X.; Yang, B.; Wilson-Grady, J.; Yu, X.; Mazer, T.; Eckersdorff, M.; Gygi, S.P.; Lombard, D.B.; Hsu, A-L.C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet., 2012, 8(9), e1002948.
[http://dx.doi.org/10.1371/journal.pgen.1002948] [PMID: 23028355]
[79]
Sashidhara, K.V.; Modukuri, R.K.; Jadiya, P.; Rao, K.B.; Sharma, T.; Haque, R.; Singh, D.K.; Banerjee, D.; Siddiqi, M.I.; Nazir, A. Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease. ACS Med. Chem. Lett., 2014, 5(10), 1099-1103.
[http://dx.doi.org/10.1021/ml500222g] [PMID: 25313319]
[80]
Ardah, M.T.; Paleologou, K.E.; Lv, G.; Abul Khair, S.B.; Kazim, A.S.; Minhas, S.T.; Al-Tel, T.H.; Al-Hayani, A.A.; Haque, M.E.; Eliezer, D. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Front. Aging Neurosci., 2014, 6, 197.
[http://dx.doi.org/10.3389/fnagi.2014.00197] [PMID: 25140150]
[81]
Dong, H.; Shen, M.; Redford, J.E.; Stokes, B.J.; Pumphrey, A.L.; Driver, T.G. Transition metal-catalyzed synthesis of pyrroles from dienyl azides. Org. Lett., 2007, 9(25), 5191-5194.
[http://dx.doi.org/10.1021/ol702262f] [PMID: 17994755]
[82]
Singh, P.; Chorell, E.; Krishnan, K.S.; Kindahl, T.; Åden, J.r.; Wittung-Stafshede, P.; Almqvist, F. Synthesis of multiring fused 2-pyridones via a nitrene insertion reaction: Fluorescent modulators of α-synuclein amyloid formation. Org. Lett., 2015, 17(24), 6194-6197.
[http://dx.doi.org/10.1021/acs.orglett.5b03190] [PMID: 26650849]
[83]
Horvath, I.; Weise, C.F.; Andersson, E.K.; Chorell, E.; Sellstedt, M.; Bengtsson, C.; Olofsson, A.; Hultgren, S.J.; Chapman, M.; Wolf-Watz, M. Mechanisms of protein oligomerization: Inhibitor of functional amyloids templates α-synuclein fibrillation. J. Am. Chem. Soc., 2012, 134(7), 3439-3444.
[http://dx.doi.org/10.1021/ja209829m] [PMID: 22260746]
[84]
Rogot, E.; Murray, J.L. Smoking and causes of death among US veterans: 16 years of observation. Public Health Rep., 1980, 95(3), 213.
[PMID: 7384406]
[85]
Kardani, J.; Sethi, R.; Roy, I. Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochimica et Biophysica Acta (BBA)-. Mol. Basis Dis., 2017, 1863(6), 1454-1463.
[http://dx.doi.org/10.1016/j.bbadis.2017.02.002] [PMID: 28167231]
[86]
Srinivasan, R.; Henley, B.M.; Henderson, B.J.; Indersmitten, T.; Cohen, B.N.; Kim, C.H.; McKinney, S.; Deshpande, P.; Xiao, C.; Lester, H.A. Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons. J. Neurosci., 2016, 36(1), 65-79.
[http://dx.doi.org/10.1523/JNEUROSCI.2126-15.2016] [PMID: 26740650]
[87]
Hong, D-P.; Fink, A.L.; Uversky, V.N. Smoking and Parkinson’s disease: Does nicotine affect α-synuclein fibrillation? Biochimica et Biophysica Acta (BBA)-. Proteins Proteom., 2009, 1794(2), 282-290.
[http://dx.doi.org/10.1016/j.bbapap.2008.09.026] [PMID: 19013262]
[88]
Levin, J.; Schmidt, F.; Boehm, C.; Prix, C.; Bötzel, K.; Ryazanov, S.; Leonov, A.; Griesinger, C.; Giese, A. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol., 2014, 127(5), 779-780.
[http://dx.doi.org/10.1007/s00401-014-1265-3] [PMID: 24615514]
[89]
Wagner, J.; Krauss, S.; Shi, S.; Ryazanov, S.; Steffen, J.; Miklitz, C.; Leonov, A.; Kleinknecht, A.; Göricke, B.; Weishaupt, J.H. Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathol., 2015, 130(5), 619-631.
[http://dx.doi.org/10.1007/s00401-015-1483-3] [PMID: 26439832]
[104]
Parsafar, S.; Aliakbari, F.; Seyedfatemi, S.S.; Najarzadeh, Z.; Hourfar, H.; Bardania, H.; Farhadpour, M.; Mohammadi, M.; Morshedi, D. Insights into the inhibitory mechanism of skullcapflavone II against α-synuclein aggregation and its mediated cytotoxicity. Intl. J. Biolog. Macromol., 2022, 209, 426-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.092] [PMID: 35398391]
[105]
Contardi, M.; Lenzuni, M.; Fiorentini, F.; Summa, M.; Bertorelli, R.; Suarato, G.; Athanassiou, A. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics, 2021, 13(7), 999.
[http://dx.doi.org/10.3390/pharmaceutics13070999] [PMID: 34371691]
[106]
Skovronsky, D.M.; Lee, V.M-Y.; Trojanowski, J.Q. Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. Mech. Dis., 2006, 1, 151-170.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100113] [PMID: 18039111]
[107]
Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G-F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754.
[http://dx.doi.org/10.1021/jm030026b] [PMID: 12801237]
[108]
Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K. Williams‐Gray, C.H. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord., 2012, 27(3), 349-356.
[http://dx.doi.org/10.1002/mds.24893] [PMID: 22275317]
[109]
Celej, M.S.; Jares-Erijman, E.A.; Jovin, T.M. Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein. Biophys. J., 2008, 94(12), 4867-4879.
[http://dx.doi.org/10.1529/biophysj.107.125211] [PMID: 18339734]
[110]
Krebs, M.R.; Bromley, E.H.; Donald, A.M. The binding of thioflavin-T to amyloid fibrils: Localisation and implications. J. Struct. Biol., 2005, 149(1), 30-37.
[http://dx.doi.org/10.1016/j.jsb.2004.08.002] [PMID: 15629655]
[111]
Volkova, K.D.; Kovalska, V.; Balanda, A.; Losytskyy, M.Y.; Golub, A.; Vermeij, R.; Subramaniam, V.; Tolmachev, O.; Yarmoluk, S. Specific fluorescent detection of fibrillar α-synuclein using mono-and trimethine cyanine dyes. Bioorg. Med. Chem., 2008, 16(3), 1452-1459.
[http://dx.doi.org/10.1016/j.bmc.2007.10.051] [PMID: 17980608]
[112]
Neal, K.L.; Shakerdge, N.B.; Hou, S.S.; Klunk, W.E.; Mathis, C.A.; Nesterov, E.E.; Swager, T.M.; McLean, P.J.; Bacskai, B.J. Development and screening of contrast agents for in vivo imaging of Parkinson’s disease. Mol. Imag. Biol., 2013, 15(5), 585-595.
[http://dx.doi.org/10.1007/s11307-013-0634-y] [PMID: 23624948]

© 2024 Bentham Science Publishers | Privacy Policy