Review Article

选择性激活G蛋白偶联雌激素受体1可减轻动脉粥样硬化

卷 31, 期 27, 2024

发表于: 12 July, 2023

页: [4312 - 4319] 页: 8

弟呕挨: 10.2174/0929867330666230501231528

价格: $65

摘要

动脉粥样硬化仍然是心血管疾病相关发病率和死亡率的主要原因。有趣的是,动脉粥样硬化相关的死亡率在男性中高于女性。这表明雌激素在心血管系统中具有保护作用。雌激素的这些作用最初被认为是由经典的雌激素受体,ER α和β介导的。然而,基因敲低这些受体并没有消除雌激素的血管保护作用,这表明另一种膜性g蛋白偶联雌激素受体GPER1可能是真正的介质。事实上,除了在血管舒酮调节中发挥作用外,GPER1似乎在调节血管平滑细胞表型中发挥重要作用,这是动脉粥样硬化发病的关键因素。此外,gper1选择性激动剂似乎通过促进LDL受体的表达以及增强肝细胞中LDL的再摄取来降低LDL水平。进一步的证据还表明,GPER1可以下调Proprotein Convertase Subtilisin/ Kexin type 9,从而抑制LDL受体的分解。在这里,我们回顾了GPER1的选择性激活如何预防或抑制动脉粥样硬化,其副作用比非选择性雌激素少。

关键词: 雌激素,心血管疾病,动脉粥样硬化,GPER1,雌激素受体,PCSK9, LDL。

[1]
Centers for Disease Control and Prevention (CDC) Million hearts: strategies to reduce the prevalence of leading cardiovascular disease risk factors--United States, 2011. MMWR Morb Mortal Wkly Rep, 2011, 60(36), 1248-1251.
[2]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11(1), 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[3]
Baradaran, A.J.J.o.n. Lipoprotein (a), type 2 diabetes and nephropathy; the mystery continues. J. Nephropathol., 2012, 1(3), 126.
[http://dx.doi.org/10.5812/nephropathol.8107]
[4]
Grebe, A.; Latz, E. Cholesterol crystals and inflammation. Curr. Rheumatol. Rep., 2013, 15(3), 313.
[http://dx.doi.org/10.1007/s11926-012-0313-z] [PMID: 23412688]
[5]
Tavafi, M.J.J.o.r.i.p. Complexity of diabetic nephropathy pathogenesis and design of investigations. J. Renal Inj. Prev., 2013, 2(2), 59-62.
[http://dx.doi.org/10.12861/jrip.2013.20]
[6]
Douglas, G.; Channon, K.M. The pathogenesis of atherosclerosis. Medicine, 2014, 42(9), 480-484.
[http://dx.doi.org/10.1016/j.mpmed.2014.06.011]
[7]
Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D.J.J.o.t.A.C.o.C. Pathology of the vulnerable plaque. J. Am. Coll Cardiol., 2006, 47(8S), C13-C18.
[http://dx.doi.org/10.1002/9780470987575.ch2]
[8]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[9]
Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med., 2014, 276(6), 618-632.
[http://dx.doi.org/10.1111/joim.12296] [PMID: 25156650]
[10]
Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252.
[http://dx.doi.org/10.1016/j.cca.2013.06.006] [PMID: 23782937]
[11]
Grover, S.P.; Mackman, N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 80-86.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.06.003] [PMID: 32674807]
[12]
Wilcox, J.N.; Smith, K.M.; Schwartz, S.M.; Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2839-2843.
[http://dx.doi.org/10.1073/pnas.86.8.2839] [PMID: 2704749]
[13]
Cimmino, G.; D’Amico, C.; Vaccaro, V.; D’Anna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: Is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523.
[http://dx.doi.org/10.1586/erc.11.40] [PMID: 21517734]
[14]
Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Ferna´ndez-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; Badimon, J.J. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation, 1997, 95(3), 594-599.
[http://dx.doi.org/10.1161/01.CIR.95.3.594] [PMID: 9024145]
[15]
Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem., 1982, 257(6), 2912-2919.
[http://dx.doi.org/10.1016/S0021-9258(19)81051-7] [PMID: 7199524]
[16]
Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: A report from the American Heart Association. Circulation, 2011, 123(4), e18-e209.
[http://dx.doi.org/10.1161/CIR.0b013e3182009701] [PMID: 21160056]
[17]
Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol., 2011, 57(1), 9-17.
[http://dx.doi.org/10.1016/j.jacc.2010.08.623] [PMID: 21185495]
[18]
Regitz-Zagrosek, V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat. Rev. Drug Discov., 2006, 5(5), 425-439.
[http://dx.doi.org/10.1038/nrd2032] [PMID: 16672926]
[19]
Hodis, H.N.; Mack, W.J. Hormone replacement therapy and the association with coronary heart disease and overall mortality: Clinical application of the timing hypothesis. J. Steroid Biochem. Mol. Biol., 2014, 142, 68-75.
[http://dx.doi.org/10.1016/j.jsbmb.2013.06.011] [PMID: 23851166]
[20]
Choi, Y.; Chang, Y.; Kim, B.K.; Kang, D.; Kwon, M.J.; Kim, C.W.; Jeong, C.; Ahn, Y.; Park, H.Y.; Ryu, S.; Cho, J. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Maturitas, 2015, 80(4), 399-405.
[http://dx.doi.org/10.1016/j.maturitas.2014.12.016] [PMID: 25631350]
[21]
Atsma, F.; Bartelink, M.L.E.L.; Grobbee, D.E.; van der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause, 2006, 13(2), 265-279.
[http://dx.doi.org/10.1097/01.gme.0000218683.97338.ea] [PMID: 16645540]
[22]
Turgeon, J.L.; McDonnell, D.P.; Martin, K.A.; Wise, P.M. Hormone therapy: Physiological complexity belies therapeutic simplicity. Science, 2004, 304(5675), 1269-1273.
[http://dx.doi.org/10.1126/science.1096725] [PMID: 15166356]
[23]
Fardoun, M.M.; Issa, K.; Maaliki, D.; Nasser, S.A.; Baydoun, E.; Eid, A.H. Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction. Vascul. Pharmacol., 2020, 131, 106690.
[http://dx.doi.org/10.1016/j.vph.2020.106690] [PMID: 32407896]
[24]
Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23.
[http://dx.doi.org/10.1007/s11906-020-1022-z] [PMID: 32114652]
[25]
Eid, A.H.; Maiti, K.; Mitra, S.; Chotani, M.A.; Flavahan, S.; Bailey, S.R.; Thompson-Torgerson, C.S.; Flavahan, N.A. Estrogen increases smooth muscle expression of α 2C -adrenoceptors and cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1955-H1961.
[http://dx.doi.org/10.1152/ajpheart.00306.2007] [PMID: 17644575]
[26]
Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 2005, 146(2), 624-632.
[http://dx.doi.org/10.1210/en.2004-1064] [PMID: 15539556]
[27]
Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124, 106600.
[http://dx.doi.org/10.1016/j.vph.2019.106600] [PMID: 31629918]
[28]
Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21.
[http://dx.doi.org/10.1016/j.vph.2018.09.001] [PMID: 30227233]
[29]
Hutchens, M.P.; Nakano, T.; Kosaka, Y.; Dunlap, J.; Zhang, W.; Herson, P.S.; Murphy, S.J.; Anderson, S.; Hurn, P.D. Estrogen is renoprotective via a nonreceptor-dependent mechanism after cardiac arrest in vivo. Anesthesiology, 2010, 112(2), 395-405.
[http://dx.doi.org/10.1097/ALN.0b013e3181c98da9] [PMID: 20068453]
[30]
Chakrabarti, S.; Morton, J.S.; Davidge, S.T. Mechanisms of estrogen effects on the endothelium: An overview. Can. J. Cardiol., 2014, 30(7), 705-712.
[http://dx.doi.org/10.1016/j.cjca.2013.08.006] [PMID: 24252499]
[31]
Takada, Y.; Kato, C.; Kondo, S.; Korenaga, R.; Ando, J. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun., 1997, 240(3), 737-741.
[http://dx.doi.org/10.1006/bbrc.1997.7734] [PMID: 9398636]
[32]
Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14(10), 1649-1660.
[http://dx.doi.org/10.1210/mend.14.10.0532] [PMID: 11043579]
[33]
Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER–novel membrane oestrogen receptor. Clin. Sci., 2016, 130(12), 1005-1016.
[http://dx.doi.org/10.1042/CS20160114]
[34]
Meyer, M.R.; Amann, K.; Field, A.S.; Hu, C.; Hathaway, H.J.; Kanagy, N.L.; Walker, M.K.; Barton, M.; Prossnitz, E.R. Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction. Hypertension, 2012, 59(2), 507-512.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.184606] [PMID: 22203741]
[35]
Prabhushankar, R.; Krueger, C.; Manrique, C. Membrane estrogen receptors: Their role in blood pressure regulation and cardiovascular disease. Curr. Hypertens. Rep., 2014, 16(1), 408.
[http://dx.doi.org/10.1007/s11906-013-0408-6] [PMID: 24343167]
[36]
Barton, M.; Prossnitz, E.R. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol. Metab., 2015, 26(4), 185-192.
[http://dx.doi.org/10.1016/j.tem.2015.02.003] [PMID: 25767029]
[37]
Burke, A.P.; Farb, A.; Malcom, G.; Virmani, R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am. Heart J., 2001, 141(S2), S58-S62.
[http://dx.doi.org/10.1067/mhj.2001.109946] [PMID: 11174360]
[38]
Sever, R.; Glass, C.K. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a016709.
[http://dx.doi.org/10.1101/cshperspect.a016709] [PMID: 23457262]
[39]
Klinge, C.M.; Blankenship, K.A.; Risinger, K.E.; Bhatnagar, S.; Noisin, E.L.; Sumanasekera, W.K.; Zhao, L.; Brey, D.M.; Keynton, R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem., 2005, 280(9), 7460-7468.
[http://dx.doi.org/10.1074/jbc.M411565200] [PMID: 15615701]
[40]
Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest., 2005, 85(1), 9-23.
[http://dx.doi.org/10.1038/labinvest.3700215] [PMID: 15568038]
[41]
Kaplan, J.R.; Manuck, S.B. Premenopausal reproductive health modulates future cardiovascular risk - comparative evidence from monkeys and women. Yale J. Biol. Med., 2017, 90(3), 499-507.
[PMID: 28955188]
[42]
Fairweather, D. Sex differences in inflammation during atherosclerosis. Clin. Med. Insights Cardiol., 2015, 8(S3), 49-59.
[PMID: 25983559]
[43]
Saha, K.R.; Rahman, M.M.; Paul, A.R.; Das, S.; Haque, S.; Jafrin, W.; Mia, A.R. Changes in lipid profile of postmenopausal women. Mymensingh Med. J., 2013, 22(4), 706-711.
[PMID: 24292300]
[44]
Vaisar, T.; Gordon, J.L.; Wimberger, J.; Heinecke, J.W.; Hinderliter, A.L.; Rubinow, D.R.; Girdler, S.S.; Rubinow, K.B. Perimenopausal transdermal estradiol replacement reduces serum HDL cholesterol efflux capacity but improves cardiovascular risk factors. J. Clin. Lipidol., 2021, 15(1), 151-161.e0.
[http://dx.doi.org/10.1016/j.jacl.2020.11.009] [PMID: 33288437]
[45]
Lee, J.Y.; Hyun, H.S.; Park, H.G.; Seo, J.H.; Lee, E.Y.; Lee, J.S.; Lee, D.Y.; Choi, D.S.; Yoon, B.K. Effects of hormone therapy on serum lipid levels in postmenopausal korean women. J. Menopausal Med., 2015, 21(2), 104-111.
[http://dx.doi.org/10.6118/jmm.2015.21.2.104] [PMID: 26357648]
[46]
Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330.
[http://dx.doi.org/10.1093/eurheartj/ehz962] [PMID: 32052833]
[47]
Langer, G.; Bader, B.; Meoli, L.; Isensee, J.; Delbeck, M.; Noppinger, P.R.; Otto, C.J.S. A critical review of fundamental controversies in the field of GPR30 research. Steroids., 2010, 75(8-9), 603-610.
[http://dx.doi.org/10.1016/j.steroids.2009.12.006]
[48]
Meyer, M.R.; Fredette, N.C.; Howard, T.A.; Hu, C.; Ramesh, C.; Daniel, C.; Amann, K.; Arterburn, J.B.; Barton, M.; Prossnitz, E.R. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep., 2014, 4(1), 7564.
[http://dx.doi.org/10.1038/srep07564] [PMID: 25532911]
[49]
Hussain, Y.; Ding, Q.; Connelly, P.W.; Brunt, J.H.; Ban, M.R.; McIntyre, A.D.; Huff, M.W.; Gros, R.; Hegele, R.A.; Feldman, R.D. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: Cellular and population genetic studies. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 213-221.
[http://dx.doi.org/10.1161/ATVBAHA.114.304326] [PMID: 25395619]
[50]
Fu, W.; Gao, X.P.; Zhang, S.; Dai, Y.P.; Zou, W.J.; Yue, L.M. 17β-estradiol inhibits pcsk9-mediated LDLR degradation through GPER/PLC activation in HepG2 Cells. Front. Endocrinol., 2020, 10, 930-930.
[http://dx.doi.org/10.3389/fendo.2019.00930] [PMID: 32082252]
[51]
Ding, Q.; Gros, R.; Limbird, L.E.; Chorazyczewski, J.; Feldman, R.D.J.A.J.o.P.-C.P. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am. J. Physiol. Cell Physiol., 2009, 297(5), C1178-C1187.
[http://dx.doi.org/10.1152/ajpcell.00185.2009] [PMID: 19741198]
[52]
Gros, R.; Hussain, Y.; Chorazyczewski, J.; Pickering, J.G.; Ding, Q.; Feldman, R.D.J.H. Extent of vascular remodeling is dependent on the balance between estrogen receptor α and G-protein–coupled estrogen receptor. Hypertension., 2016, 68(5), 1225-1235.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07859]
[53]
Sharma, G.; Prossnitz, E.R. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. Endo. Metab. Sci., 2021, 2, 100080.
[http://dx.doi.org/10.1016/j.endmts.2021.100080] [PMID: 35321004]
[54]
Haas, E.; Bhattacharya, I.; Brailoiu, E.; Damjanović, M.; Brailoiu, G.C.; Gao, X.; Mueller-Guerre, L.; Marjon, N.A.; Gut, A.; Minotti, R.; Meyer, M.R.; Amann, K.; Ammann, E.; Perez-Dominguez, A.; Genoni, M.; Clegg, D.J.; Dun, N.J.; Resta, T.C.; Prossnitz, E.R.; Barton, M. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res., 2009, 104(3), 288-291.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190892] [PMID: 19179659]
[55]
Sharma, G.; Hu, C.; Brigman, J.L.; Zhu, G.; Hathaway, H.J.; Prossnitz, E.R. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology, 2013, 154(11), 4136-4145.
[http://dx.doi.org/10.1210/en.2013-1357] [PMID: 23970785]
[56]
Davis, K.E.; Carstens, E.J.; Irani, B.G.; Gent, L.M.; Hahner, L.M.; Clegg, D.J. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav., 2014, 66(1), 196-207.
[http://dx.doi.org/10.1016/j.yhbeh.2014.02.004] [PMID: 24560890]
[57]
Sharma, G.; Hu, C.; Staquicini, D.I.; Brigman, J.L.; Liu, M.; Mauvais-Jarvis, F.; Pasqualini, R.; Arap, W.; Arterburn, J.B.; Hathaway, H.J.; Prossnitz, E.R. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci. Transl. Med., 2020, 12(528), eaau5956.
[http://dx.doi.org/10.1126/scitranslmed.aau5956] [PMID: 31996464]
[58]
Mårtensson, U.E.A.; Salehi, S.A.; Windahl, S.; Gomez, M.F.; Swärd, K.; Daszkiewicz-Nilsson, J.; Wendt, A.; Andersson, N.; Hellstrand, P.; Grände, P.O.; Owman, C.; Rosen, C.J.; Adamo, M.L.; Lundquist, I.; Rorsman, P.; Nilsson, B.O.; Ohlsson, C.; Olde, B.; Leeb-Lundberg, L.M.F. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology, 2009, 150(2), 687-698.
[http://dx.doi.org/10.1210/en.2008-0623] [PMID: 18845638]
[59]
Muller, C.; Brown-Glaberman, U.A.; Chaney, M.F.; Garyantes, T.; LoRusso, P.; McQuade, J.L.; Mita, A.C.; Mita, M.M.; Natale, C.; Orloff, M.; Papadopoulos, K.P.; Sato, T.; Yilmaz, E.; Rodon, J. Phase 1 trial of a novel, first-in-class G protein-coupled estrogen receptor (GPER) agonist, LNS8801, in patients with advanced or recurrent treatment-refractory solid malignancies. J. Clin. Oncol., 2021, 39(S15), 3084-3084.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.3084]
[60]
Beyoğlu, A.; Kurutaş, E.B.; Karaküçük, Y.; Çömez, A.; Meşen, A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq. Bras. Oftalmol., 2022, S0004-27492022005008205.
[PMID: 35857982]
[61]
Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology, 2012, 221(3), 527-535.
[http://dx.doi.org/10.1007/s00213-011-2599-3] [PMID: 22143579]
[62]
Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a MULTISYSTEM disease: Trends in obesity rates and OBESITY‐RELATED complications. Diabetes Obes. Metab., 2021, 23(S1), 3-16.
[http://dx.doi.org/10.1111/dom.14290] [PMID: 33621415]
[63]
Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 2019, 40(2), 537-557.
[http://dx.doi.org/10.1210/er.2018-00184] [PMID: 30312399]
[64]
Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via gper1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998.
[http://dx.doi.org/10.3389/fphar.2021.658998] [PMID: 34248622]
[65]
Beral, V.; Bull, D.; Reeves, G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet, 2005, 365(9470), 1543-1551.
[http://dx.doi.org/10.1016/S0140-6736(05)66455-0] [PMID: 15866308]
[66]
Furness, S.; Roberts, H.; Marjoribanks, J.; Lethaby, A. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database Syst. Rev., 2012, 2012(8), CD000402.
[http://dx.doi.org/10.1002/14651858.CD000402.pub4]
[67]
Wildemeersch, D. Why perimenopausal women should consider to use a levonorgestrel intrauterine system. Gynecol. Endocrinol., 2016, 32(8), 659-661.
[http://dx.doi.org/10.3109/09513590.2016.1153056] [PMID: 26930021]
[68]
Pinkerton, J.V.; Pickar, J.H.; Racketa, J.; Mirkin, S. Bazedoxifene/conjugated estrogens for menopausal symptom treatment and osteoporosis prevention. Climacteric, 2012, 15(5), 411-418.
[http://dx.doi.org/10.3109/13697137.2012.696289] [PMID: 22853444]
[69]
Singh, G.; Puckett, Y. Endometrial Hyperplasia. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[70]
Hamoda, H.; Panay, N.; Pedder, H.; Arya, R.; Savvas, M. The british menopause society & women’s health concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reprod. Health, 2020, 26(4), 181-209.
[http://dx.doi.org/10.1177/2053369120957514] [PMID: 33045914]
[71]
Gompel, A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 69, 95-107.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.05.003] [PMID: 32732107]
[72]
De Medeiros, S.F.; Yamamoto, M.M.W.; Barbosa, J.S. Abnormal bleeding during menopause hormone therapy: insights for clinical management. Clin. Med. Insights Womens Health, 2013, 6, CMWH.S10483.
[http://dx.doi.org/10.4137/CMWH.S10483] [PMID: 24665210]
[73]
Edwards, M.; Can, A.S. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[74]
Mu, E.; Kulkarni, J. Hormonal contraception and mood disorders. Aust. Prescr., 2022, 45(3), 75-79.
[http://dx.doi.org/10.18773/austprescr.2022.025] [PMID: 35755988]
[75]
Dennis, M.K.; Burai, R.; Ramesh, C.; Petrie, W.K.; Alcon, S.N.; Nayak, T.K.; Bologa, C.G.; Leitao, A.; Brailoiu, E.; Deliu, E.; Dun, N.J.; Sklar, L.A.; Hathaway, H.J.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol., 2009, 5(6), 421-427.
[http://dx.doi.org/10.1038/nchembio.168] [PMID: 19430488]
[76]
Barton, M. Position paper: The membrane estrogen receptor GPER – Clues and questions. Steroids, 2012, 77(10), 935-942.
[http://dx.doi.org/10.1016/j.steroids.2012.04.001] [PMID: 22521564]
[77]
DeLeon, C.; Wang, D.Q.H.; Arnatt, C.K. G protein-coupled estrogen receptor, GPER1, offers a novel target for the treatment of digestive diseases. Front. Endocrinol., 2020, 11, 578536.
[http://dx.doi.org/10.3389/fendo.2020.578536] [PMID: 33281743]
[78]
Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170.
[http://dx.doi.org/10.1016/bs.apcsb.2019.01.001] [PMID: 31036290]
[79]
Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen signaling in endometrial cancer: A key oncogenic pathway with several open questions. Horm. Cancer, 2019, 10(2-3), 51-63.
[http://dx.doi.org/10.1007/s12672-019-0358-9] [PMID: 30712080]
[80]
Krakstad, C.; Trovik, J.; Wik, E.; Engelsen, I.B.; Werner, H.M.J.; Birkeland, E.; Raeder, M.B.; Øyan, A.M.; Stefansson, I.M.; Kalland, K.H.; Akslen, L.A.; Salvesen, H.B. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br. J. Cancer, 2012, 106(10), 1682-1688.
[http://dx.doi.org/10.1038/bjc.2012.91] [PMID: 22415229]
[81]
Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78(11), 1087-1091.
[http://dx.doi.org/10.1016/j.steroids.2013.07.007] [PMID: 23921077]
[82]
Levine, D.A.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; Yau, C.; Laird, P.W.; Ding, L.; Zhang, W.; Mills, G.B.; Kucherlapati, R.; Mardis, E.R.; Levine, D.A. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497(7447), 67-73.
[http://dx.doi.org/10.1038/nature12113] [PMID: 23636398]
[83]
Kim, K.H.; Bender, J.R. Rapid, estrogen receptor-mediated signaling: Why is the endothelium so special? Sci. STKE, 2005, 2005(288), pe28.
[http://dx.doi.org/10.1126/stke.2882005pe28] [PMID: 15956360]
[84]
Otto, C.; Fuchs, I.; Kauselmann, G.; Kern, H.; Zevnik, B.; Andreasen, P.; Schwarz, G.; Altmann, H.; Klewer, M.; Schoor, M.; Vonk, R.; Fritzemeier, K.H. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod., 2009, 80(1), 34-41.
[http://dx.doi.org/10.1095/biolreprod.108.071175] [PMID: 18799753]
[85]
Isensee, J.; Meoli, L.; Zazzu, V.; Nabzdyk, C.; Witt, H.; Soewarto, D.; Effertz, K.; Fuchs, H.; Gailus-Durner, V.; Busch, D.; Adler, T.; de Angelis, M.H.; Irgang, M.; Otto, C.; Noppinger, P.R. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology, 2009, 150(4), 1722-1730.
[http://dx.doi.org/10.1210/en.2008-1488] [PMID: 19095739]
[86]
Fardoun, M.; Mondello, S.; Kobeissy, F.; Eid, A.H. G protein estrogen receptor as a potential therapeutic target in Raynaud’s phenomenon. Front. Pharmacol., 2022, 13, 1061374.
[http://dx.doi.org/10.3389/fphar.2022.1061374] [PMID: 36438809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy