Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Bone Marrow as a Therapeutic Target for Type 2 Diabetes Complications

Author(s): Saúl Ernesto Cifuentes-Mendiola, Luis Arturo Baiza-Gutman* and Ana Lilia García-Hernández

Volume 23, Issue 13, 2023

Published on: 24 July, 2023

Page: [1586 - 1598] Pages: 13

DOI: 10.2174/1871530323666230505114343

Price: $65

Abstract

Type 2 diabetes mellitus (T2DM) is a world epidemic with a high prevalence and mortality. The origin of macro and microvascular complications associated with T2DM is complex and new mechanisms to explain their development are emerging. The changes induced by T2DM in the microenvironment of bone marrow (BM) alter the expansion and differentiation of stem cells and have been related to the development of micro and macrovascular diseases. Alterations in the differentiation and function of hematopoietic, endothelial, and mesenchymal stem cells in T2DM patients reduced the mobility of BM stem cells to the circulation and some immature, dysfunctional, or inflammatory cells pass to the blood (mobilopathy). Consequently, tissue repair is impaired, and the tissue damage caused by hyperglycemia, oxidative stress, and inflammation is increased. These alterations can contribute to diabetic complications, decreasing the quality of life, and increasing mortality. The modulation of the bone marrow microenvironment may be a therapeutic target for treating T2DM and its complications. This article analyses the changes induced in BM and their impact on the development of cardiovascular and kidney complications in T2DM. Also, different therapeutic strategies to restore the bone marrow microenvironment and function through the modulation of oxidative stress, inflammation, and adipogenicity are discussed, considering bone marrow as a novel potential therapeutic target to treat vascular complications of diabetes.

Keywords: Type 2 diabetes, bone marrow, cardiovascular disease, diabetic nephropathy, bone fragility, stem cells, therapeutic strategies.

Graphical Abstract
[1]
Díaz-Flores M, Baiza-Gutman LA. Biochemical mechanisms of vascular complications in diabetes. The diabetes textbook. Springer 2019; pp. 695-707.
[http://dx.doi.org/10.1007/978-3-030-11815-0_45]
[2]
Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M. Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect 2019; 8(3): R55-70.
[http://dx.doi.org/10.1530/EC-18-0456] [PMID: 30772871]
[3]
Mangialardi G, Ferland-McCollough D, Maselli D, et al. Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia 2019; 62(7): 1275-90.
[http://dx.doi.org/10.1007/s00125-019-4865-6] [PMID: 31001672]
[4]
Fadini GP, DiPersio JF. Diabetes mellitus as a poor mobilizer condition. Blood Rev 2018; 32(3): 184-91.
[http://dx.doi.org/10.1016/j.blre.2017.11.002] [PMID: 29132746]
[5]
Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev 2019; 35(1): e3083.
[http://dx.doi.org/10.1002/dmrr.3083] [PMID: 30289199]
[6]
Rharass T, Lucas S. High glucose level impairs human mature bone marrow adipocyte function through increased ROS production. Front Endocrinol 2019; 10: 607.
[http://dx.doi.org/10.3389/fendo.2019.00607] [PMID: 31551934]
[7]
Xu J, Zuo C. The fate status of stem cells in diabetes and its role in the occurrence of diabetic complications. Front Mol Biosci 2021; 8: 745035.
[http://dx.doi.org/10.3389/fmolb.2021.745035] [PMID: 34796200]
[8]
International Diabetes Federation. IDF Diabetes Atlas, 10th ed; International Diabetes Federation: Brussels, Belgium, 2022. Available from: https://diabetesatlas.org/resources/?gclid=Cj0KCQjwuLShBhC_ARIsAFod4fL4ussA3vmUAZkcvGwFqHLbvF-UXtTCf4J5pqtdEid_yzvk_EG_bc8aAk4gEALw_wcB
[9]
Belete TM. A Recent achievement in the discovery and development of novel targets for the treatment of type-2 diabetes mellitus. J Exp Pharmacol 2020; 12: 1-15.
[http://dx.doi.org/10.2147/JEP.S226113] [PMID: 32021494]
[10]
Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol 2018; 14(6): 491-509.
[http://dx.doi.org/10.2217/fca-2018-0045] [PMID: 30409037]
[11]
Vinci MC, Gambini E, Bassetti B, Genovese S, Pompilio G. When good guys turn bad: Bone marrow’s and hematopoietic stem cells’ role in the pathobiology of diabetic complications. Int J Mol Sci 2020; 21(11): 3864.
[http://dx.doi.org/10.3390/ijms21113864] [PMID: 32485847]
[12]
Kim TY, Schafer AL. Diabetes and bone marrow adiposity. Curr Osteoporos Rep 2016; 14(6): 337-44.
[http://dx.doi.org/10.1007/s11914-016-0336-x] [PMID: 27714580]
[13]
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553(7689): 418-26.
[http://dx.doi.org/10.1038/nature25022] [PMID: 29364285]
[14]
Szade K, Gulati GS, Chan CKF, et al. Where hematopoietic stem cells live: The bone marrow niche. Antioxid Redox Signal 2018; 29(2): 191-204.
[http://dx.doi.org/10.1089/ars.2017.7419] [PMID: 29113449]
[15]
Cordeiro-Spinetti E, Taichman RS, Balduino A. The bone marrow endosteal niche: How far from the surface? J Cell Biochem 2015; 116(1): 6-11.
[http://dx.doi.org/10.1002/jcb.24952] [PMID: 25164953]
[16]
Vandoorne K, Rohde D, Kim HY, et al. Imaging the vascular bone marrow niche during inflammatory stress. Circ Res 2018; 123(4): 415-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313302] [PMID: 29980569]
[17]
Wu Q, Zhang J, Lucas D. Anatomy of hematopoiesis and local microenvironments in the bone marrow. Where to? Front Immunol 2021; 12: 768439.
[http://dx.doi.org/10.3389/fimmu.2021.768439] [PMID: 34858426]
[18]
Mangialardi G, Cordaro A, Madeddu P. The bone marrow pericyte: An orchestrator of vascular niche. Regen Med 2016; 11(8): 883-95.
[http://dx.doi.org/10.2217/rme-2016-0121] [PMID: 27885901]
[19]
Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2010; 12(11): 1046-56.
[http://dx.doi.org/10.1038/ncb2108] [PMID: 20972423]
[20]
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155: 92-103.
[http://dx.doi.org/10.1016/j.biochi.2018.05.018] [PMID: 29859990]
[21]
Asada N, Takeishi S, Frenette PS. Complexity of bone marrow hematopoietic stem cell niche. Int J Hematol 2017; 106(1): 45-54.
[http://dx.doi.org/10.1007/s12185-017-2262-9] [PMID: 28534115]
[22]
Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 2015; 16(3): 239-53.
[http://dx.doi.org/10.1016/j.stem.2015.02.019] [PMID: 25748931]
[23]
Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling. Circ Res 2000; 86(1): 4-5.
[http://dx.doi.org/10.1161/01.RES.86.1.4] [PMID: 10625297]
[24]
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466(7308): 829-34.
[http://dx.doi.org/10.1038/nature09262] [PMID: 20703299]
[25]
Roberts EW, Deonarine A, Jones JO, et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 2013; 210(6): 1137-51.
[http://dx.doi.org/10.1084/jem.20122344] [PMID: 23712428]
[26]
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103(12): 1945-55.
[http://dx.doi.org/10.3324/haematol.2018.197004] [PMID: 30337364]
[27]
Lo Celso C, Fleming HE, Wu JW, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457(7225): 92-6.
[http://dx.doi.org/10.1038/nature07434] [PMID: 19052546]
[28]
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118(2): 149-61.
[http://dx.doi.org/10.1016/j.cell.2004.07.004] [PMID: 15260986]
[29]
Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1(6): 685-97.
[http://dx.doi.org/10.1016/j.stem.2007.10.020] [PMID: 18371409]
[30]
Hoyer FF, Zhang X, Coppin E, et al. Bone marrow endothelial cells regulate myelopoiesis in diabetes. Circulation 2020; 142(3): 244-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046038] [PMID: 32316750]
[31]
Blom-Høgestøl IK, Mala T, Kristinsson JA, et al. Changes in bone marrow adipose tissue one year after Roux-en-Y gastric bypass: A prospective cohort study. J Bone Miner Res 2019; 34(10): 1815-23.
[http://dx.doi.org/10.1002/jbmr.3814] [PMID: 31216081]
[32]
Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev 2020; 36(S1): e3240.
[http://dx.doi.org/10.1002/dmrr.3240] [PMID: 31840418]
[33]
de Araújo IM, Salmon CEG, Nahas AK, Nogueira-Barbosa MH, Elias J Jr, de Paula FJA. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur J Endocrinol 2017; 176(1): 21-30.
[http://dx.doi.org/10.1530/EJE-16-0448] [PMID: 27707768]
[34]
Zhou BO, Yu H, Yue R, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 2017; 19(8): 891-903.
[http://dx.doi.org/10.1038/ncb3570] [PMID: 28714970]
[35]
Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 2017; 20(6): 771-784.e6.
[http://dx.doi.org/10.1016/j.stem.2017.02.009] [PMID: 28330582]
[36]
Song J, Deng T. The adipocyte and adaptive immunity. Front Immunol 2020; 11: 593058.
[http://dx.doi.org/10.3389/fimmu.2020.593058] [PMID: 33329579]
[37]
Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res 2018; 33(6): 1154-65.
[http://dx.doi.org/10.1002/jbmr.3408] [PMID: 29444341]
[38]
Ho NPY, Takizawa H. Inflammation regulates haematopoietic stem cells and their niche. Int J Mol Sci 2022; 23(3): 1125.
[http://dx.doi.org/10.3390/ijms23031125] [PMID: 35163048]
[39]
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The emerging role of bone-derived hormones in diabetes mellitus and diabetic kidney disease. Front Endocrinol 2022; 13: 938830.
[http://dx.doi.org/10.3389/fendo.2022.938830] [PMID: 35966090]
[40]
Loomans CJM, van Haperen R, Duijs JM, et al. Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 2009; 15(5-6): 152-9.
[http://dx.doi.org/10.2119/molmed.2009.00032] [PMID: 19295918]
[41]
Mokgalaboni K, Dludla PV, Nyambuya TM, Yakobi SH, Mxinwa V, Nkambule BB. Monocyte-mediated inflammation and cardiovascular risk factors in type 2 diabetes mellitus: A systematic review and meta-analysis of pre-clinical and clinical studies. JRSM Cardiovasc Dis 2020; 9: 1-9.
[http://dx.doi.org/10.1177/2048004019900748] [PMID: 31984134]
[42]
Ikeda Y, Sonoda N, Bachuluun B, Kimura S, Ogawa Y, Inoguchi T. Aberrant activation of bone marrow Ly6C high monocytes in diabetic mice contributes to impaired glucose tolerance. PLoS One 2020; 15(2): e0229401.
[http://dx.doi.org/10.1371/journal.pone.0229401] [PMID: 32097444]
[43]
Hazra S, Jarajapu YPR, Stepps V, et al. LiCalzi, S.; Dominguez, J.; Kern, T.S.; Segal, M.S.; Ash, J.D.; Saban, D.R.; Bartelmez, S.H.; Grant, M.B. Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia 2013; 56(3): 644-53.
[http://dx.doi.org/10.1007/s00125-012-2781-0] [PMID: 23192694]
[44]
Hoggatt J, Mohammad KS, Singh P, et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 2013; 495(7441): 365-9.
[http://dx.doi.org/10.1038/nature11929] [PMID: 23485965]
[45]
Mangialardi G, Spinetti G, Reni C, Madeddu P. Reactive oxygen species adversely impacts bone marrow microenvironment in diabetes. Antioxid Redox Signal 2014; 21(11): 1620-33.
[http://dx.doi.org/10.1089/ars.2014.5944] [PMID: 25089632]
[46]
Spinetti G, Cordella D, Fortunato O, et al. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: Implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 2013; 112(3): 510-22.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300598] [PMID: 23250986]
[47]
Chen H, Gao L. M.Y.; Zhang, L.; He, F.L.; Shi, Y.K.; Pan, X.H.; Wang, H. MicroRNA-155 affects oxidative damage through regulating autophagy in endothelial cells. Oncol Lett 2019; 17(2): 2237-43.
[PMID: 30675289]
[48]
Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS One 2012; 7(6): e38752.
[http://dx.doi.org/10.1371/journal.pone.0038752] [PMID: 22701703]
[49]
Fadini GP, Mehta A, Dhindsa DS, et al. Circulating stem cells and cardiovascular outcomes: From basic science to the clinic. Eur Heart J 2020; 41(44): 4271-82.
[http://dx.doi.org/10.1093/eurheartj/ehz923] [PMID: 31891403]
[50]
Terenzi DC, Al-Omran M, Quan A, Teoh H, Verma S, Hess DA. Circulating pro-vascular progenitor cell depletion during type 2 diabetes: Translational insights into the prevention of ischemic complications in diabetes. JACC Basic Transl Sci 2019; 4(1): 98-112.
[http://dx.doi.org/10.1016/j.jacbts.2018.10.005] [PMID: 30847424]
[51]
Rigato M, Avogaro A, Fadini GP. Levels of circulating progenitor cells, cardiovascular outcomes and death: A meta-analysis of prospective observational studies. Circ Res 2016; 118(12): 1930-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308366] [PMID: 27073015]
[52]
Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 2000; 106(4): 571-8.
[http://dx.doi.org/10.1172/JCI9087] [PMID: 10953032]
[53]
Kaewsrisung S, Sukpat S, Issarasena N, Patumraj S, Somboonwong J. The effects of oral Aloe vera on the efficacy of transplanted human endothelial cells and the expression of matrix metalloproteinases in diabetic wound healing. Heliyon 2021; 7(12): e08533.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08533] [PMID: 34934844]
[54]
Mazzaferro S, Cianciolo G, De Pascalis A, et al. Bone, inflammation and the bone marrow niche in chronic kidney disease: What do we know? Nephrol Dial Transplant 2018; 33(12): 2092-100.
[http://dx.doi.org/10.1093/ndt/gfy115] [PMID: 29733407]
[55]
Guiteras R, Sola A, Flaquer M, Manonelles A, Hotter G, Cruzado JM. Exploring macrophage cell therapy on Diabetic Kidney Disease. J Cell Mol Med 2019; 23(2): 841-51.
[http://dx.doi.org/10.1111/jcmm.13983] [PMID: 30407737]
[56]
Nobuta H, Katagi M, Kume S, et al. A role for bone marrow–derived cells in diabetic nephropathy. FASEB J 2019; 33(3): 4067-76.
[http://dx.doi.org/10.1096/fj.201801825R] [PMID: 30496699]
[57]
Yamashita T, Fujimiya M, Nagaishi K, et al. Fusion of bone marrow‐derived cells with renal tubules contributes to renal dysfunction in diabetic nephropathy. FASEB J 2012; 26(4): 1559-68.
[http://dx.doi.org/10.1096/fj.11-183194] [PMID: 22198389]
[58]
Hickson LJ, Abedalqader T, Ben-Bernard G, et al. A systematic review and meta-analysis of cell-based interventions in experimental diabetic kidney disease. Stem Cells Transl Med 2021; 10(9): 1304-19.
[http://dx.doi.org/10.1002/sctm.19-0419] [PMID: 34106528]
[59]
Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE, et al. Mesenchymal stem cell therapy for diabetic kidney disease: A review of the studies using syngeneic, autologous, allogeneic, and xenogeneic cells. Stem Cells Int 2020; 2020: 1-28.
[http://dx.doi.org/10.1155/2020/8833725] [PMID: 33505469]
[60]
Kundu N, Nandula SR, Asico LD, et al. Transplantation of apoptosis-resistant endothelial progenitor cells improves renal function in diabetic kidney disease. J Am Heart Assoc 2021; 10(7): e019365.
[http://dx.doi.org/10.1161/JAHA.120.019365] [PMID: 33759548]
[61]
Farooqui KJ, Mithal A, Kerwen AK, Chandran M. Type 2 diabetes and bone fragility- An under-recognized association. Diabetes Metab Syndr 2021; 15(3): 927-35.
[http://dx.doi.org/10.1016/j.dsx.2021.04.017] [PMID: 33932745]
[62]
Kalyanaraman H, Schwaerzer G, Ramdani G, et al. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes 2018; 67(4): 607-23.
[http://dx.doi.org/10.2337/db17-0965] [PMID: 29301852]
[63]
Dudchenko YS, Maksymova OS, Pikaliuk VS, Muravskyi DV, Kyptenko LI, Tkach GF. Morphological characteristics and correction of long tubular bone regeneration under chronic hyperglycemia influence. Anal Cell Pathol 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/5472841] [PMID: 32322459]
[64]
García-Hernández A, Arzate H, Gil-Chavarría I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone 2012; 50(1): 276-88.
[http://dx.doi.org/10.1016/j.bone.2011.10.032] [PMID: 22086137]
[65]
Fan Y, Hanai J, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 2017; 25(3): 661-72.
[http://dx.doi.org/10.1016/j.cmet.2017.01.001] [PMID: 28162969]
[66]
Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 2007; 59(1): 27-33.
[http://dx.doi.org/10.1080/15216540601156188] [PMID: 17365177]
[67]
Wei W, Dutchak PA, Wang X, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci 2012; 109(8): 3143-8.
[http://dx.doi.org/10.1073/pnas.1200797109] [PMID: 22315431]
[68]
Bai X, Lu D, Bai J, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun 2004; 314(1): 197-207.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.073] [PMID: 14715266]
[69]
Cifuentes-Mendiola S, Moreno-Fierros L, González-Alva P, García-Hernández A. Docosahexaenoic acid improves altered mineralization proteins, the decreased quality of hydroxyapatite crystals and suppresses oxidative stress induced by high glucose. Exp Ther Med 2022; 23(3): 235.
[http://dx.doi.org/10.3892/etm.2022.11160] [PMID: 35222712]
[70]
Cifuentes-Mendiola SE, Solis-Suarez DL, Martínez-Dávalos A, Godínez-Victoria M, García-Hernández AL. CD4+ T-cell activation of bone marrow causes bone fragility and insulin resistance in type 2 diabetes. Bone 2022; 155: 116292.
[http://dx.doi.org/10.1016/j.bone.2021.116292] [PMID: 34896656]
[71]
Kim TY, Schwartz AV, Li X, et al. Bone marrow fat changes after gastric bypass surgery are associated with loss of bone mass. J Bone Miner Res 2017; 32(11): 2239-47.
[http://dx.doi.org/10.1002/jbmr.3212] [PMID: 28791737]
[72]
Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 2008; 19(9): 1323-30.
[http://dx.doi.org/10.1007/s00198-008-0574-6] [PMID: 18274695]
[73]
De Paoli M, Werstuck GH. Role of estrogen in type 1 and type 2 diabetes mellitus: A review of clinical and preclinical data. Can J Diabetes 2020; 44(5): 448-52.
[http://dx.doi.org/10.1016/j.jcjd.2020.01.003] [PMID: 32127295]
[74]
Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 2003; 108(25): 3115-21.
[http://dx.doi.org/10.1161/01.CIR.0000106906.56972.83] [PMID: 14676142]
[75]
Suriano R, Chaudhuri D, Johnson RS, et al. 17Beta-estradiol mobilizes bone marrow-derived endothelial progenitor cells to tumors. Cancer Res 2008; 68(15): 6038-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1009] [PMID: 18676823]
[76]
Bertheau RC, Lorbeer R, Nattenmüller J, et al. Bone marrow fat fraction assessment in regard to physical activity: KORA FF4–3-T MR imaging in a population-based cohort. Eur Radiol 2020; 30(6): 3417-28.
[http://dx.doi.org/10.1007/s00330-019-06612-y] [PMID: 32086579]
[77]
Dai X, Zhai L, Su Q, et al. Effect of aerobic and resistance training on endothelial progenitor cells in mice with type 2 Diabetes. Cell Reprogram 2020; 22(4): 189-97.
[http://dx.doi.org/10.1089/cell.2019.0063] [PMID: 32315545]
[78]
Emmons R, Niemiro GM, De Lisio M. Hematopoiesis with obesity and exercise: Role of the bone marrow niche. Exerc Immunol Rev 2017; 23: 82-95.
[PMID: 28224968]
[79]
Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell 2018; 17(3): e12741.
[http://dx.doi.org/10.1111/acel.12741] [PMID: 29488314]
[80]
Zeng YC, Peng LS, Zou L, et al. Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed Pharmacother 2017; 92: 86-94.
[http://dx.doi.org/10.1016/j.biopha.2017.05.018] [PMID: 28531804]
[81]
Ardawi MSM, Badawoud MH, Hassan SM, et al. Lycopene nanoparticles promotes osteoblastogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cells. Eur Rev Med Pharmacol Sci 2021; 25(22): 6894-907.
[PMID: 34859851]
[82]
Dinarello CA, van der Meer JWM. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 2013; 25(6): 469-84.
[http://dx.doi.org/10.1016/j.smim.2013.10.008] [PMID: 24275598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy