Perspective

米他伐特:一种治疗丙酮酸激酶缺乏症成人溶血性贫血的新方法

卷 31, 期 6, 2024

发表于: 26 May, 2023

页: [683 - 687] 页: 5

弟呕挨: 10.2174/0929867330666230430002709

摘要

米他伐是一种口服的丙酮酸激酶小分子变构激活剂。它于2022年2月17日获得美国FDA批准,并于2022年11月获得欧盟批准,用于治疗丙酮酸激酶缺乏症成人患者的溶血性贫血。在这个简短的观点,物理化学性质,合成,剂量和给药,作用机制,药效学,药代动力学,药物相互作用,以及米他伐特的不良反应进行了描述。

关键词: 溶血性贫血,丙酮酸激酶缺乏症,米他品,镰状细胞病,地中海贫血,红细胞,血红蛋白。

[1]
Koralkova, P.; van Solinge, W.W.; van Wijk, R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis. Int. J. Lab. Hematol., 2014, 36(3), 388-397.
[http://dx.doi.org/10.1111/ijlh.12223] [PMID: 24750686]
[2]
Kanno, H.; Fujii, H.; Miwa, S. Structural analysis of human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells. Biochem. Biophys. Res. Commun., 1992, 188(2), 516-523.
[http://dx.doi.org/10.1016/0006-291X(92)91086-6] [PMID: 1445295]
[3]
Secrest, M.H.; Storm, M.; Carrington, C.; Casso, D.; Gilroy, K.; Pladson, L.; Boscoe, A.N. Prevalence of pyruvate kinase deficiency: A systematic literature review. Eur. J. Haematol., 2020, 105(2), 173-184.
[http://dx.doi.org/10.1111/ejh.13424] [PMID: 32279356]
[4]
Bianchi, P.; Fermo, E.; Lezon-Geyda, K.; Beers, E.J.; Morton, H.D.; Barcellini, W.; Glader, B.; Chonat, S.; Ravindranath, Y.; Newburger, P.E.; Kollmar, N.; Despotovic, J.M.; Verhovsek, M.; Sharma, M.; Kwiatkowski, J.L.; Kuo, K.H.M.; Wlodarski, M.W.; Yaish, H.M.; Holzhauer, S.; Wang, H.; Kunz, J.; Addonizio, K.; Al-Sayegh, H.; London, W.B.; Andres, O.; Wijk, R.; Gallagher, P.G.; Grace, R.F.F. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. Am. J. Hematol., 2020, 95(5), 472-482.
[http://dx.doi.org/10.1002/ajh.25753] [PMID: 32043619]
[5]
Rab, M.A.E.; Van Oirschot, B.A.; Kosinski, P.A.; Hixon, J.; Johnson, K.; Chubukov, V.; Dang, L.; Pasterkamp, G.; Van Straaten, S.; Van Solinge, W.W.; Van Beers, E.J.; Kung, C.; Van Wijk, R. AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes. Haematologica, 2020, 106(1), 238-249.
[http://dx.doi.org/10.3324/haematol.2019.238865] [PMID: 31974203]
[6]
Glenthøj, A.; van Beers, E.J.; Al-Samkari, H.; Viprakasit, V.; Kuo, K.H.M.; Galactéros, F.; Chonat, S.; Porter, J.; Zagadailov, E.; Xu, R.; Oluyadi, A.; Hawkins, P.; Gheuens, S.; Beynon, V.; Barcellini, W. Mitapivat in adult patients with pyruvate kinase deficiency receiving regular transfusions (ACTIVATE-T): A multicentre, open-label, single-arm, phase 3 trial. Lancet Haematol., 2022, 9(10), e724-e732.
[http://dx.doi.org/10.1016/S2352-3026(22)00214-9] [PMID: 35988546]
[7]
Kuo, K.H.M.; Layton, D.M.; Lal, A.; Al-Samkari, H.; Bhatia, J.; Kosinski, P.A.; Tong, B.; Lynch, M.; Uhlig, K.; Vichinsky, E.P. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α-thalassaemia or β-thalassaemia: An open-label, multicentre, phase 2 study. Lancet, 2022, 400(10351), 493-501.
[http://dx.doi.org/10.1016/S0140-6736(22)01337-X] [PMID: 35964609]
[8]
Shah, A.J.; Schwartz, J.D.; Segovia, J.C. Mitapivat versus placebo for pyruvate kinase deficiency. N. Engl. J. Med., 2022, 386(26), 2538-2539.
[http://dx.doi.org/10.1056/NEJMc2206275] [PMID: 35767453]
[9]
Kung, C.; Hixon, J.; Kosinski, P.A.; Cianchetta, G.; Histen, G.; Chen, Y.; Hill, C.; Gross, S.; Si, Y.; Johnson, K.; DeLaBarre, B.; Luo, Z.; Gu, Z.; Yao, G.; Tang, H.; Fang, C.; Xu, Y.; Lv, X.; Biller, S.; Su, S.S.M.; Yang, H.; Popovici-Muller, J.; Salituro, F.; Silverman, L.; Dang, L. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood, 2017, 130(11), 1347-1356.
[http://dx.doi.org/10.1182/blood-2016-11-753525] [PMID: 28760888]
[10]
Al-Samkari, H.; van Beers, E.J. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias. Ther. Adv. Hematol., 2021, 12.
[http://dx.doi.org/10.1177/20406207211066070] [PMID: 34987744]
[11]
Sizemore, J.; Guo, L.; Mirmehrabi, M.; Su, Y. Crystalline Forms of N-(4-(4-(Cyclopropylmethyl) Piperazine-1-Carbonyl)Phenyl)Quinoline-8-Sulfonamide. WO2019104134A1, 2019.
[12]
Matte, A.; Federti, E.; Kung, C.; Kosinski, P.A.; Narayanaswamy, R.; Russo, R.; Federico, G.; Carlomagno, F.; Desbats, M.A.; Salviati, L.; Leboeuf, C.; Valenti, M.T.; Turrini, F.; Janin, A.; Yu, S.; Beneduce, E.; Ronseaux, S.; Iatcenko, I.; Dang, L.; Ganz, T.; Jung, C.L.; Iolascon, A.; Brugnara, C.; De Franceschi, L. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model. J. Clin. Invest., 2021, 131(10), e144206.
[http://dx.doi.org/10.1172/JCI144206] [PMID: 33822774]
[13]
Idris, I.M.; Burnett, A.L.; DeBaun, M.R. Epidemiology and treatment of priapism in sickle cell disease. Hematology, 2022, 2022(1), 450-458.
[http://dx.doi.org/10.1182/hematology.2022000380] [PMID: 36485155]
[14]
Musallam, K.M.; Taher, A.T.; Cappellini, M.D. Right in time: Mitapivat for the treatment of anemia in α - and β-thalassemia. Cell Rep. Med., 2022, 3(10), 100790.
[http://dx.doi.org/10.1016/j.xcrm.2022.100790] [PMID: 36260990]
[15]
Xu, J.Z.; Conrey, A.; Frey, I.; Gwaabe, E.; Menapace, L.A.; Tumburu, L.; Lundt, M.; Lequang, T.; Li, Q.; Glass, K.; Dunkelberger, E.B.; Iyer, V.; Mangus, H.; Kung, C.; Dang, L.; Kosinski, P.A.; Hawkins, P.; Jeffries, N.; Eaton, W.A.; Lay Thein, S. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease. Blood, 2022, 140(19), 2053-2062.
[http://dx.doi.org/10.1182/blood.2022015403] [PMID: 35576529]
[16]
van Dijk, M.J.; Rab, M.A.E.; van Oirschot, B.A.; Bos, J.; Derichs, C.; Rijneveld, A.W.; Cnossen, M.H.; Nur, E.; Biemond, B.J.; Bartels, M.; Jans, J.J.M.; van Solinge, W.W.; Schutgens, R.E.G.; van Wijk, R.; van Beers, E.J. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in sickle cell disease: A phase 2, open-label study. Am. J. Hematol., 2022, 97(7), E226-E229.
[http://dx.doi.org/10.1002/ajh.26554] [PMID: 35384026]
[17]
Langer, A.L. Esrick, E.B. β-Thalassemia: Evolving treatment options beyond transfusion and iron chelation. Hematology, 2021, 2021(1), 600-606.
[http://dx.doi.org/10.1182/hematology.2021000313] [PMID: 34889443]

© 2024 Bentham Science Publishers | Privacy Policy