Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Human Umbilical Cord Mesenchymal Stem Cells Alleviate Rat Knee Osteoarthritis via Activating Wnt/ β-catenin Signaling Pathway

Author(s): Yue Zhou, Yingjie Zhao, Yujiao Wu, Jingyu Chen, Huaxun Wu, Wei Wei* and Shangxue Yan*

Volume 19, Issue 2, 2024

Published on: 10 May, 2023

Page: [234 - 244] Pages: 11

DOI: 10.2174/1574888X18666230428094400

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Osteoarthritis (OA) is a chronic disease characterized by joint cartilage degeneration, destruction, and osteogenic hyperplasia. Human umbilical cord mesenchymal stem cells (hUCMSCs) have attracted increasing research interest due to their high clonogenic, proliferative, and migratory potential, as well as their improved secretion of relevant chondrogenic factors. This study evaluated the therapeutic potential and underlying mechanism of hUC-MSCs in alleviating pathological symptoms of OA.

Methods: For the in vivo study, OA rats were established by the Hulth method to observe the therapeutic effect of intra-articular injection of hUC-MSCs. X-ray tests, gross observations, and histological and immunohistochemical assessments were conducted in rats. Levels of interleukin-1 beta (IL-1β), IL-6, matrix metalloproteinase-13 (MMP-13), and tissue inhibitor matrix metalloproteinase-1 in rats’ synovial fluid were measured using enzyme-linked immunosorbent assay kits. For the in vitro study, hUC-MSCs and chondrocytes were cultured to explore the effect and underlying mechanisms of hUC-MSCs on OA. Apoptosis, proliferation, and glycosaminoglycan (GAG) were measured in the chondrocytes. The relative expression of aggrecan, COL-2, and SOX-9 mRNA was quantified by real-time polymerase chain reaction. Expressions of Wnt/β-catenin signaling molecules were measured by Western blot.

Results: We found that intra-articular injection of hUC-MSCs reduced the combined score, increased the expression of collagen II, and decreased the expression of MMP-13, IL-1β, and IL-6 in rat knee joints. Additionally, hUC-MSCs increased the content of GAGs, inhibited chondrocyte apoptosis, and promoted chondrocyte proliferation. The expression of aggrecan, COL-2, and SOX-9 mRNA in chondrocytes was promoted by hUC-MSCs via activation of the Wnt/β-catenin signaling pathway.

Conclusion: Overall, this study demonstrated that hUC-MSCs induce the secretion of some cytokines via the paracrine function to activate the Wnt/β-catenin signaling pathway to reduce the pathological condition of OA and maintain the proper expression of cytokines and extracellular matrix proteins.

Keywords: Osteoarthritis, chondrocytes, human umbilical cord mesenchymal stem cells, GAGs, Wnt/β-catenin signaling pathway, glycosaminoglycan.

Graphical Abstract
[1]
Aspden RM, Saunders FR. Osteoarthritis as an organ disease: From the cradle to the grave. Eur Cell Mater 2019; 37: 74-87.
[http://dx.doi.org/10.22203/eCM.v037a06] [PMID: 30698270]
[2]
Tang X, Wang S, Zhan S, et al. The prevalence of symptomatic knee osteoarthritis in China: Results From the China health and retirement longitudinal study. Arthritis Rheumatol 2016; 68(3): 648-53.
[http://dx.doi.org/10.1002/art.39465] [PMID: 26474054]
[3]
Iidaka T, Muraki S, Oka H, et al. Incidence rate and risk factors for radiographic hip osteoarthritis in Japanese men and women: A 10-year follow-up of the ROAD study. Osteoarthritis Cartilage 2020; 28(2): 182-8.
[http://dx.doi.org/10.1016/j.joca.2019.09.006] [PMID: 31629024]
[4]
Soutakbar H, Lamb SE, Silman AJ. The different influence of high levels of physical activity on the incidence of knee OA in overweight and obese men and women-a gender specific analysis. Osteoarthritis Cartilage 2019; 27(10): 1430-6.
[http://dx.doi.org/10.1016/j.joca.2019.05.025] [PMID: 31326552]
[5]
Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthritis Cartilage 2015; 23(4): 507-15.
[http://dx.doi.org/10.1016/j.joca.2014.11.019] [PMID: 25447976]
[6]
Vina ER, Kwoh CK. Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol 2018; 30(2): 160-7.
[http://dx.doi.org/10.1097/BOR.0000000000000479] [PMID: 29227353]
[7]
Kye SY, Park K. Suicidal ideation and suicidal attempts among adults with chronic diseases: A cross-sectional study. Compr Psychiatry 2017; 73: 160-7.
[http://dx.doi.org/10.1016/j.comppsych.2016.12.001] [PMID: 27992846]
[8]
Sharma L. Osteoarthritis of the Knee. N Engl J Med 2021; 384(1): 51-9.
[http://dx.doi.org/10.1056/NEJMcp1903768] [PMID: 33406330]
[9]
Roberts E, Delgado Nunes V, Buckner S, et al. Paracetamol: Not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis 2016; 75(3): 552-9.
[http://dx.doi.org/10.1136/annrheumdis-2014-206914] [PMID: 25732175]
[10]
Guo W, Di H, Chu G, Lu L. Comparative analysis of conventional and biological treatment in healing of bone disease. Saudi J Biol Sci 2018; 25(1): 162-6.
[http://dx.doi.org/10.1016/j.sjbs.2017.02.003] [PMID: 29379374]
[11]
Bastos R, Mathias M, Andrade R, et al. Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2018; 26(11): 3342-50.
[http://dx.doi.org/10.1007/s00167-018-4883-9] [PMID: 29511819]
[12]
Lamo-Espinosa JM, Mora G, Blanco JF, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2018; 16(1): 213.
[http://dx.doi.org/10.1186/s12967-018-1591-7] [PMID: 30064455]
[13]
Vangsness CT Jr, Farr J II, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: A randomized, double-blind, controlled study. J Bone Joint Surg Am 2014; 96(2): 90-8.
[http://dx.doi.org/10.2106/JBJS.M.00058] [PMID: 24430407]
[14]
Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014; 32(5): 1254-66.
[http://dx.doi.org/10.1002/stem.1634] [PMID: 24449146]
[15]
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2018; 93(1): 32-49.
[http://dx.doi.org/10.1002/cyto.a.23239] [PMID: 28906582]
[16]
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, et al. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10(1): 340.
[http://dx.doi.org/10.1186/s13287-019-1445-0] [PMID: 31753036]
[17]
Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012; 35(2): 213-21.
[http://dx.doi.org/10.1007/s12272-012-0202-z] [PMID: 22370776]
[18]
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7(1): 7.
[http://dx.doi.org/10.1186/s13287-015-0271-2] [PMID: 26753925]
[19]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[20]
Zhou Y, Wang T, Hamilton JL, Chen D. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Curr Rheumatol Rep 2017; 19(9): 53.
[http://dx.doi.org/10.1007/s11926-017-0679-z] [PMID: 28752488]
[21]
Serrano RL, Chen LY, Lotz MK, Liu-Bryan R, Terkeltaub R. Impaired proteasomal function in human osteoarthritic chondrocytes can contribute to decreased levels of SOX9 and aggrecan. Arthritis Rheumatol 2018; 70(7): 1030-41.
[http://dx.doi.org/10.1002/art.40456] [PMID: 29457374]
[22]
Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M. Wnt signaling in cartilage development and diseases: Lessons from animal studies. Lab Invest 2016; 96(2): 186-96.
[http://dx.doi.org/10.1038/labinvest.2015.142] [PMID: 26641070]
[23]
Praxenthaler H, Krämer E, Weisser M, et al. Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol Basis Dis 2018; 1864(3): 851-9.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.024] [PMID: 29277327]
[24]
Soul J, Dunn SL, Anand S, et al. Stratification of knee osteoarthritis: Two major patient subgroups identified by genome-wide expression analysis of articular cartilage. Ann Rheum Dis 2018; 77(3): 423.
[http://dx.doi.org/10.1136/annrheumdis-2017-212603] [PMID: 29273645]
[25]
Desando G, Cavallo C, Sartoni F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther 2013; 15(1): R22.
[http://dx.doi.org/10.1186/ar4156] [PMID: 23360790]
[26]
Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 2017; 6(2): 613-21.
[http://dx.doi.org/10.5966/sctm.2016-0157] [PMID: 28191757]
[27]
Branly T, Contentin R, Desancé M, et al. Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation: Influence of culture time, transforming growth factors and type i collagen siRNAs on the differentiation index. Int J Mol Sci 2018; 19(2): 435.
[http://dx.doi.org/10.3390/ijms19020435] [PMID: 29389887]
[28]
Li B, Zhang Y, Li M, et al. Genetic correction of adipose tissue-derived mesenchymal stem cells mediated by TALEN targeting the GDF5 gene. Int J Mol Med 2018; 41(4): 2397-405.
[http://dx.doi.org/10.3892/ijmm.2018.3442] [PMID: 29393424]
[29]
Hulth A, Lindberg L, Telhag H. Experimental osteoarthritis in rabbits. Preliminary report. Acta Orthop Scand 1970; 41(5): 522-30.
[http://dx.doi.org/10.3109/17453677008991540] [PMID: 5507896]
[30]
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16(4): 494-502.
[http://dx.doi.org/10.1136/ard.16.4.494] [PMID: 13498604]
[31]
Saran S, Singh AP, Thukral B, Kaushik R. Ultrasonographic evaluation of osteoarthritis-affected knee joints: Comparison with Kellgren–Lawrence grading and pain scores. J Med Ultrasound 2021; 29(1): 39-45.
[http://dx.doi.org/10.4103/JMU.JMU_45_20] [PMID: 34084715]
[32]
Pelletier JP, Jovanovic D, Fernandes JC, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthritis Rheum 1998; 41(7): 1275-86.
[http://dx.doi.org/10.1002/1529-0131(199807)41:7<1275:AID-ART19>3.0.CO;2-T] [PMID: 9663486]
[33]
Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugar-containing macromolecules. J Bone Joint Surg Am 1981; 63(1): 131-9.
[http://dx.doi.org/10.2106/00004623-198163010-00017] [PMID: 7451514]
[34]
van der Sluijs JA, Geesink RGT, van der Linden AJ, Bulstra SK, Kuyer R, Drukker J. The reliability of the mankin score for osteoarthritis. J Orthop Res 1992; 10(1): 58-61.
[http://dx.doi.org/10.1002/jor.1100100107] [PMID: 1727936]
[35]
Georgiev GP, Kotov G, Iliev A, Slavchev S, Ovtscharoff W, Landzhov B. A comparative study of the epiligament of the medial collateral and the anterior cruciate ligament in the human knee. Immunohistochemical analysis of collagen type I and V and procollagen type III. Ann Anat 2019; 224: 88-96.
[http://dx.doi.org/10.1016/j.aanat.2019.04.002] [PMID: 31022516]
[36]
Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 2010; 5(10): e13246.
[http://dx.doi.org/10.1371/journal.pone.0013246] [PMID: 20976230]
[37]
Zingler C, Carl HD, Swoboda B, Krinner S, Hennig F, Gelse K. Limited evidence of chondrocyte outgrowth from adult human articular cartilage. Osteoarthritis Cartilage 2016; 24(1): 124-8.
[http://dx.doi.org/10.1016/j.joca.2015.07.014] [PMID: 26241777]
[38]
Farndale R, Buttle D, Barrett A. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta, Gen Subj 1986; 883(2): 173-7.
[http://dx.doi.org/10.1016/0304-4165(86)90306-5] [PMID: 3091074]
[39]
Sabiston P, Adams ME, Ho YA. Automation of 1,9-dimethylmethylene blue dye-binding assay for sulfated glycosaminoglycans with application to cartilage microcultures. Anal Biochem 1985; 149(2): 543-8.
[http://dx.doi.org/10.1016/0003-2697(85)90611-6] [PMID: 4073509]
[40]
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev 2017; 40: 20-30.
[http://dx.doi.org/10.1016/j.arr.2017.07.004] [PMID: 28774716]
[41]
McErlain DD, Appleton CTG, Litchfield RB, et al. Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography. Osteoarthritis Cartilage 2008; 16(4): 458-69.
[http://dx.doi.org/10.1016/j.joca.2007.08.006] [PMID: 17900933]
[42]
Hashimoto K, Oda Y, Nakamura F, Kakinoki R, Akagi M. Lectin-like, oxidized low-density lipoprotein receptor-1-deficient mice show resistance to age-related knee osteoarthritis. Eur J Histochem 2017; 61(1): 2762.
[http://dx.doi.org/10.4081/ejh.2017.2762] [PMID: 28348422]
[43]
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 2015; 44-46: 247-54.
[http://dx.doi.org/10.1016/j.matbio.2015.03.005] [PMID: 25805621]
[44]
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44: 38-50.
[http://dx.doi.org/10.1016/j.cytogfr.2018.10.002] [PMID: 30340925]
[45]
Chen WX, Shan FJ, Jin HT, Wang PE, Xiao LW, Tong PJ. Research on application of determination of MMP-13 in osteoarthritis. Zhongguo Gu Shang 2014; 27(7): 617-20.
[PMID: 25338454]
[46]
Makki MS, Haseeb A, Haqqi TM. MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1β-stimulated human chondrocytes. Arthritis Rheumatol 2015; 67(8): 2117-28.
[http://dx.doi.org/10.1002/art.39173] [PMID: 25917063]
[47]
Amann E, Wolff P, Breel E, van Griensven M, Balmayor ER. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater 2017; 52: 130-44.
[http://dx.doi.org/10.1016/j.actbio.2017.01.064] [PMID: 28131943]
[48]
Volpi N. Therapeutic applications of glycosaminoglycans. Curr Med Chem 2006; 13(15): 1799-810.
[http://dx.doi.org/10.2174/092986706777452470] [PMID: 16787222]
[49]
Zhang Y, Pizzute T, Pei M. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res 2014; 358(3): 633-49.
[http://dx.doi.org/10.1007/s00441-014-2010-x] [PMID: 25312291]
[50]
Suryawanshi A, Tadagavadi RK, Swafford D, Manicassamy S. Modulation of inflammatory responses by Wnt/β-Catenin signaling in dendritic cells: A novel immunotherapy target for autoimmunity and cancer. Front Immunol 2016; 7: 460.
[http://dx.doi.org/10.3389/fimmu.2016.00460] [PMID: 27833613]
[51]
Wang X, Guan Y, Xiang S, et al. Role of canonical Wnt/β-Catenin pathway in regulating chondrocytic hypertrophy in mesenchymal stem cell-based cartilage tissue engineering. Front Cell Dev Biol 2022; 10: 812081.
[http://dx.doi.org/10.3389/fcell.2022.812081] [PMID: 35141220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy