Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Meta-Analysis

Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis

Author(s): Boxin Liu, Jinyu Zhang, Zijing Zhou, Baofeng Feng, Jingjing He, Wei Yan, Xinghong Zhou, Asiamah Ernest Amponsah, Ruiyun Guo, Xiaofeng Du, Xin Liu, Huixian Cui*, Timothy O'Brien* and Jun Ma*

Volume 19, Issue 2, 2024

Published on: 15 June, 2023

Page: [220 - 233] Pages: 14

DOI: 10.2174/1574888X18666230510111302

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies.

Methods: A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032.

Results: We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM.

Conclusion: Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.

Keywords: Diabetes cardiomyopathy, mesenchymal stromal cells, meta-analysis, preclinical studies, cardiovascular disease, human health.

Graphical Abstract
[1]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[2]
Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 2021; 18(4): 291-304.
[http://dx.doi.org/10.1038/s41569-020-00465-5] [PMID: 33188304]
[3]
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4] [PMID: 4263660]
[4]
Dillmann WH. Diabetic cardiomyopathy. Circ Res 2019; 124(8): 1160-2.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314665] [PMID: 30973809]
[5]
Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: Molecular abnormalities and phenotypical variants. Heart Fail Rev 2022.
[http://dx.doi.org/10.1007/s10741-021-10200-y] [PMID: 35001338]
[6]
Peterson LR, Gropler RJ. Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res 2020; 126(11): 1628-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315899] [PMID: 32437305]
[7]
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142(3): 375-415.
[http://dx.doi.org/10.1016/j.pharmthera.2014.01.003] [PMID: 24462787]
[8]
Yue P, Arai T, Terashima M, et al. Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol 2007; 292(5): H2106-18.
[http://dx.doi.org/10.1152/ajpheart.00856.2006] [PMID: 17122193]
[9]
Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66.
[http://dx.doi.org/10.1007/s10741-012-9313-3] [PMID: 22453289]
[10]
Chen Y, Liyuan J, Zihui D, et al. Process and mechanism of mesenchymal stem cells in the treatment of diabetic cardiomyopathy. Xiandai Shengwu Yixue Jinzhan 2016; 16(25): 4992-6.
[11]
Mohr A, Zwacka R. The future of mesenchymal stem cell-based therapeutic approaches for cancer – From cells to ghosts. Cancer Lett 2018; 414: 239-49.
[http://dx.doi.org/10.1016/j.canlet.2017.11.025] [PMID: 29175461]
[12]
Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.015] [PMID: 26384579]
[13]
Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem 2020; 465(1-2): 103-14.
[http://dx.doi.org/10.1007/s11010-019-03671-z] [PMID: 31858380]
[14]
Lin YC, Leu S, Sun CK, et al. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy. J Transl Med 2010; 8(1): 88.
[http://dx.doi.org/10.1186/1479-5876-8-88] [PMID: 20868517]
[15]
Chin SP, Maskon O, Tan CS, et al. Synergistic effects of intracoronary infusion of autologous bone marrow-derived mesenchymal stem cells and revascularization procedure on improvement of cardiac function in patients with severe ischemic cardiomyopathy. Stem Cell Investig 2021; 8: 2.
[http://dx.doi.org/10.21037/sci-2020-026] [PMID: 33575315]
[16]
Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: Practical challenges and potential mechanisms. Stem Cell Rev 2013; 9(3): 254-65.
[http://dx.doi.org/10.1007/s12015-012-9375-6] [PMID: 22577007]
[17]
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure. Circ Res 2017; 121(10): 1192-204.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310712] [PMID: 28974553]
[18]
Meng K, Cai H, Cai S, Hong Y, Zhang X. Adiponectin modified BMSCs alleviate heart fibrosis via inhibition TGF-beta1/Smad in diabetic rats. Front Cell Dev Biol 2021; 9: 644160.
[http://dx.doi.org/10.3389/fcell.2021.644160] [PMID: 33829019]
[19]
Yang C, Deng Z, Chen S, et al. Adipose-derived mesenchymal stem cells alleviating heart dysfunction through suppressing MG53 protein in rat model of diabetic cardiomyopathy. Int J Clin Exp Pathol 2017; 10(4): 4009-22.
[20]
Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 2008; 116(2): 104-11.
[http://dx.doi.org/10.1055/s-2007-985154] [PMID: 18286426]
[21]
Monnerat-Cahli G, Trentin-Sonoda M, Guerra B, et al. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int J Cardiol 2014; 171(2): 199-208.
[http://dx.doi.org/10.1016/j.ijcard.2013.12.013] [PMID: 24374203]
[22]
Ali A, Kuo WW, Kuo CH, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton’s jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med 2021; 6(3): e10234.
[http://dx.doi.org/10.1002/btm2.10234] [PMID: 34589606]
[23]
Wu Q, Deng W, Chen B, Xia L, Liang Z. [Effect of BMSCs transplantation on cardiac function of diabetes mellitus rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2009; 23(10): 1241-5.
[PMID: 19957848]
[24]
Zhang N, Li JH, Wang JA, Zhang HK. [The effect of bone marrow mesenchymal stem cell transplantation on diabetic cardiomyopathy]. Zhonghua Xin Xue Guan Bing Za Zhi 2008; 36(12): 1115-9. [in Chinese].
[PMID: 19134282]
[25]
Xiaohua Y. The Effect of Bone Marrow Mesenchymal Stem Cells Transplantation on type 2 Diabetic Cardiomyopathy Rats(in Chinese) 2009.
[26]
Abdel Aziz MT, El-Asmar MF, Haidara M, et al. Effect of bone marrow-derived mesenchymal stem cells on cardiovascular complications in diabetic rats. Med Sci Monit 2008; 14(11): BR249-55.
[PMID: 18971868]
[27]
Jinag W, Zhu F, Zhang Y, et al. Effect of combined valsartan and mesenchymal stem cells therapy on diabetic cardiomyopathy. Med J Wuhan Univ 2013; 34(1): 71-5.
[28]
Pappritz K, Dong F, Miteva K, et al. Impact of syndecan-2-selected mesenchymal stromal cells on the early onset of diabetic cardiomyopathy in diabetic db/db mice. Front Cardiovasc Med 2021; 8: 632728.
[http://dx.doi.org/10.3389/fcvm.2021.632728] [PMID: 34095245]
[29]
Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 2008; 31(2): 103-10.
[http://dx.doi.org/10.1007/BF03345575] [PMID: 18362500]
[30]
Calligaris SD, Conget P. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy. Biol Res 2013; 46(3): 251-5.
[http://dx.doi.org/10.4067/S0716-97602013000300005] [PMID: 24346072]
[31]
Pappritz K, Klein O, Dong F, et al. MALDI‐IMS as a tool to determine the myocardial response to syndecan‐2‐selected mesenchymal stromal cell application in an experimental model of diabetic cardiomyopathy. Proteomics Clin Appl 2021; 15(1): 2000050.
[http://dx.doi.org/10.1002/prca.202000050] [PMID: 33068073]
[32]
Jin L, Zhang J, Deng Z, et al. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther 2020; 11(1): 122.
[http://dx.doi.org/10.1186/s13287-020-01633-7] [PMID: 32183879]
[33]
Jin L, Deng Z, Zhang J, et al. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy. J Transl Med 2019; 17(1): 251.
[http://dx.doi.org/10.1186/s12967-019-1999-8] [PMID: 31382970]
[34]
Ammar HI, Shamseldeen AM, Shoukry HS, et al. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol 2021; 320(4): H1290-302.
[http://dx.doi.org/10.1152/ajpheart.00317.2020] [PMID: 33513084]
[35]
Wassef M, Tork O, Rashed L, Ibrahim W, Morsi H, Rabie D. Mitochondrial dysfunction in diabetic cardiomyopathy: Effect of mesenchymal stem cell with ppar-γ agonist or exendin-4. Exp Clin Endocrinol Diabetes 2018; 126(1): 27-38.
[http://dx.doi.org/10.1055/s-0043-106859] [PMID: 28449155]
[36]
Van Linthout S, Hamdani N, Miteva K, et al. Placenta-derived adherent stromal cells improve diabetes mellitus-associated left ventricular diastolic performance. Stem Cells Transl Med 2017; 6(12): 2135-45.
[http://dx.doi.org/10.1002/sctm.17-0130] [PMID: 29024485]
[37]
Khan M, Ali F, Mohsin S, et al. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 2013; 4(3): 58.
[http://dx.doi.org/10.1186/scrt207] [PMID: 23706645]
[38]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[39]
Qiu J, Luo S, Zhou Z. Research progress of diabetic heart disease. Chin J Arterioscler 2020; 28(8): 679-86.
[40]
Pilz PM, Ward JE, Chang WT, et al. Large and small animal models of heart failure with reduced ejection fraction. Circ Res 2022; 130(12): 1888-905.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.320246] [PMID: 35679365]
[41]
Salden FCWM, Luermans JGLM, Westra SW, et al. Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol 2020; 75(4): 347-59.
[http://dx.doi.org/10.1016/j.jacc.2019.11.040] [PMID: 32000945]
[42]
Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 2003; 41(4): 611-7.
[http://dx.doi.org/10.1016/S0735-1097(02)02869-3] [PMID: 12598073]
[43]
Kasner M, Aleksandrov AS, Westermann D, et al. Functional iron deficiency and diastolic function in heart failure with preserved ejection fraction. Int J Cardiol 2013; 168(5): 4652-7.
[http://dx.doi.org/10.1016/j.ijcard.2013.07.185] [PMID: 23968714]
[44]
Chen X, Li Y, Yuan X, et al. Methazolamide attenuates the development of diabetic cardiomyopathy by promoting β-catenin degradation in type 1 diabetic mice. Diabetes 2022; 71(4): 795-811.
[http://dx.doi.org/10.2337/db21-0506] [PMID: 35043173]
[45]
Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological fundamentals of diabetic cardiomyopathy. Compr Physiol 2017; 7(2): 693-711.
[http://dx.doi.org/10.1002/cphy.c160021] [PMID: 28333387]
[46]
Feng Y, Cai L, Hong W, et al. Rewiring of 3D chromatin topology orchestrates transcriptional reprogramming and the development of human dilated cardiomyopathy. Circulation 2022; 145(22): 1663-83.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.055781] [PMID: 35400201]
[47]
Dong S, Zhang S, Chen Z, et al. Berberine could ameliorate cardiac dysfunction via interfering myocardial lipidomic profiles in the rat model of diabetic cardiomyopathy. Front Physiol 2018; 9: 1042.
[http://dx.doi.org/10.3389/fphys.2018.01042] [PMID: 30131709]
[48]
Sezer M, Kocaaga M, Aslanger E, et al. Bimodal pattern of coronary microvascular involvement in diabetes mellitus. J Am Heart Assoc 2016; 5(11): e003995.
[http://dx.doi.org/10.1161/JAHA.116.003995] [PMID: 27930353]
[49]
Renner S, Blutke A, Clauss S, et al. Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380(2): 341-78.
[http://dx.doi.org/10.1007/s00441-019-03158-9] [PMID: 31932949]
[50]
Georgiadis N, Tsarouhas K, Rezaee R, et al. What is considered cardiotoxicity of anthracyclines in animal studies Corrigendum in /10.3892/or.2020.7717. Oncol Rep 2020; 44(3): 798-818.
[http://dx.doi.org/10.3892/or.2020.7688] [PMID: 32705236]
[51]
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660-71.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[52]
Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16(10): 1905-14.
[http://dx.doi.org/10.1080/15548627.2020.1713641] [PMID: 31965901]
[53]
Zhang M, Sui W, Xing Y, et al. Angiotensin IV attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis. Theranostics 2021; 11(18): 8624-39.
[http://dx.doi.org/10.7150/thno.48561] [PMID: 34522203]
[54]
Segar MW, Khan MS, Patel KV, et al. Prevalence and prognostic implications of diabetes with cardiomyopathy in community-dwelling adults. J Am Coll Cardiol 2021; 78(16): 1587-98.
[http://dx.doi.org/10.1016/j.jacc.2021.08.020] [PMID: 34649696]
[55]
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2022; 229: 107929.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107929] [PMID: 34171341]
[56]
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607.
[http://dx.doi.org/10.1038/s41569-020-0339-2] [PMID: 32080423]
[57]
Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev 2021; 42(1): 29-55.
[http://dx.doi.org/10.1210/endrev/bnaa025] [PMID: 33125468]
[58]
Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014; 19(1): 25-33.
[http://dx.doi.org/10.1007/s10741-013-9378-7] [PMID: 23456446]
[59]
Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol Ther 2006; 111(2): 384-99.
[http://dx.doi.org/10.1016/j.pharmthera.2005.10.008] [PMID: 16343639]
[60]
Liya P, Xiaohui Z, Xinhua Y. Advance of mechanisms of diabetic cardiomyopathy. Chin J Cardiovasc Med 2017; 22(2): 143-6.
[61]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[62]
Zhang Y, Edgley AJ, Cox AJ, et al. FT011, a new anti‐fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail 2012; 14(5): 549-62.
[http://dx.doi.org/10.1093/eurjhf/hfs011] [PMID: 22417655]
[63]
Chen D, Li Q, Meng Z, et al. Bright polymer dots tracking stem cell engraftment and migration to injured mouse liver. Theranostics 2017; 7(7): 1820-34.
[http://dx.doi.org/10.7150/thno.18614] [PMID: 28638470]
[64]
Yin Y, Hao H, Cheng Y, et al. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int Immunopharmacol 2018; 60: 235-45.
[http://dx.doi.org/10.1016/j.intimp.2018.04.051] [PMID: 29778021]
[65]
Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics 2023; 13(2): 685-703.
[http://dx.doi.org/10.7150/thno.73568] [PMID: 36632217]
[66]
da Silva JS, Gonçalves RGJ, Vasques JF, et al. Mesenchymal stem cell therapy in diabetic cardiomyopathy. Cells 2022; 11(2): 240.
[http://dx.doi.org/10.3390/cells11020240] [PMID: 35053356]
[67]
Suzuki K, Miyagawa S, Liu L, et al. Therapeutic efficacy of large aligned cardiac tissue derived from induced pluripotent stem cell in a porcine ischemic cardiomyopathy model. J Heart Lung Transplant 2021; 40(8): 767-77.
[http://dx.doi.org/10.1016/j.healun.2021.04.010] [PMID: 34108109]
[68]
Ye J, Sun H, Zhu P. Advances in pharmacotherapy for diabetic cardiomyopathy. Chin J Geriatr Heart Brain Vessel Dis 2020; 22(5): 551-2.
[69]
Liew A, O’Brien T. The potential of cell-based therapy for diabetes and diabetes-related vascular complications. Curr Diab Rep 2014; 14(3): 469.
[http://dx.doi.org/10.1007/s11892-013-0469-6] [PMID: 24464340]
[70]
Liu M, Chen H, Jiang J, et al. Stem cells and diabetic cardiomyopathy: From pathology to therapy. Heart Fail Rev 2016; 21(6): 723-36.
[http://dx.doi.org/10.1007/s10741-016-9565-4] [PMID: 27221074]
[71]
El Agha E, Kramann R, Schneider RK, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 2017; 21(2): 166-77.
[http://dx.doi.org/10.1016/j.stem.2017.07.011] [PMID: 28777943]
[72]
Davey GC, Patil SB, O’Loughlin A, O’Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol 2014; 5: 86.
[http://dx.doi.org/10.3389/fendo.2014.00086] [PMID: 24936198]
[73]
Florea V, Rieger AC, Natsumeda M, et al. The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovasc Res 2020; 116(13): 2131-41.
[http://dx.doi.org/10.1093/cvr/cvaa004] [PMID: 32053144]
[74]
Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy. J Am Coll Cardiol 2017; 69(5): 526-37.
[http://dx.doi.org/10.1016/j.jacc.2016.11.009] [PMID: 27856208]
[75]
Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: A randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 2015; 36(27): 1744-53.
[http://dx.doi.org/10.1093/eurheartj/ehv136] [PMID: 25926562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy