Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Application of Biomimetic Nanoparticles based on the Cell Membrane in Tumor Therapy

Author(s): Ya Gong and Jingbin Huang*

Volume 23, Issue 10, 2023

Published on: 15 May, 2023

Page: [907 - 920] Pages: 14

DOI: 10.2174/1568026623666230427114622

Price: $65

Abstract

Due to their unique biological functionality, nanocarriers can be designed to deliver various anti-tumor drugs in vivo, which has a wide and important application prospect in the field of tumor therapy. However, poor biosafety, short blood circulation time, and weak targeting ability still limit the application of nanoparticles in tumor therapy. In recent years, with the development of biomedicine, the biomimetic technology-based biomembrane-mediated drug delivery system is expected to achieve a breakthrough in tumor-targeted therapy due to low immunogenicity, tumor targeting, the adjustability and versatility of intelligent nanocarrier design. This paper mainly reviews the research process of different types of the cell membrane (erythrocyte membrane, cancer cell membrane, bacterial membrane, stem cell membrane, and hybrid membrane)-camouflaged nanoparticles in tumor therapy, as well as the challenges and development prospects in clinical application.

Keywords: Cell membrane, Biomimetic, Nanoparticles, Tumor therapy, Drug delivery, Biomedicine.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov., 2014, 13(9), 655-672.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[3]
Huang, A.C.; Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol., 2022, 23(5), 660-670.
[http://dx.doi.org/10.1038/s41590-022-01141-1] [PMID: 35241833]
[4]
Lee, K.A.; Thomas, A.M.; Bolte, L.A.; Björk, J.R.; de Ruijter, L.K.; Armanini, F.; Asnicar, F.; Blanco-Miguez, A.; Board, R.; Calbet-Llopart, N.; Derosa, L.; Dhomen, N.; Brooks, K.; Harland, M.; Harries, M.; Leeming, E.R.; Lorigan, P.; Manghi, P.; Marais, R.; Newton-Bishop, J.; Nezi, L.; Pinto, F.; Potrony, M.; Puig, S.; Serra-Bellver, P.; Shaw, H.M.; Tamburini, S.; Valpione, S.; Vijay, A.; Waldron, L.; Zitvogel, L.; Zolfo, M.; de Vries, E.G.E.; Nathan, P.; Fehrmann, R.S.N.; Bataille, V.; Hospers, G.A.P.; Spector, T.D.; Weersma, R.K.; Segata, N. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med., 2022, 28(3), 535-544.
[http://dx.doi.org/10.1038/s41591-022-01695-5] [PMID: 35228751]
[5]
Sepesi, B.; Swisher, S.G. Role of neoadjuvant chemoimmunotherapy for resectable NSCLC. Nat. Rev. Clin. Oncol., 2022, 19(8), 497-498.
[http://dx.doi.org/10.1038/s41571-022-00647-9] [PMID: 35585121]
[6]
Coon, M.E.; Stephan, S.B.; Gupta, V.; Kealey, C.P.; Stephan, M.T. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng., 2019, 4(2), 195-206.
[http://dx.doi.org/10.1038/s41551-019-0486-0] [PMID: 31819155]
[7]
Hu, Q.; Li, H.; Archibong, E.; Chen, Q.; Ruan, H.; Ahn, S.; Dukhovlinova, E.; Kang, Y.; Wen, D.; Dotti, G.; Gu, Z. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng., 2021, 5(9), 1038-1047.
[http://dx.doi.org/10.1038/s41551-021-00712-1] [PMID: 33903744]
[8]
Miller, I.C.; Zamat, A.; Sun, L.K.; Phuengkham, H.; Harris, A.M.; Gamboa, L.; Yang, J.; Murad, J.P.; Priceman, S.J.; Kwong, G.A. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng., 2021, 5(11), 1348-1359.
[http://dx.doi.org/10.1038/s41551-021-00781-2] [PMID: 34385695]
[9]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012] [PMID: 26458789]
[10]
Park, J.; Wrzesinski, S.H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S.M.; Demento, S.L.; Agawu, A.; Licona Limon, P.; Ferrandino, A.F.; Gonzalez, D.; Habermann, A.; Flavell, R.A.; Fahmy, T.M. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater., 2012, 11(10), 895-905.
[http://dx.doi.org/10.1038/nmat3355] [PMID: 22797827]
[11]
Propper, D.J.; Balkwill, F.R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol., 2022, 19(4), 237-253.
[http://dx.doi.org/10.1038/s41571-021-00588-9] [PMID: 34997230]
[12]
Platten, M.; Bunse, L.; Wick, A.; Bunse, T.; Le Cornet, L.; Harting, I.; Sahm, F.; Sanghvi, K.; Tan, C.L.; Poschke, I.; Green, E.; Justesen, S.; Behrens, G.A.; Breckwoldt, M.O.; Freitag, A.; Rother, L.M.; Schmitt, A.; Schnell, O.; Hense, J.; Misch, M.; Krex, D.; Stevanovic, S.; Tabatabai, G.; Steinbach, J.P.; Bendszus, M.; von Deimling, A.; Schmitt, M.; Wick, W. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021, 592(7854), 463-468.
[http://dx.doi.org/10.1038/s41586-021-03363-z] [PMID: 33762734]
[13]
Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226.
[http://dx.doi.org/10.1038/nature23003] [PMID: 28678784]
[14]
Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382), 1355-1360.
[http://dx.doi.org/10.1126/science.aar7112] [PMID: 29567706]
[15]
Moslehi, J.J.; Salem, J.E.; Sosman, J.A.; Lebrun-Vignes, B.; Johnson, D.B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet, 2018, 391(10124), 933.
[http://dx.doi.org/10.1016/S0140-6736(18)30533-6] [PMID: 29536852]
[16]
Holzinger, A.; Barden, M.; Abken, H. The growing world of CAR T cell trials: A systematic review. Cancer Immunol. Immunother., 2016, 65(12), 1433-1450.
[http://dx.doi.org/10.1007/s00262-016-1895-5] [PMID: 27613725]
[17]
Bonini, C.; Mondino, A. Adoptive T-cell therapy for cancer: The era of engineered T cells. Eur. J. Immunol., 2015, 45(9), 2457-2469.
[http://dx.doi.org/10.1002/eji.201545552] [PMID: 26202766]
[18]
Bocci, G.; Kerbel, R.S. Pharmacokinetics of metronomic chemotherapy: A neglected but crucial aspect. Nat. Rev. Clin. Oncol., 2016, 13(11), 659-673.
[http://dx.doi.org/10.1038/nrclinonc.2016.64] [PMID: 27184418]
[19]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[20]
Izci, M.; Maksoudian, C.; Manshian, B.B.; Soenen, S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev., 2021, 121(3), 1746-1803.
[http://dx.doi.org/10.1021/acs.chemrev.0c00779] [PMID: 33445874]
[21]
Zhang, Y.; Cao, J.; Yuan, Z. Strategies and challenges to improvethe performance of tumor-associated active targeting. J. Mater. Chem. B, 2020, 8(18), 3959-3971.
[http://dx.doi.org/10.1039/D0TB00289E] [PMID: 32222756]
[22]
Zhu, L.; Zhong, Y.; Wu, S.; Yan, M.; Cao, Y.; Mou, N.; Wang, G.; Sun, D.; Wu, W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater. Today Bio, 2022, 14, 100228.
[http://dx.doi.org/10.1016/j.mtbio.2022.100228] [PMID: 35265826]
[23]
Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials, 2017, 128, 69-83.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.041] [PMID: 28292726]
[24]
Sun, L.; Xiong, Z.; Shen, F.; Wang, Z.; Liu, Z. Biological membrane derived nanomedicines for cancer therapy. Sci. China Chem., 2021, 64(5), 719-733.
[http://dx.doi.org/10.1007/s11426-020-9943-9]
[25]
Jin, J.; Bhujwalla, Z.M. Biomimetic nanoparticles camouflaged in cancer cell membranes and their applications in cancer theranostics. Front. Oncol., 2020, 9, 1560.
[http://dx.doi.org/10.3389/fonc.2019.01560] [PMID: 32039028]
[26]
Zhao, X.; Yan, C. Research progress of cell membrane biomimetic nanoparticles for tumor therapy. Nanoscale Res. Lett., 2022, 17(1), 36.
[http://dx.doi.org/10.1186/s11671-022-03673-9] [PMID: 35316443]
[27]
Krishnan, N.; Fang, R.H.; Zhang, L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv. Drug Deliv. Rev., 2021, 179, 114006.
[28]
Anupama, C.; Ranganath, S.H.; Ranganath, S.H. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev., 2018, 132, 57-80.
[http://dx.doi.org/10.1016/j.addr.2018.06.012] [PMID: 29935987]
[29]
Zeng, Y.; Li, S.; Zhang, S.; Wang, L.; Yuan, H.; Hu, F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm. Sin. B, 2022, 12(8), 3233-3254.
[http://dx.doi.org/10.1016/j.apsb.2022.02.023] [PMID: 35967284]
[30]
Sushnitha, M.; Evangelopoulos, M.; Tasciotti, E.; Taraballi, F. Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front. Bioeng. Biotechnol., 2020, 8, 627.
[http://dx.doi.org/10.3389/fbioe.2020.00627] [PMID: 32626700]
[31]
Oh, C.; Lee, W.; Park, J.; Choi, J.; Lee, S.; Li, S.; Jung, H.N.; Lee, J-S.; Hwang, J-E.; Park, J.; Kim, M.; Baek, S. Im, H.-J. Development of spleen targeting H2S donor loaded liposome for the effective systemic immunomodulation and treatment of inflammatory bowel disease. ACS Nano, 2023, 17(5), 4327-4345.
[http://dx.doi.org/10.1021/acsnano.2c08898]
[32]
Liu, Q.; Lu, Y.; Xiao, Y.; Yuan, L.; Hu, D.; Hao, Y.; Han, R.; Peng, J.; Qian, Z. Effects of docetaxel injection and docetaxel micelles on the intestinal barrier and intestinal microbiota. Adv. Sci., 2021, 8(24), 2102952.
[http://dx.doi.org/10.1002/advs.202102952] [PMID: 34713626]
[33]
Jackson, C.T.; Wang, J.W.; González-Grandío, E.; Goh, N.S.; Mun, J.; Krishnan, S.; Geyer, F.L.; Keller, H.; Ebert, S.; Molawi, K.; Kaiser, N.; Landry, M.P. Polymer-conjugated carbon nanotubes for biomolecule loading. ACS Nano, 2022, 16(2), 1802-1812.
[http://dx.doi.org/10.1021/acsnano.1c06343] [PMID: 34935350]
[34]
Xu, L.; Xu, M.; Sun, X.; Feliu, N.; Feng, L.; Parak, W.J.; Liu, S. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano, 2023, 17(3), 2039-2052.
[http://dx.doi.org/10.1021/acsnano.2c07295] [PMID: 36717361]
[35]
Wang, C.; Wu, L.; Yuan, H.; Yu, H.; Xu, J.; Chen, S.; Yan, S.; Wang, X. A powerful antitumor "trident": The combination of radio-, immuno- and anti-angiogenesis therapy based on mesoporoussilica single coated gold nanoparticles. J. Mater. Chem. B, 2023, 11(4), 879-889.
[http://dx.doi.org/10.1039/D2TB02046G] [PMID: 36594928]
[36]
Han, X.; Wang, C.; Liu, Z. Red blood cells as smart delivery systems. Bioconjug. Chem., 2018, 29(4), 852-860.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00758] [PMID: 29298380]
[37]
Jia, Y.; Duan, L.; Li, J. Hemoglobin-based nanoarchitectonic assemblies as oxygen carriers. Adv. Mater., 2016, 28(6), 1312-1318.
[http://dx.doi.org/10.1002/adma.201502581] [PMID: 26479864]
[38]
Su, J.; Sun, H.; Meng, Q.; Yin, Q.; Tang, S.; Zhang, P.; Chen, Y.; Zhang, Z.; Yu, H.; Li, Y. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater., 2016, 26(8), 1243-1252.
[http://dx.doi.org/10.1002/adfm.201504780]
[39]
Rao, L.; Bu, L.L.; Xu, J.H.; Cai, B.; Yu, G.T.; Yu, X.; He, Z.; Huang, Q.; Li, A.; Guo, S.S.; Zhang, W.F.; Liu, W.; Sun, Z.J.; Wang, H.; Wang, T.H.; Zhao, X.Z. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small, 2015, 11(46), 6225-6236.
[http://dx.doi.org/10.1002/smll.201502388] [PMID: 26488923]
[40]
Oldenborg, P.A.; Zheleznyak, A.; Fang, Y.F.; Lagenaur, C.F.; Gresham, H.D.; Lindberg, F.P. Role of CD47 as a marker of self on red blood cells. Science, 2000, 288(5473), 2051-2054.
[http://dx.doi.org/10.1126/science.288.5473.2051] [PMID: 10856220]
[41]
Xu, C.H.; Ye, P.J.; Zhou, Y.C.; He, D.X.; Wei, H.; Yu, C.Y. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater., 2020, 105, 1-14.
[http://dx.doi.org/10.1016/j.actbio.2020.01.036] [PMID: 32001369]
[42]
Yoo, J.W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov., 2011, 10(7), 521-535.
[http://dx.doi.org/10.1038/nrd3499] [PMID: 21720407]
[43]
Li, R.; He, Y.; Zhang, S.; Qin, J.; Wang, J. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B, 2018, 8(1), 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[44]
Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[45]
Gao, W.; Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Su, J.; Zhang, L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater., 2013, 25(26), 3549-3553.
[http://dx.doi.org/10.1002/adma.201300638] [PMID: 23712782]
[46]
Pei, Q.; Hu, X.; Zheng, X.; Liu, S.; Li, Y.; Jing, X.; Xie, Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano, 2018, 12(2), 1630-1641.
[http://dx.doi.org/10.1021/acsnano.7b08219] [PMID: 29346736]
[47]
Wang, L.; Chen, S.; Pei, W.; Huang, B.; Niu, C. Magneticallytargeted erythrocyte membrane coated nanosystem for synergisticphotothermal/chemotherapy of cancer. J. Mater. Chem. B,, 2020, 8(18), 4132-4142.
[http://dx.doi.org/10.1039/D0TB00364F] [PMID: 32270160]
[48]
Hou, K.; Zhang, Y.; Bao, M.; Xin, C.; Wei, Z.; Lin, G.; Wang, Z. A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS Appl. Mater. Interfaces, 2022, 14(3), 3825-3837.
[http://dx.doi.org/10.1021/acsami.1c21331] [PMID: 35025195]
[49]
Song, R.; Ruan, M.; Dai, J.; Xue, W. Biomimetic magnetofluores-cent ferritin nanoclusters for magnetic resonance and fluorescence-dual modal imaging and targeted tumor therapy. J. Mater. Chem. B,, 2021, 9(10), 2494-2504.
[http://dx.doi.org/10.1039/D0TB02175J] [PMID: 33656039]
[50]
Sun, L.; Li, Q.; Hou, M.; Gao, Y.; Yang, R.; Zhang, L.; Xu, Z.; Kang, Y.; Xue, P. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomater. Sci., 2018, 6(11), 2881-2895.
[http://dx.doi.org/10.1039/C8BM00812D] [PMID: 30192355]
[51]
Peng, J.; Yang, Q.; Li, W.; Tan, L.; Xiao, Y.; Chen, L.; Hao, Y.; Qian, Z. Erythrocyte-membrane-coated prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(51), 44410-44422.
[http://dx.doi.org/10.1021/acsami.7b17022] [PMID: 29210279]
[52]
Liu, B.; Wang, W.; Fan, J.; Long, Y.; Xiao, F.; Daniyal, M.; Tong, C.; Xie, Q.; Jian, Y.; Li, B.; Ma, X.; Wang, W. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials, 2019, 217, 119301.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119301] [PMID: 31279101]
[53]
Piao, J.G.; Wang, L.; Gao, F.; You, Y.Z.; Xiong, Y.; Yang, L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano, 2014, 8(10), 10414-10425.
[http://dx.doi.org/10.1021/nn503779d] [PMID: 25286086]
[54]
Sun, M.; Duan, Y.; Ma, Y.; Zhang, Q. Original research cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/chemotherapy of breast cancer. Int. J. Nanomed., 2020, 15, 6749-6760.
[http://dx.doi.org/10.2147/IJN.S266405] [PMID: 32982231]
[55]
Zhu, D.M.; Xie, W.; Xiao, Y.S.; Suo, M.; Zan, M.H.; Liao, Q.Q.; Hu, X.J.; Chen, L.B.; Chen, B.; Wu, W.T.; Ji, L.W.; Huang, H.M.; Guo, S.S.; Zhao, X.Z.; Liu, Q.Y.; Liu, W. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology, 2018, 29(8), 084002.
[http://dx.doi.org/10.1088/1361-6528/aa9ca1] [PMID: 29339567]
[56]
Liang, X.; Ye, X.; Wang, C.; Xing, C.; Miao, Q.; Xie, Z.; Chen, X.; Zhang, X.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release, 2019, 296, 150-161.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.027] [PMID: 30682441]
[57]
Huang, X.; Wu, B.; Li, J.; Shang, Y.; Chen, W.; Nie, X.; Gui, R. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 968-979.
[http://dx.doi.org/10.1080/21691401.2019.1584110] [PMID: 30880468]
[58]
Yang, Z.; Gao, D.; Guo, X.; Jin, L.; Zheng, J.; Wang, Y.; Chen, S.; Zheng, X.; Zeng, L.; Guo, M.; Zhang, X.; Tian, Z. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano, 2020, 14(12), 17442-17457.
[http://dx.doi.org/10.1021/acsnano.0c07721] [PMID: 33166111]
[59]
Peng, W.; Zhang, Y.; Zhu, R.; Mechref, Y. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis. Electrophoresis, 2017, 38(17), 2124-2134.
[http://dx.doi.org/10.1002/elps.201700027] [PMID: 28523741]
[60]
Zhang, D.; Ye, Z.; Wei, L.; Luo, H.; Xiao, L. Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and o2-evolving photodynamic therapy. ACS Appl. Mater. Interfaces, 2019, 11(43), 39594-39602.
[http://dx.doi.org/10.1021/acsami.9b14084] [PMID: 31577410]
[61]
Harris, J.C.; Scully, M.A.; Day, E.S. Cancer cell membrane-coated nanoparticles for cancer management. Cancers, 2019, 11(12), 1836.
[http://dx.doi.org/10.3390/cancers11121836] [PMID: 31766360]
[62]
Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol., 2003, 21(1), 807-839.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141135] [PMID: 12615893]
[63]
Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; Yu, W.Y.; Qiu, W.X.; Hu, J.J.; Feng, J.; Zhang, X.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett., 2016, 16(9), 5895-5901.
[http://dx.doi.org/10.1021/acs.nanolett.6b02786] [PMID: 27513184]
[64]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]
[65]
He, Z.; Zhang, Y.; Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater. Sci. Eng. C, 2020, 106, 110298.
[http://dx.doi.org/10.1016/j.msec.2019.110298] [PMID: 31753336]
[66]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater., 2016, 28(43), 9581-9588.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[67]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, Z.; Yu, H.; Zhang, P.; Wang, S.; Li, Y. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater., 2020, 30(15), 1910230.
[http://dx.doi.org/10.1002/adfm.201910230]
[68]
Chen, H.; Tian, J.; He, W.; Guo, Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc., 2015, 137(4), 1539-1547.
[http://dx.doi.org/10.1021/ja511420n] [PMID: 25574812]
[69]
Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater., 2016, 28(14), 2716-2723.
[http://dx.doi.org/10.1002/adma.201504617] [PMID: 26848553]
[70]
Tian, H.; Luo, Z.; Liu, L.; Zheng, M.; Chen, Z.; Ma, A.; Liang, R.; Han, Z.; Lu, C.; Cai, L. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater., 2017, 27(38), 1703197.
[http://dx.doi.org/10.1002/adfm.201703197]
[71]
Yang, R.; Xu, J.; Xu, L.; Sun, X.; Chen, Q.; Zhao, Y.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano, 2018, 12(6), 5121-5129.
[http://dx.doi.org/10.1021/acsnano.7b09041] [PMID: 29771487]
[72]
Kroll, A.V.; Fang, R.H.; Jiang, Y.; Zhou, J.; Wei, X.; Yu, C.L.; Gao, J.; Luk, B.T.; Dehaini, D.; Gao, W.; Zhang, L. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater., 2017, 29(47), 1703969.
[http://dx.doi.org/10.1002/adma.201703969] [PMID: 29239517]
[73]
Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.W.; Singh, A.V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev., 2016, 106((Pt A)), 27-44.
[74]
Lim, J.; Koh, V.H.Q.; Cho, S.S.L.; Periaswamy, B.; Choi, D.P.S.; Vacca, M.; De Sessions, P.F.; Kudela, P.; Lubitz, W.; Pastorin, G.; Alonso, S. Harnessing the immunomodulatory properties of bacterial ghosts to boost the anti-mycobacterial protective immunity. Front. Immunol., 2019, 10, 2737.
[http://dx.doi.org/10.3389/fimmu.2019.02737] [PMID: 31824511]
[75]
Gujrati, V.; Prakash, J.; Malekzadeh-Najafabadi, J.; Stiel, A.; Klemm, U.; Mettenleiter, G.; Aichler, M.; Walch, A.; Ntziachristos, V. Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat. Commun., 2019, 10(1), 1114.
[http://dx.doi.org/10.1038/s41467-019-09034-y] [PMID: 30846699]
[76]
Gao, W.; Fang, R.H.; Thamphiwatana, S.; Luk, B.T.; Li, J.; Angsantikul, P.; Zhang, Q.; Hu, C.M.J.; Zhang, L. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett., 2015, 15(2), 1403-1409.
[http://dx.doi.org/10.1021/nl504798g] [PMID: 25615236]
[77]
Xuan, M.; Shao, J.; Li, J. Cell membrane-covered nanoparticles as biomaterials. Natl. Sci. Rev., 2019, 6(3), 551-561.
[http://dx.doi.org/10.1093/nsr/nwz037] [PMID: 34691904]
[78]
Shi, J.; Ma, Z.; Pan, H.; Liu, Y.; Chu, Y.; Wang, J.; Chen, L. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J. Microencapsul., 2020, 37(7), 481-491.
[http://dx.doi.org/10.1080/02652048.2020.1797914] [PMID: 32700606]
[79]
Chen, Q.; Bai, H.; Wu, W.; Huang, G.; Li, Y.; Wu, M.; Tang, G.; Ping, Y. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett., 2020, 20(1), 11-21.
[http://dx.doi.org/10.1021/acs.nanolett.9b02182] [PMID: 31858807]
[80]
Gujrati, V.; Kim, S.; Kim, S.H.; Min, J.J.; Choy, H.E.; Kim, S.C.; Jon, S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano, 2014, 8(2), 1525-1537.
[http://dx.doi.org/10.1021/nn405724x] [PMID: 24410085]
[81]
Li, M.; Li, S.; Zhou, H.; Tang, X.; Wu, Y.; Jiang, W.; Tian, Z.; Zhou, X.; Yang, X.; Wang, Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun., 2020, 11(1), 1126.
[http://dx.doi.org/10.1038/s41467-020-14963-0] [PMID: 32111847]
[82]
Wang, S.; Huang, W.; Li, K.; Yao, Y.; Yang, X.; Bai, H.; Sun, W.; Liu, C.; Ma, Y. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor. Int. J. Nanomed., 2017, 12, 6813-6825.
[http://dx.doi.org/10.2147/IJN.S143264] [PMID: 28979120]
[83]
Bianco, P.; Cao, X.; Frenette, P.S.; Mao, J.J.; Robey, P.G.; Simmons, P.J.; Wang, C.Y. The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine. Nat. Med., 2013, 19(1), 35-42.
[http://dx.doi.org/10.1038/nm.3028] [PMID: 23296015]
[84]
Swartzlander, M.D.; Blakney, A.K.; Amer, L.D.; Hankenson, K.D.; Kyriakides, T.R.; Bryant, S.J. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials, 2015, 41, 79-88.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.020] [PMID: 25522967]
[85]
Toledano Furman, N.E.; Lupu-Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett., 2013, 13(7), 3248-3255.
[http://dx.doi.org/10.1021/nl401376w] [PMID: 23786263]
[86]
Gao, C.; Lin, Z.; Jurado-Sánchez, B.; Lin, X.; Wu, Z.; He, Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small, 2016, 12(30), 4056-4062.
[http://dx.doi.org/10.1002/smll.201600624] [PMID: 27337109]
[87]
Shi, Y.; Du, L.; Lin, L.; Wang, Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov., 2017, 16(1), 35-52.
[http://dx.doi.org/10.1038/nrd.2016.193] [PMID: 27811929]
[88]
Spaeth, E.; Klopp, A.; Dembinski, J.; Andreeff, M.; Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther., 2008, 15(10), 730-738.
[http://dx.doi.org/10.1038/gt.2008.39] [PMID: 18401438]
[89]
Seo, K.W.; Lee, H.W.; Oh, Y.I.; Ahn, J.O.; Koh, Y.R.; Oh, S.H.; Kang, S.K.; Youn, H.Y. Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy, 2011, 13(8), 944-955.
[http://dx.doi.org/10.3109/14653249.2011.584864] [PMID: 21846298]
[90]
Trounson, A.; Thakar, R.G.; Lomax, G.; Gibbons, D. Clinical trials for stem cell therapies. BMC Med., 2011, 9(1), 52.
[http://dx.doi.org/10.1186/1741-7015-9-52] [PMID: 21569277]
[91]
Li, Y.S.; Wu, H.H.; Jiang, X.C.; Zhang, T.Y.; Zhou, Y.; Huang, L.L.; Zhi, P.; Tabata, Y.; Gao, J.Q. Active stealth and self-positioning biomimetic vehicles achieved effective antitumor therapy. J. Control. Release, 2021, 335, 515-526.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.031] [PMID: 34058269]
[92]
Yang, N.; Ding, Y.; Zhang, Y.; Wang, B.; Zhao, X.; Cheng, K.; Huang, Y.; Taleb, M.; Zhao, J.; Dong, W.F.; Zhang, L.; Nie, G. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces, 2018, 10(27), 22963-22973.
[http://dx.doi.org/10.1021/acsami.8b05363] [PMID: 29905067]
[93]
Gao, C.; Lin, Z.; Wu, Z.; Lin, X.; He, Q. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl. Mater. Interfaces, 2016, 8(50), 34252-34260.
[http://dx.doi.org/10.1021/acsami.6b12865] [PMID: 27936561]
[94]
Liu, Y.; Zhao, J.; Jiang, J.; Chen, F.; Fang, X. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int. J. Nanomed., 2020, 15, 2873-2884.
[http://dx.doi.org/10.2147/IJN.S242787] [PMID: 32368059]
[95]
Liang, W.; Chen, X.; Zhang, S.; Fang, J.; Chen, M.; Xu, Y.; Chen, X. Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell. Mol. Biol. Lett., 2021, 26(1), 3.
[http://dx.doi.org/10.1186/s11658-020-00246-5] [PMID: 33472580]
[96]
Rao, L.; Cai, B.; Bu, L.L.; Liao, Q.Q.; Guo, S.S.; Zhao, X.Z.; Dong, W.F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano, 2017, 11(4), 3496-3505.
[http://dx.doi.org/10.1021/acsnano.7b00133] [PMID: 28272874]
[97]
Chen, H.Y.; Deng, J.; Wang, Y.; Wu, C.Q.; Li, X.; Dai, H.W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater., 2020, 112, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2020.05.028] [PMID: 32470527]
[98]
Jiang, Q.; Liu, Y.; Guo, R.; Yao, X.; Sung, S.; Pang, Z.; Yang, W. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials, 2019, 192, 292-308.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.021] [PMID: 30465973]
[99]
Yan, H.; Shao, D.; Lao, Y.H.; Li, M.; Hu, H.; Leong, K.W. Engineering cell membrane-based nanotherapeutics to target inflammation. Adv. Sci., 2019, 6(15), 1900605.
[http://dx.doi.org/10.1002/advs.201900605] [PMID: 31406672]
[100]
Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater., 2017, 29(16), 1606209.
[http://dx.doi.org/10.1002/adma.201606209] [PMID: 28199033]
[101]
Sun, M.; Duan, Y.; Ma, Y.; Zhang, Q. Cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/chemotherapy of breast cancer. Int. J. Nanomed., 2020, 15, 6749-6760.
[http://dx.doi.org/10.2147/IJN.S266405] [PMID: 32982231]
[102]
He, H.; Guo, C.; Wang, J.; Korzun, W.J.; Wang, X.Y.; Ghosh, S.; Yang, H. Leutusome: A biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett., 2018, 18(10), 6164-6174.
[http://dx.doi.org/10.1021/acs.nanolett.8b01892] [PMID: 30207473]
[103]
Chen, Q.; Huang, G.; Wu, W.; Wang, J.; Hu, J.; Mao, J.; Chu, P.K.; Bai, H.; Tang, G. A hybrid eukaryotic–prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv. Mater., 2020, 32(16), 1908185.
[http://dx.doi.org/10.1002/adma.201908185] [PMID: 32108390]
[104]
Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemothe-rapy of melanoma. ACS Nano, 2018, 12(6), 5241-5252.
[http://dx.doi.org/10.1021/acsnano.7b08355] [PMID: 29800517]
[105]
Wang, Y.; Luan, Z.; Zhao, C.; Bai, C.; Yang, K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur. J. Pharm. Sci., 2020, 142, 105136.
[http://dx.doi.org/10.1016/j.ejps.2019.105136] [PMID: 31704343]
[106]
Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics, 2017, 7(10), 2575-2592.
[http://dx.doi.org/10.7150/thno.20118] [PMID: 28819448]
[107]
Gong, C.; Yu, X.; You, B.; Wu, Y.; Wang, R.; Han, L.; Wang, Y.; Gao, S.; Yuan, Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J. Nanobiotechnology, 2020, 18(1), 92.
[http://dx.doi.org/10.1186/s12951-020-00649-8] [PMID: 32546174]
[108]
Wang, D.; Liu, C.; You, S.; Zhang, K.; Li, M.; Cao, Y.; Wang, C.; Dong, H.; Zhang, X. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Appl. Mater. Interfaces, 2020, 12(37), 41138-41147.
[http://dx.doi.org/10.1021/acsami.0c13169] [PMID: 32830477]
[109]
Rao, L.; Wu, L.; Liu, Z.; Tian, R.; Yu, G.; Zhou, Z.; Yang, K.; Xiong, H.G.; Zhang, A.; Yu, G.T.; Sun, W.; Xu, H.; Guo, J.; Li, A.; Chen, H.; Sun, Z.J.; Fu, Y.X.; Chen, X. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat. Commun., 2020, 11(1), 4909.
[http://dx.doi.org/10.1038/s41467-020-18626-y] [PMID: 32999291]
[110]
Bu, L.L.; Rao, L.; Yu, G.T.; Chen, L.; Deng, W.W.; Liu, J.F.; Wu, H.; Meng, Q.F.; Guo, S.S.; Zhao, X.Z.; Zhang, W.F.; Chen, G.; Gu, Z.; Liu, W.; Sun, Z.J. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv. Funct. Mater., 2019, 29(10), 1807733.
[http://dx.doi.org/10.1002/adfm.201807733]
[111]
Rao, L.; Meng, Q.F.; Huang, Q.; Wang, Z.; Yu, G.T.; Li, A.; Ma, W.; Zhang, N.; Guo, S.S.; Zhao, X.Z.; Liu, K.; Yuan, Y.; Liu, W. Platelet–leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater., 2018, 28(34), 1803531.
[http://dx.doi.org/10.1002/adfm.201803531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy