Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

Essential Trace Elements in Patients with Dyslipidemia: A Meta-analysis

Author(s): Cui-Ping Li, Yu-Xin Song, Zi-Jun Lin, Mei-Lin Ma and Lian-Ping He*

Volume 31, Issue 23, 2024

Published on: 07 July, 2023

Page: [3604 - 3623] Pages: 20

DOI: 10.2174/0929867330666230428161653

open access plus

Abstract

Background: Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism.

Methods: In this study, we reviewed articles on the relationship between alterations in somatic levels of zinc, iron, calcium, copper, chrome, manganese, selenium, and lipid metabolism. In this systematic review and mate-analysis, databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), Wanfang was searched for articles on the relationship published between January 1, 1900, and July 12, 2022. The meta-analysis was performed using Review Manager5.3 (Cochrane Collaboration).

Results: No significant association was found between serum zinc and dyslipidemia, while other serum trace elements (iron, selenium, copper, chromium, and manganese) were associated with hyperlipidemia.

Conclusion: The present study suggested that the human body's zinc, copper, and calcium content may be related to lipid metabolism. However, findings on lipid metabolism and Iron, Manganese have not been conclusive. In addition, the relationship between lipid metabolism disorders and selenium levels still needs to be further studied. Further research is needed on treating lipid metabolism diseases by changing trace elements.

Keywords: Selenium, zinc, iron, copper, chrome, manganese, cadmium, dyslipidemia.

[1]
Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci., 2015, 16(1), 924-949.
[http://dx.doi.org/10.3390/ijms16010924] [PMID: 25561239]
[2]
Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472.
[http://dx.doi.org/10.1007/s11154-019-09512-0] [PMID: 31707624]
[3]
Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 2012, 15(3), 279-291.
[http://dx.doi.org/10.1016/j.cmet.2011.12.018] [PMID: 22405066]
[4]
DeBose-Boyd, R.A. Significance and regulation of lipid metabolism. Semin. Cell Dev. Biol., 2018, 81, 97.
[http://dx.doi.org/10.1016/j.semcdb.2017.12.003] [PMID: 29246858]
[5]
Liu, K.; Czaja, M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ., 2013, 20(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2012.63] [PMID: 22595754]
[6]
de Kroon, A.I.P.M. Lipidomics in research on yeast membrane lipid homeostasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(8), 797-799.
[http://dx.doi.org/10.1016/j.bbalip.2017.02.007] [PMID: 28219720]
[7]
Furt, F.; Moreau, P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int. J. Biochem. Cell Biol., 2009, 41(10), 1828-1836.
[http://dx.doi.org/10.1016/j.biocel.2009.02.005] [PMID: 19703652]
[8]
Parhofer, K.G. The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int., 2016, 113(15), 261-268.
[http://dx.doi.org/10.3238/arztebl.2016.0261] [PMID: 27151464]
[9]
Natesan, V.; Kim, S.J. Lipid metabolism, disorders and therapeutic drugs - review. Biomol. Ther., 2021, 29(6), 596-604.
[http://dx.doi.org/10.4062/biomolther.2021.122] [PMID: 34697272]
[10]
Vergès, B. Lipid disorders in type 1 diabetes. Diabetes Metab., 2009, 35(5), 353-360.
[http://dx.doi.org/10.1016/j.diabet.2009.04.004] [PMID: 19733492]
[11]
Vergès, B. Lipid modification in type 2 diabetes: The role of LDL and HDL. Fundam. Clin. Pharmacol., 2009, 23(6), 681-685.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00739.x] [PMID: 19650852]
[12]
Walldius, G.; de Faire, U.; Alfredsson, L.; Leander, K.; Westerholm, P.; Malmström, H.; Ivert, T.; Hammar, N. Long-term risk of a major cardiovascular event by apoB, apoA-1, and the apoB/apoA-1 ratio-Experience from the Swedish AMORIS cohort: A cohort study. PLoS Med., 2021, 18(12), e1003853.
[http://dx.doi.org/10.1371/journal.pmed.1003853] [PMID: 34851955]
[13]
Zambon, A.; Brown, B.G.; Deeb, S.S.; Brunzell, J.D. Genetics of apolipoprotein B and apolipoprotein AI and premature coronary artery disease. J. Intern. Med., 2006, 259(5), 473-480.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01645.x] [PMID: 16629853]
[14]
Georgieva, A.M.; van Greevenbroek, M.M.J.; Krauss, R.M.; Brouwers, M.C.G.J.; Vermeulen, V.M.M.J.; Robertus-Teunissen, M.G.; van der Kallen, C.J.H.; de Bruin, T.W.A. Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: Relationship to multiple lipoprotein phenotype. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 744-749.
[http://dx.doi.org/10.1161/01.ATV.0000119681.47218.a4] [PMID: 14751815]
[15]
Fraga, C.G.; Oteiza, P.I.; Keen, C.L. Trace elements and human health. Mol. Aspects Med., 2005, 26(4-5), 233-234.
[http://dx.doi.org/10.1016/j.mam.2005.07.014] [PMID: 16122783]
[16]
Zheng, W. Systemic impact of trace elements on human health and diseases: Nutrition, toxicity, and beyond. J. Trace Elem. Med. Biol., 2020, 62, 126634.
[http://dx.doi.org/10.1016/j.jtemb.2020.126634] [PMID: 32827865]
[17]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[18]
Huang, H.Y.; Caballero, B.; Chang, S.; Alberg, A.J.; Semba, R.D.; Schneyer, C.R.; Wilson, R.F.; Cheng, T.Y.; Vassy, J.; Prokopowicz, G.; Barnes, G.J., II; Bass, E.B. The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: A systematic review for a National Institutes of Health state-of-the-science conference. Ann. Intern. Med., 2006, 145(5), 372-385.
[http://dx.doi.org/10.7326/0003-4819-145-5-200609050-00135] [PMID: 16880453]
[19]
Maroney, M.J.; Hondal, R.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med., 2018, 127, 228-237.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.035] [PMID: 29588180]
[20]
Kramer, C.K.; Zinman, B.; Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(11), 758-769.
[http://dx.doi.org/10.7326/0003-4819-159-11-201312030-00008] [PMID: 24297192]
[21]
Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace elements, PPARs, and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(7), 2612.
[http://dx.doi.org/10.3390/ijms21072612] [PMID: 32283758]
[22]
Li, Y.; Ma, Z.; Jiang, S.; Hu, W.; Li, T.; Di, S.; Wang, D.; Yang, Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog. Lipid Res., 2017, 66, 42-49.
[http://dx.doi.org/10.1016/j.plipres.2017.04.002] [PMID: 28392404]
[23]
Ji, Z.; Shen, Y.; Feng, X.; Kong, Y.; Shao, Y.; Meng, J.; Zhang, X.; Yang, G. Deregulation of lipid metabolism: The critical factors in ovarian cancer. Front. Oncol., 2020, 10, 593017.
[http://dx.doi.org/10.3389/fonc.2020.593017] [PMID: 33194756]
[24]
Alannan, M.; Fayyad-Kazan, H.; Trézéguet, V.; Merched, A. Targeting lipid metabolism in liver cancer. Biochemistry, 2020, 59(41), 3951-3964.
[http://dx.doi.org/10.1021/acs.biochem.0c00477] [PMID: 32930581]
[25]
Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 2000, 283(15), 2008-2012.
[http://dx.doi.org/10.1001/jama.283.15.2008] [PMID: 10789670]
[26]
Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; Carpenter, J.R.; Chan, A.W.; Churchill, R.; Deeks, J.J.; Hróbjartsson, A.; Kirkham, J.; Jüni, P.; Loke, Y.K.; Pigott, T.D.; Ramsay, C.R.; Regidor, D.; Rothstein, H.R.; Sandhu, L.; Santaguida, P.L.; Schünemann, H.J.; Shea, B.; Shrier, I.; Tugwell, P.; Turner, L.; Valentine, J.C.; Waddington, H.; Waters, E.; Wells, G.A.; Whiting, P.F.; Higgins, J.P.T. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 2016, 355, i4919.
[http://dx.doi.org/10.1136/bmj.i4919] [PMID: 27733354]
[27]
Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[28]
Song, F.; Gilbody, S. Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. BMJ, 1998, 316(7129), 471.
[PMID: 9492690]
[29]
Ngu, Y.J.; Skalny, A.V.; Tinkov, A.A.; Tsai, C.S.; Chang, C.C.; Chuang, Y.K.; Nikolenko, V.N.; Zotkin, D.A.; Chiu, C.F.; Chang, J.S. Association between essential and non-essential metals, body composition, and metabolic syndrome in adults. Biol. Trace Elem. Res., 2022, 200(12), 4903-4915.
[http://dx.doi.org/10.1007/s12011-021-03077-3] [PMID: 34993913]
[30]
Li, X.H.; Feng, L.; Zhao, C.F.; Zhang, J.L.; Wang, H.M. Observation and analysis of blood glucose, blood lipid and serum zinc, copper and magnesium in patients with type 2 diabetes mellitus. Zhongguo Laonianxue Zazhi, 2008, (15), 1521-1522.
[31]
Costarelli, L.; Muti, E.; Malavolta, M.; Cipriano, C.; Giacconi, R.; Tesei, S.; Piacenza, F.; Pierpaoli, S.; Gasparini, N.; Faloia, E.; Tirabassi, G.; Boscaro, M.; Polito, A.; Mauro, B.; Maiani, F.; Raguzzini, A.; Marcellini, F.; Giuli, C.; Papa, R.; Emanuelli, M.; Lattanzio, F.; Mocchegiani, E. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem., 2010, 21(5), 432-437.
[http://dx.doi.org/10.1016/j.jnutbio.2009.02.001] [PMID: 19427184]
[32]
Yeung, D.C.Y.; Lam, K.S.L.; Wang, Y.; Tso, A.W.K.; Xu, A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J. Clin. Endocrinol. Metab., 2009, 94(7), 2531-2536.
[http://dx.doi.org/10.1210/jc.2009-0058] [PMID: 19351730]
[33]
Maxel, T.; Smidt, K.; Larsen, A.; Bennetzen, M.; Cullberg, K.; Fjeldborg, K.; Lund, S.; Pedersen, S.B.; Rungby, J. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes., 2015, 2(1), 46.
[http://dx.doi.org/10.1186/s40608-015-0076-y] [PMID: 26623077]
[34]
Yerlikaya, F.H.; Can, U.; Alpaydin, M.S.; Aribas, A. The relationship between plasma microRNAs and serum trace elements levels in primary hyperlipidemia. Bratisl. Med. J., 2019, 120(5), 344-348.
[http://dx.doi.org/10.4149/BLL_2019_056] [PMID: 31113196]
[35]
Cheng, W.L.; Lin, Y.Q. Determination of trace elements in serum of elderly patients with diabetes, coronary heart disease and hyperlipidemia. Biol. Trace. Elem. Res., 1995, (04), 15-16.
[36]
Xu, G.Y.; Yu, P.; Wang, X.S. Determination of serum zinc, calcium and magnesium in middle-aged and elderly patients with hyperlipidemia. Trace Elem Res., 1997, 04, 50-51.
[37]
Yu, S.M.; Fan, Z.W.; Zang, H.M. Clinical significance of determination of serum copper and zinc in patients with coronary heart disease. Preven. Control Chronic Dis. Chin., 1998, 1998(03), 46-47.
[38]
Li, J.R.; Gong, L.; Kang, Y.; Yu, B.; Zhang, X.G. Correlation between serum calcium, magnesium and zinc trace elements and hyperlipidemia. J. Cardiopulm. Rehabil. Prev., 2001, (04), 359-360.
[39]
Pei, W.J.; Ju, L.; Wang, J. Correlation between plasma zinc copper magnesium and prostacyclin and thromboxane in patients with hyperlipidemia. Chin. Med. J., 2001, (02), 143-144.
[40]
He, B.P.; Zhang, X.R.; Wu, Q.Y.; Xu, J.M.; Zhang, J.; Zhu, M.; Liu, X.Y.; Ma, J.W.; Zheng, H.Y.; Du, X.W. Study on the relationship between copper and zinc and apolipoprotein in hypertensive patients with hyperlipidemia. Guangdong Trace Elements Sci., 2003, (11), 32-35.
[41]
Zhuang, Y.Y.; Yu, Y.H.; Zhang, Y.; Meng, L.; Chen, H.B. Changes in micronutrient levels in hyperlipidemia. Zhongguo Laonianxue Zazhi, 2008, (14), 1443-1444.
[42]
Yan, X.M.; Meng, X.X.; Zhang, Y. Determination and correlation analysis of serum total cholesterol, triglyceride, copper and zinc in the aged. Zhongguo Laonianxue Zazhi, 2013, 33(11), 2630-2631.
[43]
Yang, C.J.; Hou, D.L.; Wang, X.K.; Wang, S.S. Correlation between types of dyslipidemia and trace elements. J. Med. Philos., 2015, 36(10), 62-65.
[44]
Yao, Y.F.; Fang, R.C.; Tang, Y.; Lan, J.H. Correlation between serum zinc and copper levels and blood lipids in patients with diabetes mellitus complicated with coronary heart disease. Zhejiang Clin. Med., 2017, 19(5), 955-956.
[45]
Nead, K.G.; Halterman, J.S.; Kaczorowski, J.M.; Auinger, P.; Weitzman, M. Overweight children and adolescents: A risk group for iron deficiency. Pediatrics, 2004, 114(1), 104-108.
[http://dx.doi.org/10.1542/peds.114.1.104] [PMID: 15231915]
[46]
Zhou, B.; Ren, H.; Zhou, X.; Yuan, G. Associations of iron status with apolipoproteins and lipid ratios: A cross-sectional study from the China Health and Nutrition Survey. Lipids Health Dis., 2020, 19(1), 140.
[http://dx.doi.org/10.1186/s12944-020-01312-9] [PMID: 32546165]
[47]
Tussing-Humphreys, L.M.; Liang, H.; Nemeth, E.; Freels, S.; Braunschweig, C.A. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J. Am. Diet. Assoc., 2009, 109(2), 297-302.
[http://dx.doi.org/10.1016/j.jada.2008.10.044] [PMID: 19167957]
[48]
Aranda, N.; Fernandez-Cao, J.C.; Tous, M.; Arija, V. Increased iron levels and lipid peroxidation in a Mediterranean population of Spain. Eur. J. Clin. Invest., 2016, 46(6), 520-526.
[http://dx.doi.org/10.1111/eci.12625] [PMID: 26999720]
[49]
Tang, L.H.; Yuan, Q.M.; Luo, B.Y. Relationship between serum ferritin and metabolic syndrome. 2007, 2007(13), 1331-1333.
[50]
Fan, LM; Zhang, D.Z.; Ye, Y.L. Correlation between serum ferritin and metabolic syndrome in patients with type 2 diabetes mellitus. Beijing Med., 2015, 37(02), 173-174..
[51]
Zhang, L.C.; Cheng, J.; Zhong, C. Plasma ferritin and oxidative stress in patients with hyperlipidemia. World's Latest Med. Info. Digest, 2015, 15(63), 33.
[52]
Lee, H.S.; Park, E. Association of serum ferritin level and depression with respect to the body mass index in Korean male adults. Nutr. Res. Pract., 2019, 13(3), 263-267.
[http://dx.doi.org/10.4162/nrp.2019.13.3.263] [PMID: 31214295]
[53]
Bleys, J.; Navas-Acien, A.; Stranges, S.; Menke, A.; Miller, E.R., III; Guallar, E. Serum selenium and serum lipids in US adults. Am. J. Clin. Nutr., 2008, 88(2), 416-423.
[http://dx.doi.org/10.1093/ajcn/88.2.416] [PMID: 18689378]
[54]
Zhao, Z.; Barcus, M.; Kim, J.; Lum, K.L.; Mills, C.; Lei, X.G. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J. Nutr., 2016, 146(9), 1625-1633.
[http://dx.doi.org/10.3945/jn.116.229955] [PMID: 27466604]
[55]
Ju, W.; Ji, M.; Li, X.; Li, Z.; Wu, G.; Fu, X.; Yang, X.; Gao, X. Relationship between higher serum selenium level and adverse blood lipid profile. Clin. Nutr., 2018, 37(5), 1512-1517.
[http://dx.doi.org/10.1016/j.clnu.2017.08.025] [PMID: 28943111]
[56]
Chen, C.; Jin, Y.; Unverzagt, F.W.; Cheng, Y.; Hake, A.M.; Liang, C.; Ma, F.; Su, L.; Liu, J.; Bian, J.; Li, P.; Gao, S. The association between selenium and lipid levels: A longitudinal study in rural elderly Chinese. Arch. Gerontol. Geriatr., 2015, 60(1), 147-152.
[http://dx.doi.org/10.1016/j.archger.2014.09.005] [PMID: 25263027]
[57]
Cold, F.; Winther, K.H.; Pastor-Barriuso, R.; Rayman, M.P.; Guallar, E.; Nybo, M.; Griffin, B.A.; Stranges, S.; Cold, S. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br. J. Nutr., 2015, 114(11), 1807-1818.
[http://dx.doi.org/10.1017/S0007114515003499] [PMID: 26420334]
[58]
Boskabadi, H.; Maamouri, G.; Rezagholizade Omran, F.; Mafinejad, S.; Tara, F.; Rayman, M.P.; Ghayour-Mobarhan, M.; Sahebkar, A.; Tavallaie, S.; Shakeri, M.T.; Mohammadi, M.; Ferns, G.A. Effect of prenatal selenium supplementation on cord blood selenium and lipid profile. Pediatr. Neonatol., 2012, 53(6), 334-339.
[http://dx.doi.org/10.1016/j.pedneo.2012.08.008] [PMID: 23276436]
[59]
Moon, S.; Chung, H.S.; Yu, J.M.; Yoo, H.J.; Park, J.H.; Kim, D.S.; Park, Y.K.; Yoon, S.N. Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J. Trace Elem. Med. Biol., 2019, 52, 83-88.
[http://dx.doi.org/10.1016/j.jtemb.2018.12.005] [PMID: 30732904]
[60]
Ma, J.; Xie, Y.; Zhou, Y.; Wang, D.; Cao, L.; Zhou, M.; Wang, X.; Wang, B.; Chen, W. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. Environ. Pollut., 2020, 267, 115647.
[http://dx.doi.org/10.1016/j.envpol.2020.115647] [PMID: 33254652]
[61]
Chen, J.; Lan, C.; An, H.; Jin, Y.; Li, Q.; Ge, S.; Yu, Y.; Shen, G.; Pan, B.; Xu, Y.; Ye, R.; Li, Z.; Wang, B. Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. Sci. Total Environ., 2021, 760, 143375.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143375] [PMID: 33189376]
[62]
Jürimäe, J.; Mäestu, E.; Mengel, E.; Remmel, L.; Purge, P.; Tillmann, V. Association between dietary calcium intake and adiposity in male adolescents. Nutrients, 2019, 11(7), 1454.
[http://dx.doi.org/10.3390/nu11071454] [PMID: 31252547]
[63]
Setayesh, L.; Amini, A.; Bagheri, R.; Moradi, N.; Yarizadeh, H.; Asbaghi, O.; Casazza, K.; Yekaninejad, M.S.; Wong, A.; Suzuki, K.; Mirzaei, K. Elevated plasma concentrations of vitamin d-binding protein are associated with lower high-density lipoprotein and higher fat mass index in overweight and obese women. Nutrients, 2021, 13(9), 3223.
[http://dx.doi.org/10.3390/nu13093223] [PMID: 34579103]
[64]
Zhou, Z.; Lu, Y.; Pi, H.; Gao, P.; Li, M.; Zhang, L.; Pei, L.; Mei, X.; Liu, L.; Zhao, Q.; Qin, Q.Z.; Chen, Y.; Jiang, Y.; Zhang, Z.; Yu, Z. Cadmium exposure is associated with the prevalence of dyslipidemia. Cell. Physiol. Biochem., 2016, 40(3-4), 633-643.
[http://dx.doi.org/10.1159/000452576] [PMID: 27898410]
[65]
Asgary, S.; Movahedian, A.; Keshvari, M.; Taleghani, M.; Sahebkar, A.; Sarrafzadegan, N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere, 2017, 180, 540-544.
[http://dx.doi.org/10.1016/j.chemosphere.2017.03.069] [PMID: 28431391]
[66]
Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci., 2018, 68(1), 19-31.
[http://dx.doi.org/10.1007/s12576-017-0571-7] [PMID: 28965330]
[67]
Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of serum zinc levels in overweight and obesity. Biol. Trace Elem. Res., 2020, 198(1), 51-57.
[http://dx.doi.org/10.1007/s12011-020-02060-8] [PMID: 32020525]
[68]
Fukunaka, A.; Fujitani, Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci., 2018, 19(2), 476.
[http://dx.doi.org/10.3390/ijms19020476] [PMID: 29415457]
[69]
Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and function of zinc-α2-glycoprotein. Neurosci. Bull., 2019, 35(3), 540-550.
[http://dx.doi.org/10.1007/s12264-018-00332-x] [PMID: 30610461]
[70]
Banaszak, M.; Górna, I.; Przysławski, J. Zinc and the innovative Zinc-α2-Glycoprotein adipokine play an important role in lipid metabolism: A critical review. Nutrients, 2021, 13(6), 2023.
[http://dx.doi.org/10.3390/nu13062023] [PMID: 34208404]
[71]
Thoen, R.U.; Barther, N.N.; Schemitt, E.; Bona, S.; Fernandes, S.; Coral, G.; Marroni, N.P.; Tovo, C.; Guedes, R.P.; Porawski, M. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl. Physiol. Nutr. Metab., 2019, 44(6), 580-586.
[http://dx.doi.org/10.1139/apnm-2018-0519] [PMID: 30339765]
[72]
Qi, Y.; Zhang, Z.; Liu, S.; Aluo, Z.; Zhang, L.; Yu, L.; Li, Y.; Song, Z.; Zhou, L. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J. Agric. Food Chem., 2020, 68(18), 5189-5200.
[http://dx.doi.org/10.1021/acs.jafc.0c01103] [PMID: 32290656]
[73]
Hughes, S.; Samman, S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J. Am. Coll. Nutr., 2006, 25(4), 285-291.
[http://dx.doi.org/10.1080/07315724.2006.10719537] [PMID: 16943449]
[74]
Ranasinghe, P.; Wathurapatha, W.S.; Ishara, M.H.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab., 2015, 12(1), 26.
[http://dx.doi.org/10.1186/s12986-015-0023-4] [PMID: 26244049]
[75]
Barbara, M.; Mindikoglu, A.L. The role of zinc in the prevention and treatment of nonalcoholic fatty liver disease. Metabolism Open, 2021, 11, 100105.
[http://dx.doi.org/10.1016/j.metop.2021.100105] [PMID: 34337376]
[76]
Abbasi, U.; Abbina, S.; Gill, A.; Takuechi, L.E.; Kizhakkedathu, J.N. Role of iron in the molecular pathogenesis of diseases and therapeutic opportunities. ACS Chem. Biol., 2021, 16(6), 945-972.
[http://dx.doi.org/10.1021/acschembio.1c00122] [PMID: 34102834]
[77]
Banach, W.; Nitschke, K.; Krajewska, N.; Mongiałło, W.; Matuszak, O.; Muszyński, J.; Skrypnik, D. The association between excess body mass and disturbances in somatic mineral levels. Int. J. Mol. Sci., 2020, 21(19), 7306.
[http://dx.doi.org/10.3390/ijms21197306] [PMID: 33022938]
[78]
Liu, Q.; Sun, L.; Tan, Y.; Wang, G.; Lin, X.; Cai, L. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr. Med. Chem., 2009, 16(1), 113-129.
[http://dx.doi.org/10.2174/092986709787002862] [PMID: 19149565]
[79]
Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093.
[http://dx.doi.org/10.1111/obr.12323] [PMID: 26395622]
[80]
Wang, H.; Jiang, X.; Wu, J.; Zhang, L.; Huang, J.; Zhang, Y.; Zou, X.; Liang, B. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics, 2016, 203(1), 241-253.
[http://dx.doi.org/10.1534/genetics.116.186742] [PMID: 27017620]
[81]
Hider, R.C.; Kong, X. Iron: Effect of overload and deficiency. Met. Ions Life Sci., 2013, 13, 229-294.
[http://dx.doi.org/10.1007/978-94-007-7500-8_8] [PMID: 24470094]
[82]
Lin, Z.; Liu, J.; Kang, R.; Yang, M.; Tang, D. Lipid metabolism in ferroptosis. Adv. Biol., 2021, 5(8), 2100396.
[http://dx.doi.org/10.1002/adbi.202100396] [PMID: 34015188]
[83]
Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 108.
[http://dx.doi.org/10.1038/s41392-020-00216-5] [PMID: 32606298]
[84]
Jiang, Y.; Mao, C.; Yang, R.; Yan, B.; Shi, Y.; Liu, X.; Lai, W.; Liu, Y.; Wang, X.; Xiao, D.; Zhou, H.; Cheng, Y.; Yu, F.; Cao, Y.; Liu, S.; Yan, Q.; Tao, Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics, 2017, 7(13), 3293-3305.
[http://dx.doi.org/10.7150/thno.19988] [PMID: 28900510]
[85]
Habib, A.; Finn, A.V. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol., 2014, 5, 195.
[http://dx.doi.org/10.3389/fphar.2014.00195] [PMID: 25221512]
[86]
Zhu, X.H.; Ding, G.Q.; Zhang, R.H.; Zhou, B. Research progress of Iron, Zinc, Copper, Selenium, Manganese and metabolic syndrome. 2016, 36(01), 197-200.
[87]
Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, 18(3), 3292-3311.
[http://dx.doi.org/10.3390/molecules18033292] [PMID: 23486107]
[88]
Steinbrenner, H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic. Biol. Med., 2013, 65, 1538-1547.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.016] [PMID: 23872396]
[89]
Huang, J.Q.; Zhou, J.C.; Wu, Y.Y.; Ren, F.Z.; Lei, X.G. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic. Biol. Med., 2018, 127, 108-115.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.077] [PMID: 29800654]
[90]
Liang, W.; Zhao, Y.J.; Yang, H.; Shen, L.H. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin. Exp. Res., 2017, 29(2), 141-146.
[http://dx.doi.org/10.1007/s40520-016-0564-z] [PMID: 27075629]
[91]
Nido, S.A.; Shituleni, S.A.; Mengistu, B.M.; Liu, Y.; Khan, A.Z.; Gan, F.; Kumbhar, S.; Huang, K. Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol. Trace Elem. Res., 2016, 171(2), 399-409.
[http://dx.doi.org/10.1007/s12011-015-0552-8] [PMID: 26546553]
[92]
Christensen, K.; Werner, M.; Malecki, K. Serum selenium and lipid levels: Associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ. Res., 2015, 140, 76-84.
[http://dx.doi.org/10.1016/j.envres.2015.03.020] [PMID: 25836721]
[93]
Stranges, S.; Tabák, A.G.; Guallar, E.; Rayman, M.P.; Akbaraly, T.N.; Laclaustra, M.; Alfthan, G.; Mussalo-Rauhamaa, H.; Viikari, J.S.A.; Raitakari, O.T.; Kivimäki, M. Selenium status and blood lipids: The cardiovascular risk in young finns study. J. Intern. Med., 2011, 270(5), 469-477.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02398.x] [PMID: 21554435]
[94]
Zhao, Z.; Kim, J.; Lei, X.G. High dietary fat and selenium concentrations exert tissue- and glutathione peroxidase 1–Dependent impacts on lipid metabolism of young-adult mice. J. Nutr., 2020, 150(7), 1738-1748.
[http://dx.doi.org/10.1093/jn/nxaa130] [PMID: 32386229]
[95]
Blades, B.; Ayton, S.; Hung, Y.H.; Bush, A.I.; La Fontaine, S. Copper and lipid metabolism: A reciprocal relationship. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(11), 129979.
[http://dx.doi.org/10.1016/j.bbagen.2021.129979] [PMID: 34364973]
[96]
Weiss, K.H.; Zischka, H. Copper directly affects intestinal lipid turnover. Gastroenterology, 2018, 154(1), 15-17.
[http://dx.doi.org/10.1053/j.gastro.2017.11.016] [PMID: 29174544]
[97]
Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis., 2018, 22(1), 23-37.
[http://dx.doi.org/10.1016/j.cld.2017.08.007] [PMID: 29128059]
[98]
Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. JAMA, 2015, 313(22), 2263-2273.
[http://dx.doi.org/10.1001/jama.2015.5370] [PMID: 26057287]
[99]
Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864.
[http://dx.doi.org/10.1053/j.gastro.2020.01.052] [PMID: 32061595]
[100]
Divella, R.; Mazzocca, A.; Daniele, A.; Sabbà, C.; Paradiso, A. Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int. J. Biol. Sci., 2019, 15(3), 610-616.
[http://dx.doi.org/10.7150/ijbs.29599] [PMID: 30745847]
[101]
Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 2017, 69(4), 263-270.
[http://dx.doi.org/10.1002/iub.1613] [PMID: 28271632]
[102]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97.
[http://dx.doi.org/10.1016/j.metabol.2018.11.014] [PMID: 30502373]
[103]
Pierson, H.; Muchenditsi, A.; Kim, B.E.; Ralle, M.; Zachos, N.; Huster, D.; Lutsenko, S. The function of ATPase copper transporter ATP7B in intestine. Gastroenterology, 2018, 154(1), 168-180.e5.
[http://dx.doi.org/10.1053/j.gastro.2017.09.019] [PMID: 28958857]
[104]
Kaler, S.G. ATP7A-related copper transport diseases- emerging concepts and future trends. Nat. Rev. Neurol., 2011, 7(1), 15-29.
[http://dx.doi.org/10.1038/nrneurol.2010.180] [PMID: 21221114]
[105]
Tadini-Buoninsegni, F.; Smeazzetto, S. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life, 2017, 69(4), 218-225.
[http://dx.doi.org/10.1002/iub.1603] [PMID: 28164426]
[106]
Hummel, M.; Standl, E.; Schnell, O. Chromium in metabolic and cardiovascular disease. Horm. Metab. Res., 2007, 39(10), 743-751.
[http://dx.doi.org/10.1055/s-2007-985847] [PMID: 17952838]
[107]
Racek, J. [Chromium as an essential element]. Cas. Lek. Cesk., 2003, 142(6), 335-339.
[PMID: 12924032]
[108]
Iskra, R.; Ianovych, V.G. Biochemical mechanisms of chromium action in the human and animal organism. Ukr Biokhim Zh, 2011, 83(5), 5-12.
[109]
Zabłocka-Słowińska, K.; Grajeta, H. The role of manganese in etiopathogenesis and prevention of selected diseases. Postepy Hig. Med. Dosw., 2012, 66, 549-553.
[http://dx.doi.org/10.5604/17322693.1006411] [PMID: 22922155]
[110]
Lee, S.H.; Jouihan, H.A.; Cooksey, R.C.; Jones, D.; Kim, H.J.; Winge, D.R.; McClain, D.A. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology, 2013, 154(3), 1029-1038.
[http://dx.doi.org/10.1210/en.2012-1445] [PMID: 23372018]
[111]
Zhou, B.; Su, X.; Su, D.; Zeng, F.; Wang, M.H.; Huang, L.; Huang, E.; Zhu, Y.; Zhao, D.; He, D.; Zhu, X.; Yeoh, E.; Zhang, R.; Ding, G. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Br. J. Nutr., 2016, 116(5), 853-863.
[http://dx.doi.org/10.1017/S0007114516002580] [PMID: 27385039]
[112]
Zhang, F.; Ye, J.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Jiang, Q.; Wang, S. Anti-obesity effects of dietary calcium: The evidence and possible mechanisms. Int. J. Mol. Sci., 2019, 20(12), 3072.
[http://dx.doi.org/10.3390/ijms20123072] [PMID: 31234600]
[113]
Song, Q.; Sergeev, I.N. Calcium and vitamin D in obesity. Nutr. Res. Rev., 2012, 25(1), 130-141.
[http://dx.doi.org/10.1017/S0954422412000029] [PMID: 22588363]
[114]
Schrager, S. Dietary calcium intake and obesity. J. Am. Board Fam. Med., 2005, 18(3), 205-210.
[http://dx.doi.org/10.3122/jabfm.18.3.205] [PMID: 15879568]
[115]
Peterlik, M.; Cross, H.S. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur. J. Clin. Nutr., 2009, 63(12), 1377-1386.
[http://dx.doi.org/10.1038/ejcn.2009.105] [PMID: 19724293]
[116]
Peterlik, M.; Cross, H.S. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur. J. Clin. Invest., 2005, 35(5), 290-304.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01487.x] [PMID: 15860041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy