Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Tumor-selective Blockade of CD47 Signaling with CD47 Antibody for Enhanced Anti-tumor Activity in Malignant Meningioma

Author(s): Xiaotong Liu, Huarong Zhang, Chaohu Wang, Zhiyong Li, Qianchao Zhu, Yiwen Feng, Jun Fan, Songtao Qi*, Zhiyong Wu* and Yi Liu*

Volume 21, Issue 10, 2023

Published on: 27 June, 2023

Page: [2159 - 2173] Pages: 15

DOI: 10.2174/1570159X21666230511123157

Price: $65

Abstract

Background: Patients with WHO grade III meningioma have a poor prognosis with a median survival of less than two years and a high risk of recurrence. However, traditional treatment options have failed to improve prognosis. Therefore, development of novel immunotherapy targets is urgently needed. CD47 acting as a “don't eat me” signal to macrophages can trigger tumor immune escape. However, the role of CD47 in malignant meningioma is not well understood.

Methods: We collected 190 clinical meningioma samples and detected the expression of CD47 and immune infiltration in WHO grade I-III by immunohistochemistry, western blot, qPCR. We also examined the functional effects of anti-CD47 on cell proliferation, migration and invasion, macrophagemediated phagocytosis and tumorigenicity both in vitro and in vivo.

Results: We found that the expression of CD47 was increased in malignant meningioma along with a decreased number of T cells and an increase in CD68+ macrophages. Blocking CD47 with anti-CD47 antibody (B6H12) suppressed tumor cell growth, motility and promoted macrophage-mediated phagocytosis in IOMM-Lee cells in vitro. In vivo experiments showed that anti-CD47 antibody (B6H12 or MIAP301) significantly inhibited the tumor growth and this effect was partly blocked by the depletion of macrophages. Finally, p-ERK and EGFR showed higher expression in malignant meningioma with high expression of CD47, which was verified by western blot.

Conclusion: Our results demonstrated that CD47 maybe involved in the meningioma progression and prognosis and offered a novel therapeutic option by targeting CD47 in malignant meningioma.

Keywords: Malignant meningioma, CD47, immune escape, EMT, targeted therapy, macrophages.

« Previous
Graphical Abstract
[1]
Riemenschneider, M.J.; Perry, A.; Reifenberger, G. Histological classification and molecular genetics of meningiomas. Lancet Neurol., 2006, 5(12), 1045-1054.
[http://dx.doi.org/10.1016/S1474-4422(06)70625-1] [PMID: 17110285]
[2]
Whittle, I.R.; Smith, C.; Navoo, P.; Collie, D. Meningiomas. Lancet, 2004, 363(9420), 1535-1543.
[http://dx.doi.org/10.1016/S0140-6736(04)16153-9] [PMID: 15135603]
[3]
Goldbrunner, R.; Minniti, G.; Preusser, M.; Jenkinson, M.D.; Sallabanda, K.; Houdart, E.; von Deimling, A.; Stavrinou, P.; Lefranc, F.; Lund-Johansen, M.; Moyal, E.C.J.; Brandsma, D.; Henriksson, R.; Soffietti, R.; Weller, M. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol., 2016, 17(9), e383-e391.
[http://dx.doi.org/10.1016/S1470-2045(16)30321-7] [PMID: 27599143]
[4]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[5]
Han, S.J.; Reis, G.; Kohanbash, G.; Shrivastav, S.; Magill, S.T.; Molinaro, A.M.; McDermott, M.W.; Theodosopoulos, P.V.; Aghi, M.K.; Berger, M.S.; Butowski, N.A.; Barani, I.; Phillips, J.J.; Perry, A.; Okada, H. Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J. Neurooncol., 2016, 130(3), 543-552.
[http://dx.doi.org/10.1007/s11060-016-2256-0] [PMID: 27624915]
[6]
Sick, E.; Jeanne, A.; Schneider, C.; Dedieu, S.; Takeda, K.; Martiny, L. CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br. J. Pharmacol., 2012, 167(7), 1415-1430.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02099.x] [PMID: 22774848]
[7]
Betancur, P.A.; Abraham, B.J.; Yiu, Y.Y.; Willingham, S.B.; Khameneh, F.; Zarnegar, M.; Kuo, A.H.; McKenna, K.; Kojima, Y.; Leeper, N.J.; Ho, P.; Gip, P.; Swigut, T.; Sherwood, R.I.; Clarke, M.F.; Somlo, G.; Young, R.A.; Weissman, I.L.A. CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat. Commun., 2017, 8(1), 14802.
[http://dx.doi.org/10.1038/ncomms14802] [PMID: 28378740]
[8]
Advani, R.; Flinn, I.; Popplewell, L.; Forero, A.; Bartlett, N.L.; Ghosh, N.; Kline, J.; Roschewski, M.; LaCasce, A.; Collins, G.P.; Tran, T.; Lynn, J.; Chen, J.Y.; Volkmer, J.P.; Agoram, B.; Huang, J.; Majeti, R.; Weissman, I.L.; Takimoto, C.H.; Chao, M.P.; Smith, S.M. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med., 2018, 379(18), 1711-1721.
[http://dx.doi.org/10.1056/NEJMoa1807315] [PMID: 30380386]
[9]
Schürch, C.M.; Roelli, M.A.; Forster, S.; Wasmer, M.H.; Brühl, F.; Maire, R.S.; Di Pancrazio, S.; Ruepp, M.D.; Giger, R.; Perren, A.; Schmitt, A.M.; Krebs, P.; Charles, R.P.; Dettmer, M.S. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid, 2019, 29(7), 979-992.
[http://dx.doi.org/10.1089/thy.2018.0555] [PMID: 30938231]
[10]
Liu, X.; Wu, X.; Wang, Y.; Li, Y.; Chen, X.; Yang, W.; Jiang, L. CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway. Oncol. Res., 2019, 27(4), 415-422.
[http://dx.doi.org/10.3727/096504018X15155538502359] [PMID: 29321087]
[11]
Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; Lovelace, P.; Scheeren, F.A.; Chao, M.P.; Weiskopf, K.; Tang, C.; Volkmer, A.K.; Naik, T.J.; Storm, T.A.; Mosley, A.R.; Edris, B.; Schmid, S.M.; Sun, C.K.; Chua, M.S.; Murillo, O.; Rajendran, P.; Cha, A.C.; Chin, R.K.; Kim, D.; Adorno, M.; Raveh, T.; Tseng, D.; Jaiswal, S.; Enger, P.Ø.; Steinberg, G.K.; Li, G.; So, S.K.; Majeti, R.; Harsh, G.R.; van de Rijn, M.; Teng, N.N.H.; Sunwoo, J.B.; Alizadeh, A.A.; Clarke, M.F.; Weissman, I.L. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6662-6667.
[http://dx.doi.org/10.1073/pnas.1121623109] [PMID: 22451913]
[12]
Hendriks, M.A.J.M.; Ploeg, E.M.; Koopmans, I.; Britsch, I.; Ke, X.; Samplonius, D.F.; Helfrich, W. Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRPα “don’t eat me” immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation. OncoImmunology, 2020, 9(1), 1824323.
[http://dx.doi.org/10.1080/2162402X.2020.1824323] [PMID: 33299654]
[13]
Wang, C.L.; Lin, M.J.; Hsu, C.Y.; Lin, H.Y.; Tsai, H.P.; Long, C.Y.; Tsai, E.M.; Hsieh, T.H.; Wu, C.H. CD47 promotes cell growth and motility in epithelial ovarian cancer. Biomed. Pharmacother., 2019, 119, 109105.
[http://dx.doi.org/10.1016/j.biopha.2019.109105] [PMID: 31493748]
[14]
Du, Z.; Abedalthagafi, M.; Aizer, A.A.; McHenry, A.R.; Sun, H.H.; Bray, M.A.; Viramontes, O.; Machaidze, R.; Brastianos, P.K.; Reardon, D.A.; Dunn, I.F.; Freeman, G.J.; Ligon, K.L.; Carpenter, A.E.; Alexander, B.M.; Agar, N.Y.; Rodig, S.J.; Bradshaw, E.M.; Santagata, S. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget, 2015, 6(7), 4704-4716.
[http://dx.doi.org/10.18632/oncotarget.3082] [PMID: 25609200]
[15]
Wang, Y.; Deng, J.; Wang, L.; Zhou, T.; Yang, J.; Tian, Z.; Yang, J.; Chen, H.; Tang, X.; Zhao, S.; Zhou, L.; Tong, A.; Xu, J. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and VISTA in craniopharyngioma. J. Immunother. Cancer, 2020, 8(2), e000406.
[http://dx.doi.org/10.1136/jitc-2019-000406] [PMID: 32958683]
[16]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[17]
Yang, K.; Xu, J.; Liu, Q.; Li, J.; Xi, Y. Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathol. Res. Pract., 2019, 215(2), 265-271.
[http://dx.doi.org/10.1016/j.prp.2018.10.021] [PMID: 30466764]
[18]
Luo, Y.; Sun, X.; Huang, L.; Yan, J.; Yu, B.Y.; Tian, J. Artemisinin-based smart nanomedicines with self-supply of ferrous ion to enhance oxidative stress for specific and efficient cancer treatment. ACS Appl. Mater. Interfaces, 2019, 11(33), 29490-29497.
[http://dx.doi.org/10.1021/acsami.9b07390] [PMID: 31355624]
[19]
Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333.
[http://dx.doi.org/10.1038/nprot.2007.30] [PMID: 17406593]
[20]
Hu, M.X.; Liu, J.L.; Chen, X.B.; Xu, A.Q.; Shu, S.R.; Wang, C.H.; Liu, Y. Primary culture of human malignant meningioma cells and its intracranial orthotopic transplantation in nude mice. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(3), 340-345.
[PMID: 29643042]
[21]
Dheilly, E.; Moine, V.; Broyer, L.; Salgado-Pires, S.; Johnson, Z.; Papaioannou, A.; Cons, L.; Calloud, S.; Majocchi, S.; Nelson, R.; Rousseau, F.; Ferlin, W.; Kosco-Vilbois, M.; Fischer, N.; Masternak, K. Selective blockade of the ubiquitous checkpoint receptor cd47 is enabled by dual-targeting bispecific antibodies. Mol. Ther., 2017, 25(2), 523-533.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.006] [PMID: 28153099]
[22]
Kojima, Y.; Volkmer, J.P.; McKenna, K.; Civelek, M.; Lusis, A.J.; Miller, C.L.; Direnzo, D.; Nanda, V.; Ye, J.; Connolly, A.J.; Schadt, E.E.; Quertermous, T.; Betancur, P.; Maegdefessel, L.; Matic, L.P.; Hedin, U.; Weissman, I.L.; Leeper, N.J. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 2016, 536(7614), 86-90.
[http://dx.doi.org/10.1038/nature18935] [PMID: 27437576]
[23]
Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol., 2018, 15(5), 325-340.
[http://dx.doi.org/10.1038/nrclinonc.2018.29] [PMID: 29508855]
[24]
Thompson, R.H.; Gillett, M.D.; Cheville, J.C.; Lohse, C.M.; Dong, H.; Webster, W.S.; Krejci, K.G.; Lobo, J.R.; Sengupta, S.; Chen, L.; Zincke, H.; Blute, M.L.; Strome, S.E.; Leibovich, B.C.; Kwon, E.D. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 17174-17179.
[http://dx.doi.org/10.1073/pnas.0406351101] [PMID: 15569934]
[25]
Velcheti, V.; Schalper, K.A.; Carvajal, D.E.; Anagnostou, V.K.; Syrigos, K.N.; Sznol, M.; Herbst, R.S.; Gettinger, S.N.; Chen, L.; Rimm, D.L. Programmed death ligand-1 expression in non-small cell lung cancer. Lab. Invest., 2014, 94(1), 107-116.
[http://dx.doi.org/10.1038/labinvest.2013.130] [PMID: 24217091]
[26]
Veillette, A.; Chen, J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol., 2018, 39(3), 173-184.
[http://dx.doi.org/10.1016/j.it.2017.12.005] [PMID: 29336991]
[27]
Liu, X.; Pu, Y.; Cron, K.; Deng, L.; Kline, J.; Frazier, W.A.; Xu, H.; Peng, H.; Fu, Y.X.; Xu, M.M. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat. Med., 2015, 21(10), 1209-1215.
[http://dx.doi.org/10.1038/nm.3931] [PMID: 26322579]
[28]
Tseng, D.; Volkmer, J.P.; Willingham, S.B.; Contreras-Trujillo, H.; Fathman, J.W.; Fernhoff, N.B.; Seita, J.; Inlay, M.A.; Weiskopf, K.; Miyanishi, M.; Weissman, I.L. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. USA, 2013, 110(27), 11103-11108.
[http://dx.doi.org/10.1073/pnas.1305569110] [PMID: 23690610]
[29]
Zhang, X.; Wang, S.; Nan, Y.; Fan, J.; Chen, W.; Luan, J.; Wang, Y.; Liang, Y.; Li, S.; Tian, W.; Ju, D. Inhibition of autophagy potentiated the anti-tumor effects of VEGF and CD47 bispecific therapy in glioblastoma. Appl. Microbiol. Biotechnol., 2018, 102(15), 6503-6513.
[http://dx.doi.org/10.1007/s00253-018-9069-3] [PMID: 29754163]
[30]
Kamijo, H.; Miyagaki, T.; Takahashi-Shishido, N.; Nakajima, R.; Oka, T.; Suga, H.; Sugaya, M.; Sato, S. Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47. Leukemia, 2020, 34(3), 845-856.
[http://dx.doi.org/10.1038/s41375-019-0622-6] [PMID: 31712778]
[31]
Kaur, S.; Elkahloun, A.G.; Singh, S.P.; Chen, Q.R.; Meerzaman, D.M.; Song, T.; Manu, N.; Wu, W.; Mannan, P.; Garfield, S.H.; Roberts, D.D. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget, 2016, 7(9), 10133-10152.
[http://dx.doi.org/10.18632/oncotarget.7100] [PMID: 26840086]
[32]
Hu, T.; Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Zhang, Y.; Song, Y.; Hu, J.; He, X.; Xiao, J.; King, R.J.; Wu, X.; Lan, P. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis. Theranostics, 2020, 10(9), 4056-4072.
[http://dx.doi.org/10.7150/thno.40860] [PMID: 32226539]
[33]
Martin-Orozco, E.; Sanchez-Fernandez, A.; Ortiz-Parra, I.; Ayala-San Nicolas, M. WNT signaling in tumors: The way to evade drugs and immunity. Front. Immunol., 2019, 10, 2854.
[http://dx.doi.org/10.3389/fimmu.2019.02854] [PMID: 31921125]
[34]
Subramanian, S.; Parthasarathy, R.; Sen, S.; Boder, E.T.; Discher, D.E. Species- and cell type-specific interactions between CD47 and human SIRPα. Blood, 2006, 107(6), 2548-2556.
[http://dx.doi.org/10.1182/blood-2005-04-1463] [PMID: 16291597]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy