Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Carbon Nanocomposites-based Electrochemical Sensors and Biosensors for Biomedical Diagnostics

Author(s): Palanisamy Kannan* and Govindhan Maduraiveeran*

Volume 31, Issue 25, 2024

Published on: 07 July, 2023

Page: [3870 - 3881] Pages: 12

DOI: 10.2174/0929867330666230425163520

Price: $65

Abstract

Detection of emergent biomolecules or biomarkers remains crucial for early diagnosis in advancing healthcare monitoring and biomedicine. The possibility for rapid detection, real-time monitoring, high sensitivity, low detection limit, good selectivity, and low cost is central, among other significant issues for advancing point-of-care diagnosis. Carbon-based nanocomposites have been employed as sensing materials for various biomarkers due to their high surface-to-volume ratio, high electrical conductivity, chemical stability, and biocompatibility. The carbon nanomaterials, such as carbon nanotubes (CNTs), graphene (GR), carbon quantum dots (CQDs), carbon fibres (CFs), and their nanocomposites have broadly integrated with numerous sensing electrode materials for the detection of biomarkers under various experimental settings. The present review includes the recent advances in the development of carbon nanomaterials-based electrochemical sensors and biosensors for biomedical applications. The preparation, electrode preparation, effective utilization of carbon-derived nanomaterials, and their sensing performances towards numerous biomarkers have been highlighted. The state-of-the-merit, challenges, and prospects for designing carbon nanocomposites-based electrochemical sensor/biosensor platforms for biomedical diagnostics have also been described.

Keywords: Carbon nanocomposites, electroanalytical method, electrochemical sensors, biomarkers detection, biomedical diagnostics, CQDs.

[1]
Tvorynska, S.; Barek, J.; Josypcuk, B. Influence of different covalent immobilization protocols on electroanalytical performance of laccase-based biosensors. Bioelectrochemistry, 2022, 148, 108223.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108223] [PMID: 35973323]
[2]
Torrente-Rodríguez, R.M.; Montero-Calle, A.; San Bartolomé, C.; Cano, O.; Vázquez, M.; Iglesias-Caballero, M.; Corral-Lugo, A.; McConnell, M.J.; Pascal, M.; Mas, V.; Pingarrón, J.M.; Barderas, R.; Campuzano, S. Towards control and oversight of SARS-CoV-2 diagnosis and monitoring through multiplexed quantitative electroanalytical immune response biosensors. Angew. Chem., 2022, 134(28), e202203662.
[http://dx.doi.org/10.1002/ange.202203662] [PMID: 35941922]
[3]
Singh, S.; Numan, A.; Cinti, S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens. Bioelectron., 2022, 216, , 114635.
[http://dx.doi.org/10.1016/j.bios.2022.114635] [PMID: 35988430]
[4]
Zhang, Z.; Sen, P.; Adhikari, B.R.; Li, Y.; Soleymani, L. Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew Chem Int Ed Engl, 2022, 61, e202212496.
[5]
Negahdary, M.; Barros Azeredo, N.F.; Santos, B.G.; de Oliveira, T.G.; de Oliveira Lins, R.S.; Santos Lima, I.D.; Angnes, L. Electrochemical nanomaterial-based sensors/biosensors for drug monitoring. Curr. Top. Med. Chem., 2022.
[PMID: 36239731]
[6]
Durai, L.; Badhulika, S. Current challenges and developments in perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. ACS Omega, 2022, 7(44), 39491-39497.
[http://dx.doi.org/10.1021/acsomega.2c05591] [PMID: 36385846]
[7]
Mao, B.; Qian, L.; Govindhan, M.; Liu, Z.; Chen, A. Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochim. Acta, 2021, 188(8), 276.
[http://dx.doi.org/10.1007/s00604-021-04926-7] [PMID: 34319444]
[8]
Maduraiveeran, G.; Chen, A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim. Acta, 2021, 368, , 137612.
[http://dx.doi.org/10.1016/j.electacta.2020.137612]
[9]
Bhattacharya, G.; Fishlock, S.J.; Hussain, S.; Choudhury, S.; Xiang, A.; Kandola, B.; Pritam, A.; Soin, N.; Roy, S.S.; McLaughlin, J.A. Disposable paper-based biosensors: optimizing the electrochemical properties of laser-induced graphene. ACS Appl. Mater. Interfaces, 2022, 14(27), 31109-31120.
[http://dx.doi.org/10.1021/acsami.2c06350] [PMID: 35767835]
[10]
Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B, 2021, 272, 115341.
[http://dx.doi.org/10.1016/j.mseb.2021.115341]
[11]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[12]
Cetinkaya, A.; Kaya, S.I.; Ozcelikay, G.; Budak, F.; Ozkan, S.A. Carbon nanomaterials-based novel hybrid platforms for electrochemical sensor applications in drug analysis. Crit. Rev. Anal. Chem., 2022, 1-16.
[http://dx.doi.org/10.1080/10408347.2022.2109125] [PMID: 35943520]
[13]
Katowah, D.F.; Mohammed, G.I.; Al-Eryani, D.A.; Sobahi, T.R.; Hussein, M.A. Rapid and sensitive electrochemical sensor of cross-linked polyaniline/oxidized carbon nanomaterials core-shell nanocomposites for determination of 2,4-dichlorophenol. PLoS One, 2020, 15(6), e0234815.
[http://dx.doi.org/10.1371/journal.pone.0234815] [PMID: 32584837]
[14]
Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal., 2023, 222, 115102.
[http://dx.doi.org/10.1016/j.jpba.2022.115102] [PMID: 36283325]
[15]
Zheng, S.; Tian, Y.; Ouyang, J.; Shen, Y.; Wang, X.; Luan, J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem., 2022, 10, 990362.
[http://dx.doi.org/10.3389/fchem.2022.990362] [PMID: 36171994]
[16]
Song, H.; Huo, M.; Zhou, M.; Chang, H.; Li, J.; Zhang, Q.; Fang, Y.; Wang, H.; Zhang, D. Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Crit. Rev. Anal. Chem., 2022, 1-20.
[http://dx.doi.org/10.1080/10408347.2022.2151832] [PMID: 36463557]
[17]
Mondal, J.; An, J.M.; Surwase, S.S.; Chakraborty, K.; Sutradhar, S.C.; Hwang, J.; Lee, J.; Lee, Y.K. Carbon nanotube and its derived nanomaterials based high performance biosensing platform. Biosensors, 2022, 12(9), 731.
[http://dx.doi.org/10.3390/bios12090731] [PMID: 36140116]
[18]
Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, X.; Xu, J.; Hu, B.; Wang, X. Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Adv., 2022, 4(5), 1246-1262.
[http://dx.doi.org/10.1039/D1NA00843A] [PMID: 36133685]
[19]
Liao, Z.; Zi, Y.; Zhou, C.; Zeng, W.; Luo, W.; Zeng, H.; Xia, M.; Luo, Z. Recent advances in the synthesis, characterization, and application of carbon nanomaterials for the removal of endocrine-disrupting chemicals: A review. Int. J. Mol. Sci., 2022, 23(21), 13148.
[http://dx.doi.org/10.3390/ijms232113148] [PMID: 36361935]
[20]
Govindhan, M.; Amiri, M.; Chen, A. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron., 2015, 66, 474-480.
[http://dx.doi.org/10.1016/j.bios.2014.12.012] [PMID: 25499660]
[21]
Adhikari, B.R.; Govindhan, M.; Chen, A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim. Acta, 2015, 162, 198-204.
[http://dx.doi.org/10.1016/j.electacta.2014.10.028]
[22]
Adhikari, B.R.; Govindhan, M.; Chen, A. Carbonnanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors, 2015, 15(9), 22490-22508.
[http://dx.doi.org/10.3390/s150922490] [PMID: 26404304]
[23]
Kaur, H.; Siwal, S.S.; Chauhan, G.; Saini, A.K.; Kumari, A.; Thakur, V.K. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere, 2022, 304, 135182.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135182] [PMID: 35667504]
[24]
Hu, J.; Zhang, Z. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials, 2020, 10(10), 2020.
[http://dx.doi.org/10.3390/nano10102020] [PMID: 33066360]
[25]
Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28.
[http://dx.doi.org/10.1016/j.aca.2015.05.044] [PMID: 26320632]
[26]
Li, Y.; Han, X.; Mu, X.; Wang, Y.; Shi, C.; Ma, C. Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. Anal. Chim. Acta, 2023, 1238, 340639.
[http://dx.doi.org/10.1016/j.aca.2022.340639] [PMID: 36464451]
[27]
Wardani, N.I.; Kangkamano, T.; Wannapob, R.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta, 2023, 254, 124137.
[http://dx.doi.org/10.1016/j.talanta.2022.124137] [PMID: 36463801]
[28]
Christensen, E.E.; Amin, M.; Tumiel, T.M.; Krauss, T.D. Localizedcharge on surfactant-wrapped single-walled carbon nanotubes. J. Phys. Chem. Lett., 2022, 13(46), 10705-10712.
[http://dx.doi.org/10.1021/acs.jpclett.2c02650] [PMID: 36367529]
[29]
Li, Y.; Tang, J.; Lin, Y.; Li, J.; Yang, Y.; Zhao, P.; Fei, J.; Xie, Y. Ultrasensitive determination of natural flavonoid rutin using an electrochemical sensor based on metal-organic framework CAU−1/acidified carbon nanotubes composites. Molecules, 2022, 27(22), 7761.
[http://dx.doi.org/10.3390/molecules27227761] [PMID: 36431862]
[30]
Lee, J.; Lee, Y.; Lim, J.S.; Kim, S.W.; Jang, H.; Seo, B.; Joo, S.H.; Sa, Y.J. Discriminating active sites for the electrochemical synthesis of H2O2 by molecular functionalisation of carbon nanotubes. Nanoscale, 2022, 15(1), 195-203.
[http://dx.doi.org/10.1039/D2NR04652K] [PMID: 36477469]
[31]
Ahmad, H.; Khan, R.A.; Koo, B.H.; Alsalme, A. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials. RSC Advances, 2022, 12(24), 15593-15600.
[http://dx.doi.org/10.1039/D2RA02533G] [PMID: 35685184]
[32]
Barrejón, M.; Arellano, L.M.; D’Souza, F.; Langa, F. Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11(32), 14978-14992.
[http://dx.doi.org/10.1039/C9NR04388H] [PMID: 31372604]
[33]
Araby, S.; Meng, Q.; Zhang, L.; Zaman, I.; Majewski, P.; Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26(11), 112001.
[http://dx.doi.org/10.1088/0957-4484/26/11/112001] [PMID: 25705981]
[34]
Yoshida, Y. Carbon nanomaterials in analytical chemistry. Anal. Sci., 2018, 34(3), 257-258.
[http://dx.doi.org/10.2116/analsci.34.257] [PMID: 29526890]
[35]
Xu, Y.; Chen, P.; Peng, H. Generating electricity from water through carbon nanomaterials. Chemistry, 2018, 24(24), 6287-6294.
[http://dx.doi.org/10.1002/chem.201704638] [PMID: 29315891]
[36]
Nasir, S.; Hussein, M.; Zainal, Z.; Yusof, N. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 2018, 11(2), 295.
[http://dx.doi.org/10.3390/ma11020295] [PMID: 29438327]
[37]
Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Abdul Aziz, M.; Saleh Ahammad, A.J. Electrochemical sensing platforms of dihydroxybenzene: Part 2 – nanomaterials excluding carbon nanotubes and graphene. Chem. Rec., 2021, 21(5), 1073-1097.
[http://dx.doi.org/10.1002/tcr.202100044] [PMID: 33855801]
[38]
Solid carbon, springy and light. Nature, 2013, 494(7438), 404.
[http://dx.doi.org/10.1038/494404a] [PMID: 23446383]
[39]
Zhou, J.; Xia, Y.; Zou, Z.; Yang, Q.; Jiang, X.; Xiong, X. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection. Anal. Chim. Acta, 2023, 1237, 340631.
[http://dx.doi.org/10.1016/j.aca.2022.340631] [PMID: 36442944]
[40]
Karimi-Maleh, H.; Orooji, Y.; Yola, M.L. Pharmaceutical and personal care products (PPCPs) treatment and sensing by 2D carbon nanomaterials; challenges and perspectives. Chemosphere, 2023, 311(Pt 1), 136967.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136967] [PMID: 36273610]
[41]
Zhu, X.; Yan, X.; Yang, S.; Wang, Y.; Wang, S.; Tian, Y. DNA-mediated assembly of carbon nanomaterials. Chempluschem, 2022, 87, e202200089.
[42]
Zhou, Z.; Wang, L.; Wang, J.; Liu, C.; Xu, T.; Zhang, X. Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures. ACS Appl. Mater. Interfaces, 2022, 14(47), 52684-52690.
[http://dx.doi.org/10.1021/acsami.2c17593] [PMID: 36397204]
[43]
Zhao, X.; Sun, S.; Yang, F.; Li, Y. Atomic-scale evidence of catalyst evolution for the structure-controlled growth of single-walled carbon nanotubes. Acc. Chem. Res., 2022, 55(23), 3334-3344.
[http://dx.doi.org/10.1021/acs.accounts.2c00592] [PMID: 36384282]
[44]
Saravanan, K.R.A.; Prabu, N.; Sasidharan, M.; Maduraiveeran, G. Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci., 2019, 489, 725-733.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.040]
[45]
Govindhan, M.; Adhikari, B.R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4(109), 63741-63760.
[http://dx.doi.org/10.1039/C4RA10399H]
[46]
Xia, H.; Gu, T.; Fan, R.; Zeng, J. Comparative investigation of bioflavonoid electrocatalysis in 1D, 2D, and 3D carbon nanomaterials for simultaneous detection of naringin and hesperidin in fruits. RSC Advances, 2022, 12(11), 6409-6415.
[http://dx.doi.org/10.1039/D1RA07217J] [PMID: 35424592]
[47]
Silva, R.M.S.; Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C.; Farias, M.A.S. Determination of ofloxacin in the presence of dopamine, paracetamol, and caffeine using a glassy carbon electrode based on carbon nanomaterials and gold nanoparticles. Anal. Methods, 2022, 14(39), 3859-3866.
[http://dx.doi.org/10.1039/D2AY01177H] [PMID: 36129055]
[48]
Stegarescu, A.; Lung, I.; Ciorita, A.; Kacso, I.; Opris, O.; Soran, M.L.; Soran, A. The antibacterial properties of nanocomposites based on carbon nanotubes and metal oxides functionalized with azithromycin and ciprofloxacin. Nanomaterials, 2022, 12(23), 4115.
[49]
Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing. Nanomaterials, 2020, 10(8), 1485.
[http://dx.doi.org/10.3390/nano10081485] [PMID: 32751173]
[50]
Li, J.; Tang, S.; Lu, L.; Zeng, H.C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc., 2007, 129(30), 9401-9409.
[http://dx.doi.org/10.1021/ja071122v] [PMID: 17616130]
[51]
Ramya, M.; Kumar, P.S.; Rangasamy, G.; Shankar, V.U.; Rajesh, G.; Nirmala, K. Experimental investigation of the electrochemical detection of sulfamethoxazole using copper oxide-MoS2 modified glassy carbon electrodes. Environ. Res., 2023, 216(Pt 1), 114463.
[http://dx.doi.org/10.1016/j.envres.2022.114463] [PMID: 36208779]
[52]
Zhou, Y.; Wan, Y.; He, M.; Li, Y.; Wu, Q.; Yao, H. Determination of EGFR-overexpressing tumor cells by magnetic gold-decorated graphene oxide nanocomposites based impedance sensor. Anal. Biochem., 2022, 643, 114544.
[http://dx.doi.org/10.1016/j.ab.2021.114544] [PMID: 34973938]
[53]
Zhao, P.; Huang, L.; Wang, H.; Wang, C.; Chen, J.; Yang, P.; Ni, M.; Chen, C.; Li, C.; Xie, Y.; Fei, J. An ultrasensitive high-performance baicalin sensor based on C3N4-SWCNTs/reduced graphene oxide/cyclodextrin metal-organic framework nanocomposite. Sens. Actuators B Chem., 2022, 350, 130853.
[http://dx.doi.org/10.1016/j.snb.2021.130853] [PMID: 36320347]
[54]
Mehmandoust, M.; Soylak, M.; Erk, N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta, 2023, 253, 123991.
[http://dx.doi.org/10.1016/j.talanta.2022.123991] [PMID: 36228557]
[55]
Maduraiveeran, G. Metal nanocomposites based electrochemical sensor platform for few emerging biomarkers. Curr. Anal. Chem., 2022, 18(5), 509-517.
[http://dx.doi.org/10.2174/1573411016999201117094213]
[56]
Arivazhagan, M.; Kannan, P.; Maduraiveeran, G. Gold nanoclusters dispersed on gold dendrite-based carbon fibre microelectrodes for the sensitive detection of nitric oxide in human serum Biosensors, 2022, 12, 1128.
[http://dx.doi.org/10.3390/bios12121128]
[57]
Mohammadinejad, A.; Abouzari-Lotf, E.; Aleyaghoob, G.; Rezayi, M.; Kazemi Oskuee, R. Application of a transition metal oxide/carbon-based nanocomposite for designing a molecularly imprinted poly (l-cysteine) electrochemical sensor for curcumin. Food Chem., 2022, 386, 132845.
[http://dx.doi.org/10.1016/j.foodchem.2022.132845] [PMID: 35381537]
[58]
Khosravi, F.; Rahaie, M.; Ghaani, M.R.; Azimzadeh, M.; Mostafavi, E. Ultrasensitive electrochemical miR-155 nanocomposite biosensor based on functionalized/conjugated graphene materials and gold nanostars. Sens. Actuators B Chem., 2023, 375, 132877.
[http://dx.doi.org/10.1016/j.snb.2022.132877]
[59]
Hu, Y.; Hojamberdiev, M.; Geng, D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(22), 6970-6990.
[http://dx.doi.org/10.1039/D1TC01053K]
[60]
Zhao, C.; Man, T.; Cao, Y.; Weiss, P.S.; Monbouquette, H.G.; Andrews, A.M. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens., 2022, 7(12), 3644-3653.
[http://dx.doi.org/10.1021/acssensors.2c01909] [PMID: 36399772]
[61]
Wang, P.; Luo, B.; Liu, K.; Wang, C.; Dong, H.; Wang, X.; Hou, P.; Li, A. A novel COOH–GO–COOH–MWNT/pDA/AuNPs based electrochemical aptasensor for detection of AFB 1. RSC Advances, 2022, 12(43), 27940-27947.
[http://dx.doi.org/10.1039/D2RA03883H] [PMID: 36320289]
[62]
Wang, J.; Zhang, D.; Xu, K.; Hui, N.; Wang, D. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Mikrochim. Acta, 2022, 189(10), 395.
[http://dx.doi.org/10.1007/s00604-022-05490-4] [PMID: 36169733]
[63]
Vasudevan, M.; Perumal, V.; Karuppanan, S.; Ovinis, M.; Bothi Raja, P.; Gopinath, S.C.B.; Immanuel Edison, T.N.J. A comprehensive review on biopolymer mediated nanomaterial composites and their applications in electrochemical sensors. Crit. Rev. Anal. Chem., 2022, 1-24.
[http://dx.doi.org/10.1080/10408347.2022.2135090] [PMID: 36288094]
[64]
Chokkareddy, R.; Redhi, G.G.; Karthick, T. A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon, 2019, 5(3), e01457.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01457] [PMID: 30976709]
[65]
Chakkarapani, L.D.; Arumugam, S.; Brandl, M. Layer-by-layer sensor architecture of polymers and nanoparticles for electrochemical detection of uric acid in human urine samples. Mater. Today Chem., 2021, 22, 100561.
[http://dx.doi.org/10.1016/j.mtchem.2021.100561]
[66]
Sulym, I.; Cetinkaya, A.; Yence, M.; Çorman, M.E.; Uzun, L.; Ozkan, S.A. Novel electrochemical sensor based on molecularly imprinted polymer combined with L-His-MWCNTs@PDMS-5 nanocomposite for selective and sensitive assay of tetracycline. Electrochim. Acta, 2022, 430, 141102.
[http://dx.doi.org/10.1016/j.electacta.2022.141102]
[67]
Thangamani, G.J.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.A.; Ponnamma, D.; Sadasivuni, K.K.; Khalil, H.P.S.A.; Pasha, S.K.K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere, 2021, 280, 130641.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130641] [PMID: 33964741]
[68]
Dalkiran, B.; Brett, C.M.A. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: A review. Mikrochim. Acta, 2021, 188(5), 178.
[http://dx.doi.org/10.1007/s00604-021-04821-1] [PMID: 33913010]
[69]
Turco, A.; Corvaglia, S.; Pompa, P.P.; Malitesta, C. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis. J. Colloid Interface Sci., 2021, 599, 676-685.
[http://dx.doi.org/10.1016/j.jcis.2021.04.133] [PMID: 33979749]
[70]
Jamei, H.R.; Rezaei, B.; Ensafi, A.A. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry, 2021, 138, 107701.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107701] [PMID: 33254052]
[71]
Chaudhary, V.; Khanna, V.; Ahmed Awan, H.T.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, C.Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens. Bioelectron., 2023, 220, 114847.
[http://dx.doi.org/10.1016/j.bios.2022.114847] [PMID: 36335709]
[72]
Zhu, M.; Xu, F.; Miao, S.; Xie, C.; Li, H.; Li, S.; Xia, F. Incorporation of a multi-valent aptamer into electrochemical biosensors to achieve an improved performance for thrombin analysis in blood serum. ChemPlusChem, 2022, 87(11), e202200325.
[http://dx.doi.org/10.1002/cplu.202200325] [PMID: 36410784]
[73]
Mehmandoust, M.; Pourhakkak, P.; Hasannia, F.; Özalp, Ö.; Soylak, M.; Erk, N. A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation. Food Chem. Toxicol., 2022, 164, 113080.
[http://dx.doi.org/10.1016/j.fct.2022.113080] [PMID: 35490856]
[74]
Karimian, R.; Afshar, V. Electrochemical determination of purine and pyrimidine bases using a 1,10-phenanthroline–Fe3O4 nanoparticles–graphene oxide–chitosan nanocomposite. Anal. Methods, 2022, 14(38), 3790-3797.
[http://dx.doi.org/10.1039/D2AY01069K] [PMID: 36124906]
[75]
Johnson, D.; Kim, U.; Mobed-Miremadi, M. Nanocomposite films as electrochemical sensors for detection of catalase activity. Front. Mol. Biosci., 2022, 9, 972008.
[http://dx.doi.org/10.3389/fmolb.2022.972008] [PMID: 36225256]
[76]
Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Kumar Jana, S. Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry, 2021, 139, 107740.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107740] [PMID: 33524653]
[77]
Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev., 2021, 50(20), 11381-11485.
[http://dx.doi.org/10.1039/D0CS01138J] [PMID: 34661206]
[78]
Lou, B.S.; Rajaji, U.; Chen, S.M.; Chen, T.W. A simple sonochemical assisted synthesis of NiMoO4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples. Ultrason. Sonochem., 2020, 64, 104827.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104827] [PMID: 31953007]
[79]
Khalaf, N.; Ahamad, T.; Naushad, M.; Al-hokbany, N.; Al-Saeedi, S.I.; Almotairi, S.; Alshehri, S.M. Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol., 2020, 146, 763-772.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.193] [PMID: 31778696]
[80]
Kaur, R.; Rana, S.; Lalit, K.; Singh, P.; Kaur, K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens. Bioelectron., 2020, 167, 112486.
[http://dx.doi.org/10.1016/j.bios.2020.112486] [PMID: 32841783]
[81]
Hatamie, A.; He, X.; Zhang, X.W.; Oomen, P.E.; Ewing, A.G. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens. Bioelectron., 2023, 220, 114899.
[http://dx.doi.org/10.1016/j.bios.2022.114899] [PMID: 36399941]
[82]
Ahangari, A.; Mahmoodi, P.; Mohammadzadeh, A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol. Bioeng., 2023, 120(1), 41-56.
[http://dx.doi.org/10.1002/bit.28266] [PMID: 36253878]
[83]
Baghayeri, M.; Veisi, H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron., 2015, 74, 190-198.
[http://dx.doi.org/10.1016/j.bios.2015.06.016] [PMID: 26143458]
[84]
Feng, Y.G.; Zhu, J.H.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection. Sens. Actuators B Chem., 2021, 346, 130501.
[http://dx.doi.org/10.1016/j.snb.2021.130501]
[85]
Kumar, T.H.V.; Srinivasan, S.; Krishnan, V.; Vaidyanathan, R.; Babu, K.A.; Natarajan, S.; Veerapandian, M. Peptide-based direct electrochemical detection of receptor binding domains of SARS-CoV-2 spike protein in pristine samples. Sens. Actuators B Chem., 2023, 377, 133052.
[http://dx.doi.org/10.1016/j.snb.2022.133052] [PMID: 36438197]
[86]
Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf., 2019, 35, 1286-1296.
[http://dx.doi.org/10.1016/j.promfg.2019.06.089]
[87]
Muñoz, J.; Oliver-De La Cruz, J.; Forte, G.; Pumera, M. Graphene-based 3D-Printed nanocomposite bioelectronics for monitoring breast cancer cell adhesion. Biosens. Bioelectron., 2023, 226, 115113.
[http://dx.doi.org/10.1016/j.bios.2023.115113] [PMID: 36764127]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy