Review Article

乳腺癌免疫治疗肿瘤标志物的研究进展

卷 24, 期 5, 2024

发表于: 06 June, 2023

页: [547 - 564] 页: 18

弟呕挨: 10.2174/1566524023666230508152817

价格: $65

摘要

尽管近年来乳腺癌治疗取得了显著进展,但它仍然是妇女死亡的主要原因。免疫检查点阻断疗法已经显著改变了乳腺癌的治疗方式,尽管并非所有患者都能从这种改变中受益。目前,免疫检查点阻断在恶性肿瘤中应用的最有效机制尚不清楚,其疗效可能受到多种因素的影响,包括宿主、肿瘤、肿瘤微环境动力学等。因此,迫切需要肿瘤免疫标记物来筛选患者,并帮助确定哪些患者将从乳腺癌免疫治疗中受益。目前,没有单一的肿瘤标志物能够足够准确地预测治疗效果。多种标记物可以结合起来更准确地确定对免疫检查点阻断药物反应良好的患者。在这篇综述中,我们研究了乳腺癌的治疗方法,肿瘤标志物在最大化免疫检查点抑制剂临床疗效中的作用的研究进展,确定新的治疗靶点的前景,以及个性化治疗计划的制定。我们还讨论了肿瘤标志物如何为临床实践提供指导。

关键词: 乳腺癌,免疫治疗,生物标志物,女性癌症,免疫检查点,免疫标志物。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Couzin-Frankel J. Cancer immunotherapy. Science 2013; 342(6165): 1432-3.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[3]
Barroso-Sousa R, Jain E, Cohen O, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol 2020; 31(3): 387-94.
[http://dx.doi.org/10.1016/j.annonc.2019.11.010] [PMID: 32067680]
[4]
Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 18(6): 345-62.
[http://dx.doi.org/10.1038/s41571-021-00473-5] [PMID: 33580222]
[5]
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol 2018; 8: 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[6]
Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013; 14(12): 1212-8.
[http://dx.doi.org/10.1038/ni.2762] [PMID: 24240160]
[7]
Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002; 84(1): 57-62.
[http://dx.doi.org/10.1016/S0165-2478(02)00142-6] [PMID: 12161284]
[8]
Wang M, Yao LC, Cheng M, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 2018; 32(3): 1537-49.
[http://dx.doi.org/10.1096/fj.201700740R] [PMID: 29146734]
[9]
Ikeda S, Okamoto T, Okano S, et al. PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non–small cell lung cancer. J Thorac Oncol 2016; 11(1): 62-71.
[http://dx.doi.org/10.1016/j.jtho.2015.09.010] [PMID: 26762740]
[10]
Zeng Z, Yang B, Liao Z. Biomarkers in immunotherapy-based precision treatments of digestive system tumors. Front Oncol 2021; 11: 650481.
[http://dx.doi.org/10.3389/fonc.2021.650481] [PMID: 33777812]
[11]
Lantuejoul S, Damiola F, Adam J. Selected highlights of the 2019 pulmonary pathology society biennial meeting: PD-L1 test harmonization studies. Transl Lung Cancer Res 2020; 9(3): 906-16.
[http://dx.doi.org/10.21037/tlcr.2020.03.23] [PMID: 32676356]
[12]
Kulangara K, Zhang N, Corigliano E, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 2019; 143(3): 330-7.
[http://dx.doi.org/10.5858/arpa.2018-0043-OA] [PMID: 30028179]
[13]
Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev 2015; 41(10): 868-76.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.001] [PMID: 26589760]
[14]
Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2014; 2(4): 361-70.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0127] [PMID: 24764583]
[15]
Muenst S, Schaerli AR, Gao F, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 2014; 146(1): 15-24.
[http://dx.doi.org/10.1007/s10549-014-2988-5] [PMID: 24842267]
[16]
Buisseret L, Garaud S, de Wind A, et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. OncoImmunology 2017; 6(1): e1257452.
[http://dx.doi.org/10.1080/2162402X.2016.1257452] [PMID: 28197375]
[17]
Adenis A, Kulkarni AS, Girotto GC, et al. Impact of pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer on health-related quality of life in KEYNOTE-181. J Clin Oncol 2022; 40(4): 382-91.
[http://dx.doi.org/10.1200/JCO.21.00601] [PMID: 34730989]
[18]
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019; 394(10212): 1915-28.
[http://dx.doi.org/10.1016/S0140-6736(19)32591-7] [PMID: 31679945]
[19]
Chung HC, Ros W, Delord JP, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol 2019; 37(17): 1470-8.
[http://dx.doi.org/10.1200/JCO.18.01265] [PMID: 30943124]
[20]
Fuchs CS, Doi T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer. JAMA Oncol 2018; 4(5): e180013.
[http://dx.doi.org/10.1001/jamaoncol.2018.0013] [PMID: 29543932]
[21]
O’Donnell PH, Balar AV, Vuky J, et al. KEYNOTE-052: Phase 2 study evaluating first-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC)— Updated response and survival results. J Clin Oncol 2019; 37 (Suppl. 15): 4546-6.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4546]
[22]
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379(22): 2108-21.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[23]
Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21(1): 44-59.
[http://dx.doi.org/10.1016/S1470-2045(19)30689-8] [PMID: 31786121]
[24]
Li M, Li A, Zhou S, et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer. BMC Cancer 2018; 18(1): 4.
[http://dx.doi.org/10.1186/s12885-017-3916-y] [PMID: 29291717]
[25]
Mansfield AS, Aubry MC, Moser JC, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol 2016; 27(10): 1953-8.
[http://dx.doi.org/10.1093/annonc/mdw289] [PMID: 27502709]
[26]
McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non–small-cell lung cancer. JAMA Oncol 2016; 2(1): 46-54.
[http://dx.doi.org/10.1001/jamaoncol.2015.3638] [PMID: 26562159]
[27]
Rozenblit M, Huang R, Danziger N, et al. Comparison of PD L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. J Immunother Cancer 2020; 8(2): e001558.
[http://dx.doi.org/10.1136/jitc-2020-001558] [PMID: 33239417]
[28]
Boman C, Zerdes I, Mårtensson K, et al. Discordance of PD L1 status between primary and metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat Rev 2021; 99: 102257.
[http://dx.doi.org/10.1016/j.ctrv.2021.102257] [PMID: 34237488]
[29]
Wang Y, Kim TH, Fouladdel S, et al. PD-L1 expression in circulating tumor cells increases during radio(chemo)therapy and indicates poor prognosis in non-small cell lung cancer. Sci Rep 2019; 9(1): 566.
[http://dx.doi.org/10.1038/s41598-018-36096-7] [PMID: 30679441]
[30]
Criscitiello C, Esposito A, Trapani D, Curigliano G. Prognostic and predictive value of tumor infiltrating lymphocytes in early breast cancer. Cancer Treat Rev 2016; 50: 205-7.
[http://dx.doi.org/10.1016/j.ctrv.2016.09.019] [PMID: 27744144]
[31]
Gatti-Mays ME, Justin MB, Sofia RG, et al. If we build it they will come: Targeting the immune response to breast cancer. NPJ Breast Cancer 2019; 5: 37.
[32]
Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunotherapy Cancer 2016; 4: 59.
[33]
Kovács A, Stenmark TA, Werner RE, et al. Effect of radiotherapy after breast-conserving surgery depending on the presence of tumor-infiltrating lymphocytes: A long-term follow-up of the swebcg91rt randomized trial. J Clin Oncol 2019; 37(14): 1179-87.
[http://dx.doi.org/10.1200/JCO.18.02157] [PMID: 30939091]
[34]
Loi S, Drubay D, Adams S, et al. Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019; 37(7): 559-69.
[http://dx.doi.org/10.1200/JCO.18.01010] [PMID: 30650045]
[35]
Park JH, Jonas SF, Bataillon G, et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann Oncol 2019; 30(12): 1941-9.
[http://dx.doi.org/10.1093/annonc/mdz395] [PMID: 31566659]
[36]
Hamid O, Schmidt H, Nissan A, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011; 9(1): 204.
[http://dx.doi.org/10.1186/1479-5876-9-204] [PMID: 22123319]
[37]
Loi S, Adams S, Schmid P, et al. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): Results from KEYNOTE-086. Ann Oncol 2017; 28: v608.
[http://dx.doi.org/10.1093/annonc/mdx440.005]
[38]
Loi S, Schmid P, Aktan G, Karantza V, Salgado R. Relationship between tumor infiltrating lymphocytes (TILs) and response to pembrolizumab (pembro)+chemotherapy (CT) as neoadjuvant treatment (NAT) for triple-negative breast cancer (TNBC): Phase Ib KEYNOTE-173 trial. Ann Oncol 2019; 30: iii2.
[http://dx.doi.org/10.1093/annonc/mdz095.003]
[39]
Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018; 24(7): 986-93.
[http://dx.doi.org/10.1038/s41591-018-0078-7] [PMID: 29942092]
[40]
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568-71.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[41]
Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 2016; 13(4): 228-41.
[http://dx.doi.org/10.1038/nrclinonc.2015.215] [PMID: 26667975]
[42]
Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32(27): 2959-66.
[http://dx.doi.org/10.1200/JCO.2013.55.0491] [PMID: 25071121]
[43]
Masili-Oku SM, Almeida BGL, Bacchi CE, Filassi JR, Baracat EC, Carvalho FM. Lymphocyte-predominant triple-negative breast carcinomas in premenopausal patients: Lower expression of basal immunohistochemical markers. Breast 2017; 31: 34-9.
[http://dx.doi.org/10.1016/j.breast.2016.10.012] [PMID: 27810697]
[44]
Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26(2): 259-71.
[http://dx.doi.org/10.1093/annonc/mdu450] [PMID: 25214542]
[45]
Denkert C, Wienert S, Poterie A, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno oncology biomarker working group. Mod Pathol 2016; 29(10): 1155-64.
[http://dx.doi.org/10.1038/modpathol.2016.109] [PMID: 27363491]
[46]
Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018; 19(1): 40-50.
[http://dx.doi.org/10.1016/S1470-2045(17)30904-X] [PMID: 29233559]
[47]
Loi S, Schmid P, Cortés J, Cescon DW, Winer EP, Toppmeyer D. Abstract LB-225: RNA molecular signatures as predictive biomarkers of response to monotherapy pembrolizumab in patients with metastatic triple-negative breast cancer: KEYNOTE-086. In: Clinical Research (Excluding Clinical Trials). Philadelphia, USA: American Association for Cancer Research 2019; pp. LB-225-5.
[http://dx.doi.org/10.1158/1538-7445.AM2019-LB-225]
[48]
Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann Oncol 2019; 30(3): 397-404.
[http://dx.doi.org/10.1093/annonc/mdy517] [PMID: 30475950]
[49]
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500-1.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[50]
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348(6230): 69-74.
[http://dx.doi.org/10.1126/science.aaa4971] [PMID: 25838375]
[51]
Isaacs J, Anders C, McArthur H, Force J. Biomarkers of immune checkpoint blockade response in triple-negative breast cancer. Curr Treat Options Oncol 2021; 22(5): 38.
[http://dx.doi.org/10.1007/s11864-021-00833-4] [PMID: 33743085]
[52]
Garofalo A, Sholl L, Reardon B, et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med 2016; 8(1): 79.
[http://dx.doi.org/10.1186/s13073-016-0333-9] [PMID: 27460824]
[53]
Cheng DT, Mitchell TN, Zehir A, et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT). J Mol Diagn 2015; 17(3): 251-64.
[http://dx.doi.org/10.1016/j.jmoldx.2014.12.006] [PMID: 25801821]
[54]
Johnson DB, Frampton GM, Rioth MJ, et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 2016; 4(11): 959-67.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0143] [PMID: 27671167]
[55]
Endris V, Buchhalter I, Allgäuer M, et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: In silico and real life analysis of three larger gene panels. Int J Cancer 2019; 144(9): ijc.32002.
[http://dx.doi.org/10.1002/ijc.32002] [PMID: 30446996]
[56]
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018; 378(22): 2093-104.
[http://dx.doi.org/10.1056/NEJMoa1801946] [PMID: 29658845]
[57]
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N Engl J Med 2019; 381(21): 2020-31.
[http://dx.doi.org/10.1056/NEJMoa1910231] [PMID: 31562796]
[58]
Litchfield K, Stanislaw S, Spain L, et al. representative sequencing: unbiased sampling of solid tumor tissue. Cell Rep 2020; 31(5): 107550.
[http://dx.doi.org/10.1016/j.celrep.2020.107550] [PMID: 32375028]
[59]
Goodman AM, Sokol ES, Frampton GM, Lippman SM, Kurzrock R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 2019; 7(10): 1570-3.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0149] [PMID: 31405947]
[60]
Park SE, Park K, Lee E, et al. Clinical implication of tumor mutational burden in patients with HER2-positive refractory metastatic breast cancer. OncoImmunology 2018; 7(8): e1466768.
[http://dx.doi.org/10.1080/2162402X.2018.1466768] [PMID: 30221068]
[61]
Thomas A, Routh ED, Pullikuth A, et al. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. OncoImmunol 2018; 7(10): e1490854.
[http://dx.doi.org/10.1080/2162402X.2018.1490854] [PMID: 30386679]
[62]
Barroso-Sousa R, Keenan TE, Pernas S, et al. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res 2020; 26(11): 2565-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3507] [PMID: 32019858]
[63]
Reeves C. San antonio breast cancer symposium 2021. Lancet Oncol 2022; 23(1): e18.
[http://dx.doi.org/10.1016/S1470-2045(21)00727-0] [PMID: 34922646]
[64]
Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: Functions and mechanisms. Chem Rev 2006; 106(2): 302-23.
[http://dx.doi.org/10.1021/cr0404794] [PMID: 16464007]
[65]
Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 2017; 116: 116-24.
[http://dx.doi.org/10.1016/j.critrevonc.2017.06.001] [PMID: 28693793]
[66]
Williams DS, Bird MJ, Jorissen RN, et al. Nonsense mediated decay resistant mutations are a source of expressed mutant proteins in colon cancer cell lines with microsatellite instability. PLoS One 2010; 5(12): e16012.
[http://dx.doi.org/10.1371/journal.pone.0016012] [PMID: 21209843]
[67]
Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 2002; 123(6): 1804-11.
[http://dx.doi.org/10.1053/gast.2002.37070] [PMID: 12454837]
[68]
Bai W, Ma J, Liu Y, et al. Screening of MSI detection loci and their heterogeneity in East Asian colorectal cancer patients. Cancer Med 2019; 8(5): 2157-66.
[http://dx.doi.org/10.1002/cam4.2111] [PMID: 30945461]
[69]
Trabucco SE, Gowen K, Maund SL, et al. A novel next generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability–high cases in 67,000 patient samples. J Mol Diagn 2019; 21(6): 1053-66.
[http://dx.doi.org/10.1016/j.jmoldx.2019.06.011] [PMID: 31445211]
[70]
Özer E, Yuksel E, Kizildag S, et al. Microsatellite instability in early-onset breast cancer. Pathol Res Pract 2002; 198(8): 525-30.
[http://dx.doi.org/10.1078/0344-0338-00296] [PMID: 12389995]
[71]
Alley EW, Lopez J, Santoro A, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol 2017; 18(5): 623-30.
[http://dx.doi.org/10.1016/S1470-2045(17)30169-9] [PMID: 28291584]
[72]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509-20.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[73]
Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2020; 38(1): 11-9.
[http://dx.doi.org/10.1200/JCO.19.02107] [PMID: 31725351]
[74]
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020; 21(10): 1353-65.
[http://dx.doi.org/10.1016/S1470-2045(20)30445-9] [PMID: 32919526]
[75]
Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol 2016; 17(6): 717-26.
[http://dx.doi.org/10.1016/S1470-2045(16)00175-3] [PMID: 27157491]
[76]
Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017; 9(1): 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[77]
Mandal R, Samstein RM, Lee KW, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response. Science 2019; 364(6439): 485-91.
[http://dx.doi.org/10.1126/science.aau0447] [PMID: 31048490]
[78]
Abida W, Cheng ML, Armenia J, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 2019; 5(4): 471-8.
[http://dx.doi.org/10.1001/jamaoncol.2018.5801] [PMID: 30589920]
[79]
Arora A, Olshen AB, Seshan VE, Shen R. Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Genome Med 2020; 12(1): 110.
[http://dx.doi.org/10.1186/s13073-020-00804-8] [PMID: 33272320]
[80]
Campbell M, Yau C, Borowsky A, Vandenberg S, Wolf D, Rimm D. Abstract PD6-08: Analysis of immune infiltrates (assessed via multiplex fluorescence immunohistochemistry) and immune gene expression signatures as predictors of response to the checkpoint inhibitor pembrolizumab in the neoadjuvant I-SPY 2 trial. In: Poster Discussion Abstracts. Philadelphia, USA: American Association for Cancer Research 2018; p. PD6-08-PD6-08.
[81]
Wolf DM, Yau C, Wulfkuhle J, et al. Abstract 2679: Integration of DNA repair deficiency and immune biomarkers to predict which early-stage triple-negative breast cancer patients are likely to respond to platinum-containing regimens vs. immunotherapy: The neoadjuvant I-SPY 2 trial. Cancer Res 2019; 79(S13): 2679.
[http://dx.doi.org/10.1158/1538-7445.AM2019-2679]
[82]
Loibl S, Sinn B, Karn T, Untch M, Treue D, Sinn H-P. Abstract PD2-07: mRNA signatures predict response to durvalumab therapy in triple negative breast cancer (TNBC)– Results of the translational biomarker programme of the neoadjuvant double-blind placebo controlled GeparNuevo trial. In: Poster Discussion Abstracts. Philadelphia, USA: American Association for Cancer Research 2019; p. PD2-07-PD2-07.
[83]
Stefano GB, Kream RM, Kuzelova H, et al. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med Sci Monit Basic Res 2014; 20: 138-42.
[http://dx.doi.org/10.12659/MSMBR.892101] [PMID: 25149683]
[84]
Bodor JN, Boumber Y, Borghaei H. Biomarkers for immune checkpoint inhibition in non–small cell lung cancer (NSCLC). Cancer 2020; 126(2): 260-70.
[http://dx.doi.org/10.1002/cncr.32468] [PMID: 31691957]
[85]
Miao D, Margolis CA, Vokes NI, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite stable solid tumors. Nat Genet 2018; 50(9): 1271-81.
[http://dx.doi.org/10.1038/s41588-018-0200-2] [PMID: 30150660]
[86]
Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov 2016; 6(2): 202-16.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0283] [PMID: 26645196]
[87]
Schmid P, Loirat D, Savas P, Espinosa E, Boni V, Italiano A. Abstract CT049: Phase Ib study evaluating a triplet combination of ipatasertib (IPAT), atezolizumab (atezo), and paclitaxel (PAC) or nab-PAC as first-line (1L) therapy for locally advanced/metastatic triple-negative breast cancer (TNBC). In: Clinical Trials. Philadelphia, USA: American Association for Cancer Research 2019; pp. CT049-9.
[http://dx.doi.org/10.1158/1538-7445.AM2019-CT049]
[88]
Reed EK, Steinmark L, Seibert DC, Edelman E. Somatic testing: Implications for targeted treatment. Semin Oncol Nurs 2019; 35(1): 22-33.
[http://dx.doi.org/10.1016/j.soncn.2018.12.009] [PMID: 30660356]
[89]
Brufsky A, Kim SB, Zvirbule Ž, et al. A phase II randomized trial of cobimetinib plus chemotherapy, with or without atezolizumab, as first-line treatment for patients with locally advanced or metastatic triple-negative breast cancer (COLET): Primary analysis. Ann Oncol 2021; 32(5): 652-60.
[http://dx.doi.org/10.1016/j.annonc.2021.01.065] [PMID: 33539944]
[90]
Litchfield K, Reading JL, Puttick C, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021; 184(3): 596-614.e14.
[http://dx.doi.org/10.1016/j.cell.2021.01.002] [PMID: 33508232]
[91]
Samstein RM, Krishna C, Ma X, et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat Can 2020; 1(12): 1188-203.
[http://dx.doi.org/10.1038/s43018-020-00139-8] [PMID: 33834176]
[92]
Yarchoan M, Albacker LA, Hopkins AC, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019; 4(6): e126908.
[http://dx.doi.org/10.1172/jci.insight.126908] [PMID: 30895946]
[93]
Zhu J, Zhang T, Li J, et al. Association between tumor mutation burden (TMB) and outcomes of cancer patients treated with PD-1/PD-L1 inhibitions: A meta-analysis. Front Pharmacol 2019; 10: 673.
[http://dx.doi.org/10.3389/fphar.2019.00673] [PMID: 31258479]
[94]
Friedman CF, Hainsworth JD, Kurzrock R, Spigel DR, Burris HA, Sweeney CJ. Atezolizumab treatment of tumors with high tumor mutational burden from mypathway, a multicenter, open-label, phase iia multiple basket study. Cancer Discov 2021.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0450] [PMID: 34876409]
[95]
Pietrantonio F, Randon G, Di Bartolomeo M, et al. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: A meta-analysis of randomized clinical trials. ESMO Open 2021; 6(1): 100036.
[http://dx.doi.org/10.1016/j.esmoop.2020.100036] [PMID: 33460964]
[96]
Schalper KA, Velcheti V, Carvajal D, et al. In situ tumor PD L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 2014; 20(10): 2773-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2702] [PMID: 24647569]
[97]
Bielska AA, Chatila WK, Walch H, et al. Tumor mutational burden and mismatch repair deficiency discordance as a mechanism of immunotherapy resistance. J Natl Compr Canc Netw 2021; 19(2): 130-3.
[http://dx.doi.org/10.6004/jnccn.2020.7680] [PMID: 33545685]
[98]
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017; 2017: PO.17.00073.
[99]
Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018; 362(6411): eaar3593.
[http://dx.doi.org/10.1126/science.aar3593] [PMID: 30309915]
[100]
Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell–inflamed gene expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 2019; 37(4): 318-27.
[http://dx.doi.org/10.1200/JCO.2018.78.2276] [PMID: 30557521]
[101]
Deutsch A, Leboeuf NR, Lacouture ME, McLellan BN. Dermatologic adverse events of systemic anticancer therapies: Cytotoxic chemotherapy, targeted therapy, and immunotherapy. Am Soc Clin Oncol Educ Book 2020; 40(40): 485-500.
[http://dx.doi.org/10.1200/EDBK_289911] [PMID: 32421446]
[102]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[103]
Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol 2016; 34(21): 2460-7.
[http://dx.doi.org/10.1200/JCO.2015.64.8931] [PMID: 27138582]
[104]
Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Ann Oncol 2019; 30(3): 405-11.
[http://dx.doi.org/10.1093/annonc/mdy518] [PMID: 30475947]
[105]
Cortés J, Lipatov O, Im S-A, et al. KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann Oncol 2019; 30: v859-60.
[http://dx.doi.org/10.1093/annonc/mdz394.010]
[106]
Emens LA, Cruz C, Eder JP, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer. JAMA Oncol 2019; 5(1): 74-82.
[http://dx.doi.org/10.1001/jamaoncol.2018.4224] [PMID: 30242306]
[107]
Schmid P, Cruz C, Braiteh FS, Eder JP, Tolaney S, Kuter I. Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. In: Clinical Research (Excluding Clinical Trials). American Association for Cancer Research 2017; pp. 2986-6.
[108]
Heery CR, O’Sullivan-Coyne G, Madan RA, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): A phase 1a, multicohort, dose-escalation trial. Lancet Oncol 2017; 18(5): 587-98.
[http://dx.doi.org/10.1016/S1470-2045(17)30239-5] [PMID: 28373007]
[109]
Kim ES. Avelumab: First global approval. Drugs 2017; 77(8): 929-37.
[http://dx.doi.org/10.1007/s40265-017-0749-6] [PMID: 28456944]
[110]
Bachelot T, Filleron T, Bieche I, et al. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: The randomized phase II SAFIR02-BREAST IMMUNO trial. Nat Med 2021; 27(2): 250-5.
[http://dx.doi.org/10.1038/s41591-020-01189-2] [PMID: 33462450]
[111]
Syed YY. Durvalumab: First global approval. Drugs 2017; 77(12): 1369-76.
[http://dx.doi.org/10.1007/s40265-017-0782-5] [PMID: 28643244]
[112]
Schmid P, Cortés J, Dent R, et al. KEYNOTE-522: Phase III study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo (pbo) + chemo as neoadjuvant treatment, followed by pembro vs pbo as adjuvant treatment for early triple negative breast cancer (TNBC). Ann Oncol 2019; 30: v853-4.
[http://dx.doi.org/10.1093/annonc/mdz394.003]
[113]
Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020; 396(10257): 1090-100.
[http://dx.doi.org/10.1016/S0140-6736(20)31953-X] [PMID: 32966830]
[114]
Singer C. Best of ASCO 2021: New data from triple-negative breast cancer. Memo 2021; 14: 328-30.
[115]
Garufi G, Palazzo A, Paris I, et al. Neoadjuvant therapy for triple-negative breast cancer: potential predictive biomarkers of activity and efficacy of platinum chemotherapy, PARP- and immune-checkpoint-inhibitors. Expert Opin Pharmacother 2020; 21(6): 687-99.
[http://dx.doi.org/10.1080/14656566.2020.1724957] [PMID: 32052646]
[116]
Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat Med 2019; 25(6): 920-8.
[http://dx.doi.org/10.1038/s41591-019-0432-4] [PMID: 31086347]
[117]
Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020; 396(10265): 1817-28.
[http://dx.doi.org/10.1016/S0140-6736(20)32531-9] [PMID: 33278935]
[118]
Miles D, Gligorov J, André F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol 2021; 32(8): 994-1004.
[http://dx.doi.org/10.1016/j.annonc.2021.05.801] [PMID: 34219000]
[119]
Bronte G, Terrasi M, Rizzo S, et al. EGFR genomic alterations in cancer: Prognostic and predictive values. Front Biosci 2011; 3(3): 879-87.
[PMID: 21622099]
[120]
Rimawi MF, Shetty PB, Weiss HL, et al. Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 2010; 116(5): 1234-42.
[http://dx.doi.org/10.1002/cncr.24816] [PMID: 20082448]
[121]
O’Donnell JS, Massi D, Teng MWL, Mandala M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 2018; 48: 91-103.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.015] [PMID: 28467889]
[122]
Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer associated immunosuppression. Clin Cancer Res 2017; 23(14): 3711-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3215] [PMID: 28167507]
[123]
Konstantinopoulos PA, Waggoner SE, Vidal GA, et al. TOPACIO/Keynote-162 (NCT02657889): A phase 1/2 study of niraparib + pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC)—Results from ROC cohort. J Clin Oncol 2018; 36 (Suppl. 15): 106-6.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.106]
[124]
Domchek S, Postel-Vinay S, Im SA, et al. Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): Updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol 2019; 30: v477.
[http://dx.doi.org/10.1093/annonc/mdz253.017]
[125]
Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: Therapeutic perspective. Clin Cancer Res 2006; 12(17): 5018-22.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1520] [PMID: 16951216]
[126]
Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212(2): 139-48.
[http://dx.doi.org/10.1084/jem.20140559] [PMID: 25601652]
[127]
Jang BS, Han W, Kim IA. Tumor mutation burden, immune checkpoint crosstalk and radiosensitivity in single-cell RNA sequencing data of breast cancer. Radiother Oncol 2020; 142: 202-9.
[http://dx.doi.org/10.1016/j.radonc.2019.11.003] [PMID: 31767471]
[128]
Yasuda S, Sho M, Yamato I, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol 2013; 172(3): 500-6.
[http://dx.doi.org/10.1111/cei.12069] [PMID: 23600839]
[129]
Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31(7): 860-7.
[http://dx.doi.org/10.1200/JCO.2011.41.0902] [PMID: 23341518]
[130]
Hendrickx W, Simeone I, Anjum S, et al. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. OncoImmunology 2017; 6(2): e1253654.
[http://dx.doi.org/10.1080/2162402X.2016.1253654] [PMID: 28344865]
[131]
Loibl S, Gianni L. HER2-positive breast cancer. Lancet 2017; 389(10087): 2415-29.
[http://dx.doi.org/10.1016/S0140-6736(16)32417-5] [PMID: 27939064]
[132]
Loi S, Giobbie-Hurder A, Gombos A, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b–2 trial. Lancet Oncol 2019; 20(3): 371-82.
[http://dx.doi.org/10.1016/S1470-2045(18)30812-X] [PMID: 30765258]
[133]
Emens LA, Esteva FJ, Beresford M, et al. Overall survival (OS) in KATE2, a phase II study of programmed death ligand 1 (PD-L1) inhibitor atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC). Ann Oncol 2019; 30: v104.
[http://dx.doi.org/10.1093/annonc/mdz242]
[134]
Huober J, Barrios CH, Niikura N, et al. Atezolizumab with neoadjuvant anti–human epidermal growth factor receptor 2 therapy and chemotherapy in human epidermal growth factor receptor 2–positive early breast cancer: Primary results of the randomized phase III IMpassion050 trial. J Clin Oncol 2022; 40(25): 2946-56.
[http://dx.doi.org/10.1200/JCO.21.02772] [PMID: 35763704]
[135]
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017; 548(7668): 471-5.
[http://dx.doi.org/10.1038/nature23465] [PMID: 28813415]
[136]
Tolaney SM, Kabos P, Dickler MN, et al. Updated efficacy, safety, & PD-L1 status of patients with HR+, HER2- metastatic breast cancer administered abemaciclib plus pembrolizumab. J Clin Oncol 2018; 36(S15): 1059-9.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.1059]
[137]
Dickler MN, Tolaney SM, Rugo HS, et al. MONARCH 1, A phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin Cancer Res 2017; 23(17): 5218-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0754] [PMID: 28533223]
[138]
Al-Awadhi A, Lee Murray J, Ibrahim NK. Developing anti-HER2 vaccines: Breast cancer experience. Int J Cancer 2018; 143(9): 2126-32.
[http://dx.doi.org/10.1002/ijc.31551] [PMID: 29693245]
[139]
Feola S, Capasso C, Fusciello M, et al. Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors. OncoImmunology 2018; 7(8): e1457596.
[http://dx.doi.org/10.1080/2162402X.2018.1457596] [PMID: 30221051]
[140]
Chen Z, Hu K, Feng L, et al. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 2018; 109(6): 1753-63.
[http://dx.doi.org/10.1111/cas.13618] [PMID: 29675979]
[141]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[142]
Emens LA, Ascierto PA, Darcy PK, et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 2017; 81: 116-29.
[http://dx.doi.org/10.1016/j.ejca.2017.01.035] [PMID: 28623775]
[143]
McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 2016; 22(23): 5729-37.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0190] [PMID: 27566765]
[144]
Vonderheide RH, LoRusso PM, Khalil M, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 2010; 16(13): 3485-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0505] [PMID: 20479064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy