Title:Microarray-based Detection of Critical Overexpressed Genes in the
Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease:
A Protein-protein Interaction Network Analysis
Volume: 31
Issue: 23
关键词:
基因表达,Wikipathway, KEGG富集,GO本体,PPI网络,枢纽基因,生存分析。
摘要:
Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic
liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis,
fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive
liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method
for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most
readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis
progression in NAFLD patients.
Methods: Raw data from microarray chips with GEO accession GSE49541 were downloaded from
the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate
differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score)
to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs
with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In
order to then explore critical genes, the protein-protein interaction network (PPI) was established and
visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi
software. Survival analysis was undertaken to determine the overall survival of the hub genes in the
progression of NAFLD to hepatocellular carcinoma.
Results: A total of 311 significant genes were identified, with an expression of 278 being upregulated
and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant
genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein
digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed
with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this
cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness,
Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1,
COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes,
namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular
carcinoma.
Conclusion: This PPI network analysis of DEGs identified critical hub genes involved in the progression
of fibrosis and the biological pathways through which they exert their effects in NAFLD patients.
Those 12 genes offer an excellent opportunity for further focused research to determine potential
targets for therapeutic applications.