Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

A Review of Anti-Inflammatory Phytoconstituents Used in Herbal Cosmeceuticals for the Treatment of Atopic Dermatitis

Author(s): Purushottam Gangane, Vidhi Sharma*, Mokshada Selokar, Dipali Vidhate, Kapil Pawar and Nilesh Mahajan

Volume 21, Issue 3, 2024

Published on: 19 June, 2023

Page: [312 - 325] Pages: 14

DOI: 10.2174/1567201820666230512110344

Price: $65

Abstract

Skin diseases such as atopic dermatitis affect babies, children, and adults and are characterized by red skin/spots, severe itching that appears on the face, head, legs, neck, and hands, and various causes of illness caused by various external and internal factors. AD is a type IIgE-mediated hypersensitivity reaction. Herbal preparations treat various dermatological diseases like dry skin, melasma, acne, and eczema. Cosmeceuticals are the connection between cosmetics and medicine, one of the world's most used forms of medicine. Cosmeceuticals products are beneficial in treating AD. Herbal cosmetics play a major role in curing various skin diseases. Today, various herbs used in cosmeceuticals have anti-inflammatory, antioxidant, antibacterial, and antiseptic effects. Compared to synthetic preparations, herbal preparations have fewer side effects. This review paper introduces Atopic dermatitis, cosmeceutical, and various phytoconstituents like gallic acid, ferulic acid, boswellic acid, quercetin, and naringenin tetra hydroxyl flavanol glycoside, glycyrrhizic acid, epigallocatechin gallate, etc., used in atopic dermatitis.

Keywords: Atopic dermatitis, inflammation, cosmeceutical, anti-inflammatory, phytoconstituents, etiology.

Graphical Abstract
[1]
Leung, D.Y.M.; Bieber, T. Atopic dermatitis. Lancet, 2003, 361(9352), 151-160.
[http://dx.doi.org/10.1016/S0140-6736(03)12193-9] [PMID: 12531593]
[2]
Novak, N.; Bieber, T.; Leung, D.Y. Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol., 2003, 112(6), S128-S139.
[http://dx.doi.org/10.1016/j.jaci.2003.09.032] [PMID: 14657843]
[3]
Larsen, F.S.; Hanifin, J.M. Epidemiology of atopic dermatitis. Immunol. Allergy Clin. North Am., 2002, 22(1), 1-24.
[http://dx.doi.org/10.1016/S0889-8561(03)00066-3]
[4]
Möhrenschlager, M.; Darsow, U.; Schnopp, C.; Ring, J. Atopic eczema: what’s new? J. Eur. Acad. Dermatol. Venereol., 2006, 20(5), 503-513.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01580.x] [PMID: 16684275]
[5]
Fölster-Holst, R.; Steinsland, K.; Lange, I.; Christophers, E. Verlauf des eczema infantum. Hautarzt, 1999, 50(Suppl. 1), 108.
[6]
Akdis, C.A.; Akdis, M.; Bieber, T.; Bindslev-Jensen, C.; Boguniewicz, M.; Eigenmann, P.; Hamid, Q.; Kapp, A.; Leung, D.Y.M.; Lipozencic, J.; Luger, T.A.; Muraro, A.; Novak, N.; Platts-Mills, T.A.; Rosenwasser, L.; Scheynius, A.; Simons, F.E.; Spergel, J.; Turjanmaa, K.; Wahn, U.; Weidinger, S.; Werfel, T.; Zuberbier, T. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. J. Allergy Clin. Immunol., 2006, 118(1), 152-169.
[http://dx.doi.org/10.1016/j.jaci.2006.03.045] [PMID: 16815151]
[7]
Novak, N.; Bieber, T. Allergic and nonallergic forms of atopic diseases. J. Allergy Clin. Immunol., 2003, 112(2), 252-262.
[http://dx.doi.org/10.1067/mai.2003.1595] [PMID: 12897728]
[8]
Eichenfield, L.F.; Tom, W.L.; Chamlin, S.L.; Feldman, S.R.; Hanifin, J.M.; Simpson, E.L.; Berger, T.G.; Bergman, J.N.; Cohen, D.E.; Cooper, K.D.; Cordoro, K.M.; Davis, D.M.; Krol, A.; Margolis, D.J.; Paller, A.S.; Schwarzenberger, K.; Silverman, R.A.; Williams, H.C.; Elmets, C.A.; Block, J.; Harrod, C.G.; Smith Begolka, W.; Sidbury, R. Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol., 2014, 70(2), 338-351.
[http://dx.doi.org/10.1016/j.jaad.2013.10.010] [PMID: 24290431]
[9]
Brunner, P.M.; Guttman-Yassky, E.; Leung, D.Y.M. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J. Allergy Clin. Immunol., 2017, 139(4), S65-S76.
[http://dx.doi.org/10.1016/j.jaci.2017.01.011] [PMID: 28390479]
[10]
Czarnowicki, T.; Krueger, J.G.; Guttman-Yassky, E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J. Allergy Clin. Immunol., 2017, 139(6), 1723-1734.
[http://dx.doi.org/10.1016/j.jaci.2017.04.004] [PMID: 28583445]
[11]
Darsow, U.; Wollenberg, A.; Simon, D.; Taïeb, A.; Werfel, T.; Oranje, A.; Gelmetti, C.; Svensson, A.; Deleuran, M.; Calza, A-M.; Giusti, F.; Lübbe, J.; Seidenari, S.; Ring, J. ETFAD/EADV eczema task force 2009 position paper on diagnosis and treatment of atopic dermatitis. J. Eur. Acad. Dermatol. Venereol., 2010, 24(3), 317-328.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03415.x] [PMID: 19732254]
[12]
Guttman-Yassky, E.; Ungar, B.; Malik, K.; Dickstein, D.; Suprun, M.; Estrada, Y.D.; Xu, H.; Peng, X.; Oliva, M.; Todd, D.; Labuda, T.; Suarez-Farinas, M.; Bissonnette, R. Molecular signatures order the potency of topically applied anti-inflammatory drugs in patients with atopic dermatitis. J. Allergy Clin. Immunol., 2017, 140(4), 1032-1042.e13.
[http://dx.doi.org/10.1016/j.jaci.2017.01.027] [PMID: 28238742]
[13]
Ng, J.P.X.; Liew, H.M.; Ang, S.B. Use of emollients in atopic dermatitis. J. Eur. Acad. Dermatol. Venereol., 2015, 29(5), 854-857.
[http://dx.doi.org/10.1111/jdv.12864] [PMID: 25444256]
[14]
Boguniewicz, M.; Leung, D.Y.M. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol. Rev., 2011, 242(1), 233-246.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01027.x] [PMID: 21682749]
[15]
Palmer, C.N.A.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.D.; O’Regan, G.M.; Watson, R.M.; Cecil, J.E.; Bale, S.J.; Compton, J.G.; DiGiovanna, J.J.; Fleckman, P.; Lewis-Jones, S.; Arseculeratne, G.; Sergeant, A.; Munro, C.S.; El Houate, B.; McElreavey, K.; Halkjaer, L.B.; Bisgaard, H.; Mukhopadhyay, S.; McLean, W.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet., 2006, 38(4), 441-446.
[http://dx.doi.org/10.1038/ng1767] [PMID: 16550169]
[16]
Irvine, A.D.; McLean, W.H.I.; Leung, D.Y.M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med., 2011, 365(14), 1315-1327.
[http://dx.doi.org/10.1056/NEJMra1011040] [PMID: 21991953]
[17]
Nutten, S. Atopic dermatitis: global epidemiology and risk factors. Ann. Nutr. Metab., 2015, 66(Suppl. 1), 8-16.
[http://dx.doi.org/10.1159/000370220] [PMID: 25925336]
[18]
Thomsen, S.F.; Ulrik, C.S.; Kyvik, K.O.; Hjelmborg, J.V.; Skadhauge, L.R.; Steffensen, I.; Backer, V. Importance of genetic factors in the etiology of atopic dermatitis: a twin study. Allergy Asthma Proc., 2007, 28(5), 535-539.
[http://dx.doi.org/10.2500/aap2007.28.3041]
[19]
Mandlik, D.S.; Mandlik, S.K. Atopic dermatitis: New insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol. Immunotoxicol., 2021, 43(2), 105-125.
[http://dx.doi.org/10.1080/08923973.2021.1889583] [PMID: 33645388]
[20]
Kantor, R.; Silverberg, J.I. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev. Clin. Immunol., 2017, 13(1), 15-26.
[http://dx.doi.org/10.1080/1744666X.2016.1212660] [PMID: 27417220]
[21]
Kasolang, S.; Adlina, W.A.; Rahman, N.A.; Nik, N.R. Common skin disorders: A review. J. Tribol., 2020, 25, 59-82.
[22]
Moniz, T.; Costa Lima, S.A.; Reis, S. Human skin models: From healthy to disease‐mimetic systems; characteristics and applications. Br. J. Pharmacol., 2020, 177(19), 15184.
[http://dx.doi.org/10.1111/bph.15184] [PMID: 32608012]
[23]
Alkilani, A.; McCrudden, M.T.; Donnelly, R. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[24]
Proksch, E.; Fölster-Holst, R.; Jensen, J.M. Skin barrier function, epidermal proliferation and differentiation in eczema. J. Dermatol. Sci., 2006, 43(3), 159-169.
[http://dx.doi.org/10.1016/j.jdermsci.2006.06.003] [PMID: 16887338]
[25]
Wolf, R.; Wolf, D. Abnormal epidermal barrier in the pathogenesis of atopic dermatitis. Clin. Dermatol., 2012, 30(3), 329-334.
[http://dx.doi.org/10.1016/j.clindermatol.2011.08.023] [PMID: 22507048]
[26]
Bieber, T.; D’Erme, A.M.; Akdis, C.A.; Traidl-Hoffmann, C.; Lauener, R.; Schäppi, G.; Schmid-Grendelmeier, P. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J. Allergy Clin. Immunol., 2017, 139(4), S58-S64.
[http://dx.doi.org/10.1016/j.jaci.2017.01.008] [PMID: 28390478]
[27]
Sator, P.G.; Schmidt, J.B.; Hönigsmann, H. Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J. Am. Acad. Dermatol., 2003, 48(3), 352-358.
[http://dx.doi.org/10.1067/mjd.2003.105] [PMID: 12637914]
[28]
Nakahara, T.; Kido-Nakahara, M.; Tsuji, G.; Furue, M. Basics and recent advances in the pathophysiology of atopic dermatitis. J. Dermatol., 2021, 48(2), 130-139.
[http://dx.doi.org/10.1111/1346-8138.15664] [PMID: 33118662]
[29]
Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int. J. Mol. Sci., 2020, 21(8), 2867.
[http://dx.doi.org/10.3390/ijms21082867] [PMID: 32326002]
[30]
Tsakok, T.; Woolf, R.; Smith, C.H.; Weidinger, S.; Flohr, C. Atopic dermatitis: The skin barrier and beyond. Br. J. Dermatol., 2019, 180(3), 464-474.
[http://dx.doi.org/10.1111/bjd.16934] [PMID: 29969827]
[31]
Halling-Overgaard, A.S.; Kezic, S.; Jakasa, I.; Engebretsen, K.A.; Maibach, H.; Thyssen, J.P. Skin absorption through atopic dermatitis skin: a systematic review. Br. J. Dermatol., 2017, 177(1), 84-106.
[http://dx.doi.org/10.1111/bjd.15065] [PMID: 27639188]
[32]
Lee, H.J.; Lee, S.H. Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol. Res., 2014, 6(4), 276-287.
[http://dx.doi.org/10.4168/aair.2014.6.4.276] [PMID: 24991450]
[33]
Szegedi, A. Filaggrin mutations in early- and late-onset atopic dermatitis. Br. J. Dermatol., 2015, 172(2), 320-321.
[http://dx.doi.org/10.1111/bjd.13534] [PMID: 25660681]
[34]
Riethmuller, C.; McAleer, M.A.; Koppes, S.A.; Abdayem, R.; Franz, J.; Haftek, M.; Campbell, L.E.; MacCallum, S.F.; McLean, W.H.I.; Irvine, A.D.; Kezic, S. Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J. Allergy Clin. Immunol., 2015, 136(6), 1573-1580.
[http://dx.doi.org/10.1016/j.jaci.2015.04.042] [PMID: 26071937]
[35]
De Benedetto, A.; Kubo, A.; Beck, L.A. Skin barrier disruption: A requirement for allergen sensitization? J. Invest. Dermatol., 2012, 132(3), 949-963.
[http://dx.doi.org/10.1038/jid.2011.435] [PMID: 22217737]
[36]
Cork, M.J.; Robinson, D.A.; Vasilopoulos, Y.; Ferguson, A.; Moustafa, M.; MacGowan, A.; Duff, G.W.; Ward, S.J.; Tazi-Ahnini, R. New perspectives on epidermal barrier dysfunction in atopic dermatitis: Gene–environment interactions. J. Allergy Clin. Immunol., 2006, 118(1), 3-21.
[http://dx.doi.org/10.1016/j.jaci.2006.04.042] [PMID: 16815133]
[37]
Eberlein-König, B.; Schäfer, T.; Huss-Marp, J.; Darsow, U.; Möhrenschlager, M.; Herbert, O.; Abeck, D.; Krämer, U.; Behrendt, H.; Ring, J. Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. Acta Derm. Venereol., 2000, 80(3), 188-191.
[http://dx.doi.org/10.1080/000155500750042943] [PMID: 10954209]
[38]
White, M.I.; Jenkinson, D.M.; Lloyd, D.H. The effect of washing on the thickness of the stratum corneum in normal and atopic individuals. Br. J. Dermatol., 1987, 116(4), 525-530.
[http://dx.doi.org/10.1111/j.1365-2133.1987.tb05873.x] [PMID: 3580287]
[39]
Elias, P.M.; Schmuth, M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr. Allergy Asthma Rep., 2009, 9(4), 265-272.
[http://dx.doi.org/10.1007/s11882-009-0037-y] [PMID: 19656472]
[40]
Sato, J.; Denda, M.; Chang, S.; Elias, P.M.; Feingold, K.R. Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis. J. Invest. Dermatol., 2002, 119(4), 900-904.
[http://dx.doi.org/10.1046/j.1523-1747.2002.00589.x] [PMID: 12406336]
[41]
Al-Jaberi, H.; Marks, R. Studies of the clinically uninvolved skin in patients with dermatitis. Br. J. Dermatol., 1984, 111(4), 437-443.
[http://dx.doi.org/10.1111/j.1365-2133.1984.tb06606.x] [PMID: 6487546]
[42]
Colloff, M.J. Exposure to house dust mites in homes of people with atopic dermatitis. Br. J. Dermatol., 1992, 127(4), 322-327.
[http://dx.doi.org/10.1111/j.1365-2133.1992.tb00449.x] [PMID: 1419752]
[43]
Singhal, M.; Khanna, S.; Nasa, A.T. Cosmeceuticals for the skin: an overview. Asian J. Pharm. Clin. Res., 2011, 4(2), 1-6.
[44]
Chaudhari, P.M.; Kawade, P.V.; Funne, S.M. Cosmeceuticals-A review. Pharm. Technol. Int, 2011, 3, 774-798.
[45]
Li, D.; Wu, Z.; Martini, N.; Wen, J. Advanced carrier systems in cosmetics and cosmeceuticals: a review. J. Cosmet. Sci., 2011, 62(6), 549-563.
[PMID: 22682399]
[46]
Kurata, Y. New Raw materials and technologies in cosmetics: Properties and applications of plant extract complexes. Fragr. J., 1994, 22(2), 49-53.
[47]
Wanjari, N.; Waghmare, J. A review on latest trend of cosmetics-cosmeceuticals. Int. J. Pharma Res. Rev., 2015, 4, 45-51.
[48]
Saha, R. Cosmeceuticals and herbal drugs: Practical uses. Int. J. Pharma Sci., 2012, 3(1), 59.
[49]
Pandey, S.; Meshya, N.; Viral, D. Herbs play an important role in the field of cosmetics. Int. J. Pharm. Tech. Res., 2010, 2(1), 632-639.
[50]
Gediya, S.K.; Mistry, R.B.; Patel, U.K.; Blessy, M.; Jain, H.N. Herbal plants: Used as a cosmetics. J. Nat. Prod. Plant Resour, 2011, 1(1), 24-32.
[51]
Dureja, H.; Kaushik, D.; Gupta, M.; Kumar, V.; Lather, V. Cosmeceuticals: An emerging concept. Indian J. Pharmacol., 2005, 37(3), 155.
[http://dx.doi.org/10.4103/0253-7613.16211]
[52]
Saeki, H.; Furue, M.; Furukawa, F.; Hide, M.; Ohtsuki, M.; Katayama, I.; Sasaki, R.; Suto, H.; Takehara, K. Guidelines for management of atopic dermatitis. J. Dermatol., 2009, 36(10), 563-577.
[http://dx.doi.org/10.1111/j.1346-8138.2009.00706.x] [PMID: 19785716]
[53]
Grimalt, R.; Mengeaud, V.; Cambazard, F. The steroid-sparing effect of an emollient therapy in infants with atopic dermatitis: a randomized controlled study. Dermatol, 2007, 214(1), 61-67.
[http://dx.doi.org/10.1159/000096915] [PMID: 17191050]
[54]
Sharma, P. Cosmeceuticals: Regulatory scenario in US. Europe & India. Pharm. Technol. Int, 2011, 3, 1512-1535.
[55]
Gupta, R.K.; Soni, P.; Shrivastava, J.; Rajput, P.; Parashar, S. Cosmeceutical role of Medicinal plants/Herbs: A Review on commercially available cosmetic ingredients. Int. J. Innovative Sci. & Technol., 2018, 9, 70-73.
[http://dx.doi.org/10.22270/ijist.v3i4.27]
[56]
Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 1998, 253(2), 222-227.
[http://dx.doi.org/10.1006/bbrc.1998.9681] [PMID: 9878519]
[57]
Svobodová, A.; Psotová, J.; Walterová, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2003, 147(2), 137-145.
[http://dx.doi.org/10.5507/bp.2003.019] [PMID: 15037894]
[58]
Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med., 1992, 13(4), 435-448.
[http://dx.doi.org/10.1016/0891-5849(92)90184-I] [PMID: 1398220]
[59]
Bonina, F.; Puglia, C.; Ventura, D.; Aquino, R.; Tortora, S.; Sacchi, A.; Saija, A.; Tomaino, A.; Pellegrino, M.L.; de Caprariis, P. In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L buds. J. Cosmet. Sci., 2002, 53(6), 321-335.
[PMID: 12512010]
[60]
Ouimet, M.A.; Faig, J.J.; Yu, W.; Uhrich, K.E. Ferulic acid-based polymers with glycol functionality as a versatile platform for topical applications. Biomacromolecules, 2015, 16(9), 2911-2919.
[http://dx.doi.org/10.1021/acs.biomac.5b00824] [PMID: 26258440]
[61]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.), 2014, 4, 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[62]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[63]
Rezaeiroshan, A.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Hedayatizadeh-Omran, A.; Goli, H.; Nokhodchi, A. Vesicular formation of trans-ferulic acid: An efficient approach to improve the radical scavenging and antimicrobial properties. J. Pharm. Innov., 2022, 17(3), 652-661.
[http://dx.doi.org/10.1007/s12247-021-09543-8]
[64]
Das, S.; Wong, A.B.H. Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci. Rep., 2020, 10(1), 12288.
[http://dx.doi.org/10.1038/s41598-020-68732-6] [PMID: 32703966]
[65]
Pereira, G.A.; Arruda, H.S.; de Morais, D.R.; Peixoto Araujo, N.M.; Pastore, G.M. Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chem., 2020, 310, 125857.
[http://dx.doi.org/10.1016/j.foodchem.2019.125857] [PMID: 31787395]
[66]
Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem., 2020, 330, 127266.
[http://dx.doi.org/10.1016/j.foodchem.2020.127266] [PMID: 32540528]
[67]
Nouri, A.; Heibati, F.; Heidarian, E. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(1), 1-9.
[http://dx.doi.org/10.1007/s00210-020-01931-0] [PMID: 32734364]
[68]
Hu, G.; Zhou, X. Gallic acid ameliorates atopic dermatitis-like skin inflammation through immune regulation in a mouse model. Clin. Cosmet. Investig. Dermatol., 2021, 14, 1675-1683.
[http://dx.doi.org/10.2147/CCID.S327825] [PMID: 34815684]
[69]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Wu, C.H.; Wang, C.J. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem. Toxicol., 2010, 48(8-9), 2508-2516.
[http://dx.doi.org/10.1016/j.fct.2010.06.024] [PMID: 20600540]
[70]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol., 2013, 266(1), 76-85.
[http://dx.doi.org/10.1016/j.taap.2012.10.019] [PMID: 23153558]
[71]
Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminalia chebula galls. Pharm. Biol., 2011, 49(6), 553-562.
[http://dx.doi.org/10.3109/13880209.2010.528432] [PMID: 21284426]
[72]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[73]
Braegelmann, C.; Niebel, D.; Ferring-Schmitt, S.; Fetter, T.; Landsberg, J.; Hölzel, M.; Effern, M.; Glodde, N.; Steinbuch, S.; Bieber, T.; Wenzel, J. Epigallocatechin‐3‐gallate exhibits anti‐inflammatory effects in a human interface dermatitis model-Implications for therapy. J. Eur. Acad. Dermatol. Venereol., 2022, 36(1), 144-153.
[http://dx.doi.org/10.1111/jdv.17710] [PMID: 34585800]
[74]
Mazyed, E.A.; Helal, D.A.; Elkhoudary, M.M.; Abd Elhameed, A.G.; Yasser, M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. J. Pharm., 2021, 14(1), 68.
[75]
Juhász, M.L.W.; Levin, M.K.; Marmur, E.S. The use of natural ingredients in innovative Korean cosmeceuticals. J. Cosmet. Dermatol., 2018, 17(3), 305-312.
[http://dx.doi.org/10.1111/jocd.12492] [PMID: 29363245]
[76]
Frasheri, L.; Schielein, M.C.; Tizek, L.; Mikschl, P.; Biedermann, T.; Zink, A. Great green tea ingredient? A narrative literature review on epigallocatechin gallate and its biophysical properties for topical use in dermatology. Phytother. Res., 2020, 34(9), 2170-2179.
[http://dx.doi.org/10.1002/ptr.6670] [PMID: 32189392]
[77]
Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296, 190-201.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.029] [PMID: 30682442]
[78]
Fangueiro, J.F.; Calpena, A.C.; Clares, B.; Andreani, T.; Egea, M.A.; Veiga, F.J.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. Int. J. Pharm., 2016, 502(1-2), 161-169.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.039] [PMID: 26921515]
[79]
Scalia, S.; Trotta, V. Bianchi, A In vivo human skin penetration of (–)-epigallocatechin-3-gallate from topical formulations. Acta Pharm., 2014, 64(2), 257-265.
[80]
Drew, V.J.; Huang, H.Y.; Tsai, Z.H.; Tsai, H.H.; Tseng, C.L. Preparation of gelatin/epigallocatechin gallate self-assembly nanoparticles for transdermal drug delivery. J. Polym. Res., 2017, 24(11), 188.
[http://dx.doi.org/10.1007/s10965-017-1342-0]
[81]
Chiu, Y.H.; Wu, Y.W.; Hung, J.I.; Chen, M.C. Epigallocatechin gallate/L-ascorbic acid–loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater., 2021, 130, 223-233.
[http://dx.doi.org/10.1016/j.actbio.2021.05.032] [PMID: 34087444]
[82]
Shariare, M.H.; Afnan, K.; Iqbal, F.; Altamimi, M.A.; Ahamad, S.R.; Aldughaim, M.S.; Alanazi, F.K.; Kazi, M. Development and optimization of epigallocatechin-3-gallate (EGCG) nano phytosome using design of experiment (DoE) and their in vivo anti-inflammatory studies. MOLEFW, 2020, 25(22), 5453.
[83]
Ming, LJ; Yin, AC Therapeutic effects of glycyrrhizic acid. Nat.prod. communications, 2013, 8(3), 1934578X1300800335.
[http://dx.doi.org/10.1177/1934578X1300800335]
[84]
Kowalska, A.; Kalinowska-Lis, U. 18β-Glycyrrhetinic acid: Its core biological properties and dermatological applications. Int. J. Cosmet. Sci., 2019, 41(4), 325-331.
[PMID: 31166601]
[85]
Sirikudta, W.; Kulthanan, K.; Varothai, S.; Nuchkull, P. Moisturizers for patients with atopic dermatitis: An overview. J. Allergy Ther., 2013, 4(4), 1-6.
[http://dx.doi.org/10.4172/2155-6121.1000143]
[86]
Draelos, Z.D. New treatments for restoring impaired epidermal barrier permeability: Skin barrier repair creams. Clin. Dermatol., 2012, 30(3), 345-348.
[http://dx.doi.org/10.1016/j.clindermatol.2011.08.018] [PMID: 22507050]
[87]
Inoue, H.; Saito, H.; Koshihara, Y.; Murota, S.I. Inhibitory effect of glycyrrhetinic acid derivatives on lipoxygenase and prostaglandin synthetase. Chem. Pharm. Bull. (Tokyo), 1986, 34(2), 897-901.
[http://dx.doi.org/10.1248/cpb.34.897] [PMID: 3085963]
[88]
Chauhan, S.; Gulati, N.; Nagaich, U. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery. Int. J. Polym. Mater., 2019, 68(5), 266-277.
[http://dx.doi.org/10.1080/00914037.2018.1443932]
[89]
Barbosa, A.I.; Torres, T.; Lima, S.A.C.; Reis, S. Hydrogels: A promising vehicle for the topical management of atopic dermatitis. Adv. Ther. (Weinh.), 2021, 4(7), 2100028.
[http://dx.doi.org/10.1002/adtp.202100028]
[90]
Guo, T.; Lu, J.; Fan, Y.; Zhang, Y.; Yin, S.; Sha, X.; Feng, N. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. Int. J. Pharm., 2021, 604, 120762.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120762] [PMID: 34082000]
[91]
Zhou, Y.W.; Xie, Y.; Tang, L.S.; Pu, D.; Zhu, Y.J.; Liu, J.Y.; Ma, X.L. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct. Target. Ther., 2021, 6(1), 317.
[http://dx.doi.org/10.1038/s41392-021-00733-x] [PMID: 34446699]
[92]
Singh, S.; Khajuria, A.; Taneja, S.C.; Johri, R.K.; Singh, J.; Qazi, G.N. Boswellic acids: A leukotriene inhibitor also effective through topical application in inflammatory disorders. Phytomedicine, 2008, 15(6-7), 400-407.
[http://dx.doi.org/10.1016/j.phymed.2007.11.019] [PMID: 18222672]
[93]
Das, S.A.; Mandal, S.K. Current developments on anti-inflammatory natural medicines. J. Neurodegener. Dis., 2018, 23, 24.
[94]
Ammon, H.P. Boswellic acids and their role in chronic inflammatory diseases; Anti-inflammatory Nutraceuticals and Chronic Diseases, 2016, pp. 291-327.
[http://dx.doi.org/10.1007/978-3-319-41334-1_13]
[95]
Ríos, J.L.; Recio, M.C.; Maáñez, S.; Giner, R.M. Natural triterpenoids as anti-inflammatory agents. Studies in Natural Products Chemistry, 2000, 22, 93-143.
[http://dx.doi.org/10.1016/S1572-5995(00)80024-1]
[96]
Poeckel, D.; Werz, O. Boswellic acids: biological actions and molecular targets. Curr. Med. Chem., 2006, 13(28), 3359-3369.
[http://dx.doi.org/10.2174/092986706779010333] [PMID: 17168710]
[97]
Capasso, F.; Gaginella, T.S.; Grandolini, G.; Izzo, A.A. Anti-inflammatory Plants. In: Phytotherapy; Springer: Berlin, Heidelberg, 2003; pp. 173-191.
[http://dx.doi.org/10.1007/978-3-642-55528-2_17]
[98]
Gibbons, S. An overview of plant extracts as potential therapeutics. Expert Opin. Ther. Pat., 2003, 13(4), 489-497.
[http://dx.doi.org/10.1517/13543776.13.4.489]
[99]
Togni, S.; Maramaldi, G.; Di Pierro, F.; Biondi, M. A cosmeceutical formulation based on boswellic acids for the treatment of erythematous eczema and psoriasis. Clin. Cosmet. Investig. Dermatol., 2014, 7, 321-327.
[PMID: 25419153]
[100]
Goel, A.; Ahmad, F.J.; Singh, R.M.; Singh, G.N. 3-Acetyl-11-keto-β-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J. Pharm. Pharmacol., 2010, 62(2), 273-278.
[http://dx.doi.org/10.1211/jpp.62.02.0016] [PMID: 20487208]
[101]
Mehta, M.; Dureja, H.; Garg, M. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Deliv., 2016, 23(8), 3072-3081.
[http://dx.doi.org/10.3109/10717544.2016.1149744] [PMID: 26953869]
[102]
Mostafa, D.M.; Ammar, N.M.; Basha, M.; Hussein, R.A.; El Awdan, S.; Awad, G. Transdermal microemulsions of Boswellia carterii Bird: Formulation, characterization and in vivo evaluation of anti-inflammatory activity. Drug Deliv., 2015, 22(6), 748-756.
[http://dx.doi.org/10.3109/10717544.2014.898347] [PMID: 24725029]
[103]
Kang, M.J.; Eum, J.Y.; Park, S.H.; Kang, M.H.; Park, K.H.; Choi, S.E.; Lee, M.W.; Kang, K.H.; Oh, C.H.; Choi, Y.W. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Int. J. Pharm., 2010, 402(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.030] [PMID: 20888893]
[104]
Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 2019, 166, 112066.
[http://dx.doi.org/10.1016/j.phytochem.2019.112066] [PMID: 31325613]
[105]
Wu, S.; Pang, Y.; He, Y.; Zhang, X.; Peng, L.; Guo, J.; Zeng, J. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed. Pharmacother., 2021, 140, 111741.
[http://dx.doi.org/10.1016/j.biopha.2021.111741] [PMID: 34087696]
[106]
Kim, Y.J.; Choi, S.E.; Lee, M.W.; Lee, C.S. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid. J. Pharm. Pharmacol., 2010, 60(11), 1465-1472.
[http://dx.doi.org/10.1211/jpp.60.11.0007] [PMID: 18957167]
[107]
Gupta, V; Sanyogita, K; Manigauha, A Novel formulation of aloe vera and quercetin in the management of dermal disease: Eczema. Available from: https://www.researchgate.net/publication/ 350088954_Novel_Formulation_of_Aloe_Vera_and_Quercetin_in _the_Management_of_Dermal_Disease_Eczema
[108]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[109]
Hatahet, T. Comparison of topical quercetin nanoformulations for skin protection. Available from: https://theses.hal.science/tel- 01760746/document
[110]
Saija, A.; Tomaino, A.; Trombetta, D.; Pellegrino, M.L.; Tita, B.; Messina, C.; Bonina, F.P.; Rocco, C.; Nicolosi, G.; Castelli, F. ‘In vitro’ antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur. J. Pharm. Biopharm., 2003, 56(2), 167-174.
[http://dx.doi.org/10.1016/S0939-6411(03)00101-2] [PMID: 12957629]
[111]
Hollman, P.C.H.; Bijsman, M.N.C.P.; van Gameren, Y.; Cnossen, E.P.J.; de Vries, J.H.M.; Katan, M.B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res., 1999, 31(6), 569-573.
[http://dx.doi.org/10.1080/10715769900301141] [PMID: 10630681]
[112]
Rothwell, J.A.; Day, A.J.; Morgan, M.R.A. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem., 2005, 53(11), 4355-4360.
[http://dx.doi.org/10.1021/jf0483669] [PMID: 15913295]
[113]
Du, G.; Zhao, Z.; Chen, Y.; Li, Z.; Tian, Y.; Liu, Z.; Liu, B.; Song, J. Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway. Neurol. Res., 2016, 38(11), 1012-1019.
[http://dx.doi.org/10.1080/01616412.2016.1240393] [PMID: 27690831]
[114]
Shaik, Y.B.; Castellani, M.L.; Perrella, A.; Conti, F.; Salini, V.; Tete, S.; Madhappan, B.; Vecchiet, J.; De Lutiis, M.A.; Caraffa, A.; Cerulli, G. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Regul. Homeost. Agents, 2006, 20(3-4), 47-52.
[PMID: 18187018]
[115]
Caddeo, C; Díez-Sales, O; Pons, R; Fernàndez-Busquets, X; Fadda, AM; Manconi, M Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation Pharmares., 2014, 31(4), 959-68.
[116]
Mallya, R.; Patil, K. Recent developments in formulation design of a multifunctional phytochemical quercetin: A review. Pharmacogn. Rev., 2021, 15, 29.
[117]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Watanabe, K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov. Today, 2016, 21(4), 632-639.
[http://dx.doi.org/10.1016/j.drudis.2016.02.011] [PMID: 26905599]
[118]
Mehta, P.; Lohidasan, S.; Mahadik, K.R. Pharmacokinetic behaviour of clinically important TCM prescriptions. Orient. Pharm. Exp. Med., 2017, 17(3), 171-188.
[http://dx.doi.org/10.1007/s13596-017-0281-y]
[119]
Mehta, P.; Dhapte, V. A comprehensive review on pharmacokinetic profile of some traditional Chinese medicines. New J. Sci., 2016, 2016, Article ID 7830367.
[http://dx.doi.org/10.1155/2016/7830367]
[120]
Salehi, B.; Fokou, P.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[121]
Joshi, R.; Kulkarni, Y.A.; Wairkar, S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci., 2018, 215, 43-56.
[http://dx.doi.org/10.1016/j.lfs.2018.10.066] [PMID: 30391464]
[122]
Escribano-Ferrer, E. QueraltRegué, J.; Garcia-Sala, X.; Boix Mon Raventos, RM. In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringeninchalcone, and quercetin in mice. J. Nat. Prod., 2019, 82(2), 177-182.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00366] [PMID: 30688453]
[123]
Ribeiro, I.A.; Rocha, J.; Sepodes, B.; Mota-Filipe, H.; Ribeiro, M.H. Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. J. Mol. Catal., B Enzym., 2008, 52-53, 13-18.
[http://dx.doi.org/10.1016/j.molcatb.2007.10.011]
[124]
Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji, R.; Saito, M.; Obata, A.; Kikuchi, M. Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem., 2004, 68(8), 1706-1711.
[http://dx.doi.org/10.1271/bbb.68.1706] [PMID: 15322354]
[125]
Hirai, S.; Kim, Y.I.I.; Goto, T.; Kang, M.S.; Yoshimura, M.; Obata, A.; Yu, R.; Kawada, T. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci., 2007, 81(16), 1272-1279.
[http://dx.doi.org/10.1016/j.lfs.2007.09.001] [PMID: 17915259]
[126]
Joshi, H.; Hegde, A.R.; Shetty, P.K.; Gollavilli, H.; Managuli, R.S.; Kalthur, G.; Mutalik, S. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 69-81.
[http://dx.doi.org/10.1111/phpp.12335] [PMID: 28767160]
[127]
Kaity, S.; Maiti, S.; Ghosh, A.; Pal, D.; Ghosh, A.; Banerjee, S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res., 2010, 1(3), 283-290.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[128]
Pleguezuelos-Villa, M.; Mir-Palomo, S.; Díez-Sales, O.; Buso, M.A.O.V.; Sauri, A.R.; Nácher, A. A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surf. B Biointerfaces, 2018, 162, 265-270.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.068] [PMID: 29216513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy