Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Therapeutic Potential of Decoys for Prostate Cancers: A Review of Recent Updates

Author(s): Samaneh Rezaei, Maryam Mahjoubin-Tehran, Rabah Iratni and Amirhossein Sahebkar*

Volume 31, Issue 25, 2024

Published on: 03 July, 2023

Page: [3954 - 3965] Pages: 12

DOI: 10.2174/0929867330666230505154319

Price: $65

Abstract

Prostate cancer is ranked second among the most common male cancers. Androgen deprivation therapy (ADT) has long been the first-line treatment and the basis for all other therapies, reducing circulating androgens to castration levels and preventing disease development. Nevertheless, ADT monotherapy may not always limit disease development, and even at low testosterone levels, hormone-sensitive prostate cancer will become castration-resistant. Recent research demonstrates that prostate cancer can have a range of potentially actionable genetic abnormalities; no medications that target these variations have yet been shown to elicit therapeutic advantages. Despite their established efficacy in the management of other cancers, advanced genetic or immunological approaches are not regularly used to treat prostate cancer patients. As a result, there is an unmet demand for medicines that offer a better chance of survival than the existing castration- resistance prostate cancer (CRPC) therapy regimens. The use of oligodeoxynucleotides (ODN) and peptides in decoy technology have been developed as novel therapeutic approaches. Decoy ODNs bind to a particular transcription factor with high affinity and may suppress gene transcription. Peptide decoys bind to specific ligands with high specificity and inhibit signaling pathways. Recent evidence supports the notion that these techniques are promising and attractive in the fight against cancer. In the present review, we discuss the use of decoy technology as a novel therapeutic approach against prostate cancer.

Keywords: Anticancer therapy, decoy ODN, decoy peptide, prostate cancer, technology, therapeutic.

[1]
Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel), 2020, 8(3), 28.
[http://dx.doi.org/10.3390/medsci8030028] [PMID: 32698438]
[2]
Siegel, D.A.; O’Neil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(41), 1473-1480.
[http://dx.doi.org/10.15585/mmwr.mm6941a1] [PMID: 33056955]
[3]
Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol., 2009, 6(2), 76-85.
[http://dx.doi.org/10.1038/ncpuro1296] [PMID: 19198621]
[4]
Trewartha, D.; Carter, K. Advances in prostate cancer treatment. Nat. Rev. Drug Discov., 2013, 12(11), 823-824.
[http://dx.doi.org/10.1038/nrd4068] [PMID: 24172327]
[5]
Sartor, O.; de Bono, J.S. Metastatic prostate cancer. N. Engl. J. Med., 2018, 378(7), 645-657.
[http://dx.doi.org/10.1056/NEJMra1701695] [PMID: 29412780]
[6]
Amaral, TMS; Macedo, D; Fernandes, I; Costa, L Castration-resistant prostate cancer: mechanisms, targets, and treatment. Prostate Cancer, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/327253]
[7]
Powers, E.; Karachaliou, G.S.; Kao, C.; Harrison, M.R.; Hoimes, C.J.; George, D.J.; Armstrong, A.J.; Zhang, T. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J. Hematol. Oncol., 2020, 13(1), 144.
[http://dx.doi.org/10.1186/s13045-020-00978-z] [PMID: 33115529]
[8]
Li, N.; Truong, S.; Nouri, M.; Moore, J.; Al Nakouzi, N.; Lubik, A.A.; Buttyan, R. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene, 2018, 37(17), 2313-2325.
[http://dx.doi.org/10.1038/s41388-017-0098-7] [PMID: 29429990]
[9]
Li, X.; Liu, Y.; Wu, B.; Dong, Z.; Wang, Y.; Lu, J.; Shi, P.; Bai, W.; Wang, Z. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol. Rep., 2014, 32(6), 2605-2611.
[http://dx.doi.org/10.3892/or.2014.3511] [PMID: 25333856]
[10]
Mahjoubin-Tehran, M.; Rezaei, S.; Atkin, S.L.; Montecucco, F.; Sahebkar, A. Decoys as potential therapeutic tools for diabetes. Drug Discov. Today, 2021, 26(7), 1669-1679.
[http://dx.doi.org/10.1016/j.drudis.2021.04.004] [PMID: 33862194]
[11]
Mahjoubin-Tehran, M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Orafai, H.M.; Jamialahmadi, T.; Sahebkar, A. Peptide decoys: A new technology offering therapeutic opportunities for breast cancer. Drug Discov. Today, 2020, 25(3), 593-598.
[http://dx.doi.org/10.1016/j.drudis.2020.01.010] [PMID: 31978387]
[12]
Mahjoubin-Tehran, M.; Teng, Y.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Markin, A.M.; Sahebkar, A. Decoy technology as a promising therapeutic tool for atherosclerosis. Int. J. Mol. Sci., 2021, 22(9), 4420.
[http://dx.doi.org/10.3390/ijms22094420] [PMID: 33922585]
[13]
Tehran, M.M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. Decoy oligodeoxynucleotide technology: An emerging paradigm for breast cancer treatment. Drug Discov. Today, 2020, 25(1), 195-200.
[http://dx.doi.org/10.1016/j.drudis.2019.10.008] [PMID: 31669652]
[14]
Vahdat Lasemi, F.; Mahjoubin Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Jaafari, M.R.; Sahebkar, A. Harnessing nucleic acid-based therapeutics for atherosclerotic cardiovascular disease: State of the art. Drug Discov. Today, 2019, 24(5), 1116-1131.
[http://dx.doi.org/10.1016/j.drudis.2019.04.007] [PMID: 30980904]
[15]
Hecker, M.; Wagner, A.H. Transcription factor decoy technology: A therapeutic update. Biochem. Pharmacol., 2017, 144, 29-34.
[http://dx.doi.org/10.1016/j.bcp.2017.06.122] [PMID: 28642036]
[16]
Rad, S.M.A.H.; Langroudi, L.; Kouhkan, F.; Yazdani, L.; Koupaee, A.N.; Asgharpour, S.; Shojaei, Z.; Bamdad, T.; Arefian, E. Transcription factor decoy: A pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol., 2015, 36(7), 4871-4881.
[http://dx.doi.org/10.1007/s13277-015-3344-z] [PMID: 25835969]
[17]
Toshchakov, V.Y.; Vogel, S.N. Cell-penetrating TIR BB loop decoy peptides. Expert Opin. Biol. Ther., 2007, 7(7), 1035-1050.
[http://dx.doi.org/10.1517/14712598.7.7.1035] [PMID: 17665992]
[18]
Wang, T.; Jiang, A.; Zhang, J.; Jing, F. Apoptosis induction by E2F decoy DNA of the prostate cancer cell line. Braz. Arch. Biol. Technol., 2010, 53(2), 327-334.
[http://dx.doi.org/10.1590/S1516-89132010000200011]
[19]
Law, J.H.; Li, Y.; To, K.; Wang, M.; Astanehe, A.; Lambie, K.; Dhillon, J.; Jones, S.J.M.; Gleave, M.E.; Eaves, C.J.; Dunn, S.E. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One, 2010, 5(9), e12661.
[http://dx.doi.org/10.1371/journal.pone.0012661] [PMID: 20844753]
[20]
Bonfil, R.D.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkowski, P.; Nabha, S.; Yamamoto, H.; Chinni, S.R.; Zhao, H.; Mobashery, S.; Vessella, R.L.; Fridman, R.; Cher, M.L. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. Am. J. Pathol., 2007, 170(6), 2100-2111.
[http://dx.doi.org/10.2353/ajpath.2007.060720] [PMID: 17525276]
[21]
Quayle, S.N.; Mawji, N.R.; Wang, J.; Sadar, M.D. Androgen receptor decoy molecules block the growth of prostate cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(4), 1331-1336.
[http://dx.doi.org/10.1073/pnas.0606718104] [PMID: 17227854]
[22]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P.K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0191] [PMID: 22719020]
[23]
Farahmand, L.; Darvishi, B.; Majidzadeh-A, K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv., 2017, 24(1), 1249-1261.
[http://dx.doi.org/10.1080/10717544.2017.1370511] [PMID: 28870118]
[24]
Kiomy Osako, M.; Nakagami, H.; Morishita, R. Modification of decoy oligodeoxynucleotides to achieve the stability and therapeutic efficacy. Curr. Top. Med. Chem., 2012, 12(15), 1603-1607.
[http://dx.doi.org/10.2174/156802612803531397] [PMID: 22762556]
[25]
Kuratsukuri, K.; Sugimura, K.; Harimoto, K.; Kawashima, H.; Kishimoto, T. Decoy of androgen-responsive element induces apoptosis in LNCaP cells. Prostate, 1999, 41(2), 121-126.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19991001)41:2<121::AID-PROS6>3.0.CO;2-Q] [PMID: 10477908]
[26]
Lin, D.L.; Tarnowski, C.P.; Zhang, J.; Dai, J.; Rohn, E.; Patel, A.H.; Morris, M.D.; Keller, E.T. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate, 2001, 47(3), 212-221.
[http://dx.doi.org/10.1002/pros.1065] [PMID: 11351351]
[27]
Zhang, J.; Dai, J.; Qi, Y.; Lin, D.L.; Smith, P.; Strayhorn, C.; Mizokami, A.; Fu, Z.; Westman, J.; Keller, E.T. Osteoprotegerin inhibits prostate cancer–induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest., 2001, 107(10), 1235-1244.
[http://dx.doi.org/10.1172/JCI11685] [PMID: 11375413]
[28]
Zhang, P.; Zhang, J.; Young, C.Y.; Kao, P.C.; Chen, W.; Jiang, A.; Zhang, L.; Guo, Q. Decoy androgen-responsive element DNA can inhibit androgen receptor transactivation of the PSA promoter gene. Ann. Clin. Lab. Sci., 2005, 35(3), 278-284.
[PMID: 16081584]
[29]
Polytarchou, C.; Hatziapostolou, M.; Papadimitriou, E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J. Biol. Chem., 2005, 280(49), 40428-40435.
[http://dx.doi.org/10.1074/jbc.M505120200] [PMID: 16199533]
[30]
Lin, J.; Lalani, A.S.; Harding, T.C.; Gonzalez, M.; Wu, W.W.; Luan, B.; Tu, G.H.; Koprivnikar, K.; VanRoey, M.J.; He, Y.; Alitalo, K.; Jooss, K. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res., 2005, 65(15), 6901-6909.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0408] [PMID: 16061674]
[31]
Jiang, A.L.; Hu, X.Y.; Zhang, P.J.; He, M.L.; Kong, F.; Liu, Z.F.; Yuan, H.Q.; Zhang, J.Y. Up-regulation of NKX3.1 expression and inhibition of LNCaP cell proliferation induced by an inhibitory element decoy. Acta Biochim. Biophys. Sin. (Shanghai), 2005, 37(5), 335-340.
[http://dx.doi.org/10.1111/j.1745-7270.2005.00047.x] [PMID: 15880262]
[32]
Chanda, D.; Isayeva, T.; Kumar, S.; Hensel, J.A.; Sawant, A.; Ramaswamy, G.; Siegal, G.P.; Beatty, M.S.; Ponnazhagan, S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis. Clin. Cancer Res., 2009, 15(23), 7175-7185.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1938] [PMID: 19920103]
[33]
Fang, Y.; Sun, H.; Zhai, J.; Zhang, Y.; Yi, S.; Hao, G.; Wang, T. Antitumor activity of NF-kB decoy oligodeoxynucleotides in a prostate cancer cell line. Asian Pac. J. Cancer Prev., 2011, 12(10), 2721-2726.
[PMID: 22320981]
[34]
Hatano, K.; Miyamoto, Y.; Nonomura, N.; Kaneda, Y. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int. J. Cancer, 2011, 129(8), 1838-1847.
[http://dx.doi.org/10.1002/ijc.25860] [PMID: 21165949]
[35]
Myung, J.K.; Wang, G.; Chiu, H.H.L.; Wang, J.; Mawji, N.R.; Sadar, M.D. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One, 2017, 12(3), e0174134.
[http://dx.doi.org/10.1371/journal.pone.0174134] [PMID: 28306720]
[36]
Hebbar, N.; Burikhanov, R.; Shukla, N.; Qiu, S.; Zhao, Y.; Elenitoba-Johnson, K.S.J.; Rangnekar, V.M. A naturally generated decoy of the prostate apoptosis response-4 protein overcomes therapy resistance in tumors. Cancer Res., 2017, 77(15), 4039-4050.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1970] [PMID: 28625975]
[37]
Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433.
[http://dx.doi.org/10.1016/j.nano.2021.102433] [PMID: 34171467]
[38]
Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2022.08.006] [PMID: 36028154]
[39]
Younis, N.K.; Yassine, H.M.; Eid, A.H. Nanomedicine for Cancer. Curr. Med. Chem., 2022.
[PMID: 36579388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy