Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Review of the Application of PAT in the Pharmaceutical Continuous Crystallization Process

Author(s): Bing Zhao, Hengchang Zang*, Liang Zhong, Xiaobo Ma, Haowei Wang, Hui Zhang and Lian Li*

Volume 23, Issue 18, 2023

Published on: 15 May, 2023

Page: [1699 - 1714] Pages: 16

DOI: 10.2174/1568026623666230420112709

Price: $65

Abstract

As an important pharmaceutical process, crystallization greatly impacts the final product. In recent years, the continuous crystallization process has attracted more attention from researchers, with the promotion of continuous manufacturing (CM) by the Food and Drug Administration (FDA). The continuous crystallization process has the advantages of high economic benefit, stable and uniform quality, a short production cycle, and personalization. To carry out continuous crystallization, some related process analytical technology (PAT) tools have become the focus of breakthroughs. Infrared (IR) spectroscopy, Raman spectroscopy, and focused beam reflection measurement (FBRM) tools have gradually become research hotspots due to their fast, non-destructive, and real-time monitoring characteristics. This review compared the advantages and disadvantages of the three technologies. Their applications in the upstream mixed continuous crystallization process, the middle reaches of crystal nucleation and growth, and the process of the downstream refining were discussed to provide corresponding guidance for the practice and further development of these three technologies in the continuous crystallization process and promote the development of CM in the pharmaceutical industry.

Keywords: Continuous crystallization, Process analytical technology, Infrared spectroscopy, Raman spectroscopy, Focused beam reflection measurement, Continuous manufacturing.

Next »
Graphical Abstract
[1]
Byrn, S.; Futran, M.; Thomas, H.; Jayjock, E.; Maron, N.; Meyer, R.F.; Myerson, A.S.; Thien, M.P.; Trout, B.L. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them may 20-21, 2014 continuous manufacturing symposium. J. Pharm. Sci., 2015, 104(3), 792-802.
[http://dx.doi.org/10.1002/jps.24247]
[2]
Schaber, S.D.; Gerogiorgis, D.I.; Ramachandran, R.; Evans, J.M.B.; Barton, P.I.; Trout, B.L. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind. Eng. Chem. Res., 2011, 50(17), 10083-10092.
[http://dx.doi.org/10.1021/ie2006752]
[3]
Ma, Y.; Wu, S.; Macaringue, E.G.J.; Zhang, T.; Gong, J.; Wang, J. Recent progress in continuous crystallization of pharmaceutical products: precise preparation and control. Org. Process Res. Dev., 2020, 24(10), 1785-1801.
[http://dx.doi.org/10.1021/acs.oprd.9b00362]
[4]
Jiang, M.; Braatz, R.D. Designs of continuous-flow pharmaceutical crystallizers: developments and practice. CrystEngComm, 2019, 21(23), 3534-3551.
[http://dx.doi.org/10.1039/C8CE00042E]
[5]
Darmali, C.; Mansouri, S.; Yazdanpanah, N.; Woo, M.W. Mechanisms and control of impurities in continuous crystallization: a review. Ind. Eng. Chem. Res., 2019, 58(4), 1463-1479.
[http://dx.doi.org/10.1021/acs.iecr.8b04560]
[6]
Moschou, P.; de Croon, M.H.J.M.; van der Schaaf, J.; Schouten, J.C. Advances in continuous crystallization: Toward microfluidic systems. Rev. Chem. Eng., 2014, 30(2), 127-138.
[http://dx.doi.org/10.1515/revce-2013-0041]
[7]
Shamnugasundram, A.P.; Sarfaty, M.; Schwarm, A.; Paik, J. Integrated metrology and advanced process control in semiconductor manufacturing. Semiconductor Silicon, 2002, 2002(2), 850-862.
[8]
Lawton, S.; Steele, G.; Shering, P.; Zhao, L.; Laird, I.; Ni, X.W. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org. Process Res. Dev., 2009, 13(6), 1357-1363.
[http://dx.doi.org/10.1021/op900237x]
[9]
Chem. Eng. Prog., 2020, 116(6), 51-51.
[10]
Zhang, D.; Xu, S.; Du, S.; Wang, J.; Gong, J. Progress of pharmaceutical continuous crystallization. Engineering, 2017, 3(3), 354-364.
[http://dx.doi.org/10.1016/J.ENG.2017.03.023]
[11]
Lai, T.T.C.; Cornevin, J.; Ferguson, S.; Li, N.; Trout, B.L.; Myerson, A.S. Control of polymorphism in continuous crystallization via mixed suspension mixed product removal systems cascade design. Cryst. Growth Des., 2015, 15(7), 3374-3382.
[http://dx.doi.org/10.1021/acs.cgd.5b00466]
[12]
Szilagyi, B.; Pal, K.; Beheshti Tabar, I.; Nagy, Z.K. A Novel robust digital design of a network of industrial continuous cooling crystallizers of dextrose monohydrate: from laboratory experiments to industrial application. Ind. Eng. Chem. Res., 2020, 59(51), 22231-22246.
[http://dx.doi.org/10.1021/acs.iecr.0c04870]
[13]
Yang, X.; Acevedo, D.; Mohammad, A.; Pavurala, N.; Wu, H.; Brayton, A.L.; Shaw, R.A.; Goldman, M.J.; He, F.; Li, S.; Fisher, R.J.; O’Connor, T.F.; Cruz, C.N. Risk considerations on developing a continuous crystallization system for carbamazepine. Org. Process Res. Dev., 2017, 21(7), 1021-1033.
[http://dx.doi.org/10.1021/acs.oprd.7b00130]
[14]
Domokos, A.; Nagy, B.; Szilágyi, B.; Marosi, G.; Nagy, Z.K. Integrated continuous pharmaceutical technologies-a review. Org. Process Res. Dev., 2021, 25(4), 721-739.
[http://dx.doi.org/10.1021/acs.oprd.0c00504]
[15]
Zhu, T.; Zhang, J.; Zhang, H.; Mao, Z. Study on performance of new continuous crystallizer based on CFD simulation. Chem. Eng., 2011, 39(12), 85-89.
[16]
Supriya, S.; Sivan, S.; Srinivasan, K. Nucleation control and separation of stable and metastable polymorphs of l-histidine through novel swift cooling crystallization process. Cryst. Res. Technol., 2018, 53(3)1700239
[http://dx.doi.org/10.1002/crat.201700239]
[17]
Trasi, N.S.; Taylor, L.S. Nucleation and crystal growth of amorphous nilutamide – unusual low temperature behavior. CrystEngComm, 2014, 16(31), 7186-7195.
[http://dx.doi.org/10.1039/C4CE00118D]
[18]
Tadayyon, A.; Rohani, S. Control of fines suspension density in the fines loop of a continuous KCl crystallizer using transmittance measurement and an FBRM® probe. Can. J. Chem. Eng., 2000, 78(4), 663-673.
[http://dx.doi.org/10.1002/cjce.5450780408]
[19]
Wu, H.; Khan, M.A. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for real-time monitoring and mapping the state of a pharmaceutical coprecipitation process. J. Pharm. Sci., 2010, 99(3), 1516-1534.
[http://dx.doi.org/10.1002/jps.21923] [PMID: 19774654]
[20]
Butz, J.; de la Cruz, L.; DiTonno, J.; DeBoyace, K.; Ewing, G.; Donovan, B.; Medendorp, J. Raman spectroscopy for the process analysis of the manufacturing of a suspension metered dose inhaler. J. Pharm. Biomed. Anal., 2011, 54(5), 1013-1019.
[http://dx.doi.org/10.1016/j.jpba.2010.12.007] [PMID: 21232901]
[21]
Kukor, A.J.; Guy, M.A.; Hawkins, J.M.; Hein, J.E. A robust new tool for online solution-phase sampling of crystallizations. React. Chem. Eng., 2021, 6(11), 2042-2049.
[http://dx.doi.org/10.1039/D1RE00284H]
[22]
Sen, M.; Rogers, A.; Singh, R.; Chaudhury, A.; John, J.; Ierapetritou, M.G.; Ramachandran, R. Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation. Chem. Eng. Sci., 2013, 102, 56-66.
[http://dx.doi.org/10.1016/j.ces.2013.07.035]
[23]
Awala, H.; Kunjir, S.M. Aurélie Vicente; Gilson, J.P.; Valtchev, V.; Seblani, H.; Retoux, R.; Lakiss, L.; Fernandez, C.; Bedard, R.; Abdo, S.; Bricker, J.; Mintova, S. Crystallization pathway from a highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(32), 17492-17501.
[http://dx.doi.org/10.1039/D1TA02781F]
[24]
Capellades, G.; Duso, A.; Dam-Johansen, K.; Mealy, M.J.; Christensen, T.V.; Kiil, S. Continuous crystallization with gas entrainment: evaluating the effect of a moving gas phase in an msmpr crystallizer. Org. Process Res. Dev., 2019, 23(2), 252-262.
[http://dx.doi.org/10.1021/acs.oprd.8b00376]
[25]
Sheng, F.; Chow, P.S.; Yu, Z.Q.; Tan, R.B.H. Online classification of mixed co-crystal and solute suspensions using raman spectroscopy. Org. Process Res. Dev., 2016, 20(6), 1068-1074.
[http://dx.doi.org/10.1021/acs.oprd.6b00123]
[26]
Yang, Y.; Ahmed, B.; Mitchell, C.; Quon, J.L.; Siddique, H.; Houson, I.; Florence, A.J.; Papageorgiou, C.D. Investigation of wet milling and indirect ultrasound as means for controlling nucleation in the continuous crystallization of an active pharmaceutical Ingredient. Org. Process Res. Dev., 2021, 25(9), 2119-2132.
[http://dx.doi.org/10.1021/acs.oprd.1c00209]
[27]
Frawley, P.J.; Mitchell, N.A.; Ó’Ciardhá, C.T.; Hutton, K.W. The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chem. Eng. Sci., 2012, 75, 183-197.
[http://dx.doi.org/10.1016/j.ces.2012.03.041]
[28]
McDonald, M.A.; Marshall, G.D.; Bommarius, A.S.; Grover, M.A.; Rousseau, R.W. Crystallization kinetics of cephalexin monohydrate in the presence of cephalexin precursors. Cryst. Growth Des., 2019, 19(9), 5065-5074.
[http://dx.doi.org/10.1021/acs.cgd.9b00429]
[29]
Samad, N.A.F.A.; Sin, G.; Gernaey, K.V.; Gani, R. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes. Eur. J. Pharm. Biopharm., 2013, 85(3), 911-929.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.016] [PMID: 23770430]
[30]
Simone, E.; Zhang, W.; Nagy, Z.K. Analysis of the crystallization process of a biopharmaceutical compound in the presence of impurities using process analytical technology (PAT) tools. J. Chem. Technol. Biotechnol., 2016, 91(5), 1461-1470.
[http://dx.doi.org/10.1002/jctb.4743]
[31]
Besenhard, M.O.; Neugebauer, P.; Scheibelhofer, O.; Khinast, J.G. Crystal engineering in continuous plug-flow crystallizers. Cryst. Growth Des., 2017, 17(12), 6432-6444.
[http://dx.doi.org/10.1021/acs.cgd.7b01096] [PMID: 29234240]
[32]
Jakob, A.; Grilc, M.; Teržan, J.; Likozar, B. Solubility temperature dependence of bio-based levulinic acid, furfural, and hydroxymethylfurfural in water, nonpolar, polar Aprotic and protic solvents. Processes, 2021, 9(6), 924.
[http://dx.doi.org/10.3390/pr9060924]
[33]
Trampuž, M. Teslić; D.; Likozar, B. Process analytical technology-based (PAT) model simulations of a combined cooling, seeded and antisolvent crystallization of an active pharmaceutical ingredient (API). Powder Technol., 2020, 366, 873-890.
[http://dx.doi.org/10.1016/j.powtec.2020.03.027]
[34]
Pomerantsev, A.L.; Rodionova, O.Y. Process analytical technology: A critical view of the chemometricians. J. Chemometr., 2012, 26(6), 299-310.
[http://dx.doi.org/10.1002/cem.2445]
[35]
Bordawekar, S.; Chanda, A.; Daly, A.M.; Garrett, A.W.; Higgins, J.P.; LaPack, M.A.; Maloney, T.D.; Morgado, J.; Mukherjee, S.; Orr, J.D.; Reid, G.L., III; Yang, B.S.; Ward, H.W., II Industry perspectives on process analytical technology: Tools and applications in API manufacturing. Org. Process Res. Dev., 2015, 19(9), 1174-1185.
[http://dx.doi.org/10.1021/acs.oprd.5b00088]
[36]
Halliwell, R.A.; Bhardwaj, R.M.; Brown, C.J.; Briggs, N.E.B.; Dunn, J.; Robertson, J.; Nordon, A.; Florence, A.J. Spray drying as a reliable route to produce metastable carbamazepine form IV. J. Pharm. Sci., 2017, 106(7), 1874-1880.
[http://dx.doi.org/10.1016/j.xphs.2017.03.045] [PMID: 28431966]
[37]
Sistare, F.; Berry, L.S.P.; Mojica, C.A. Process analytical technology: An investment in process knowledge. Org. Process Res. Dev., 2005, 9(3), 332-336.
[http://dx.doi.org/10.1021/op0402127]
[38]
Food and dry administration (2004). Guidance for industry PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. http://www. fda. gov/cder/guidance/published. html
[39]
Brown, C.J.; McGlone, T.; Yerdelen, S.; Srirambhatla, V.; Mabbott, F.; Gurung, R.; Briuglia, M.L.; Ahmed, B.; Polyzois, H.; McGinty, J.; Perciballi, F.; Fysikopoulos, D.; MacFhionnghaile, P.; Siddique, H.; Raval, V.; Harrington, T.S.; Vassileiou, A.D.; Robertson, M.; Prasad, E.; Johnston, A.; Johnston, B.; Nordon, A.; Srai, J.S.; Halbert, G.; ter Horst, J.H.; Price, C.J.; Rielly, C.D.; Sefcik, J.; Florence, A.J. Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations. Mol. Syst. Des. Eng., 2018, 3(3), 518-549.
[http://dx.doi.org/10.1039/C7ME00096K]
[40]
Bunaciu, A.A.; Aboul-Enein, H.Y. Adulterated drug analysis using FTIR spectroscopy. Appl. Spectrosc. Rev., 2021, 56(5), 423-437.
[http://dx.doi.org/10.1080/05704928.2020.1811717]
[41]
Esmonde-White, K.A.; Cuellar, M.; Uerpmann, C.; Lenain, B.; Lewis, I.R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem., 2017, 409(3), 637-649.
[http://dx.doi.org/10.1007/s00216-016-9824-1] [PMID: 27491299]
[42]
Wang, Y.; Li, Z.H.; Zhang, Z-X.; An, D-K. Applications of Raman spectroscopy in pharmaceutical analysis. Yao Xue Xue Bao, 2004, 39(9), 764-768.
[PMID: 15606032]
[43]
Barrett, P. B.; Becker, R. Nucleation, solubility, and polymorph identification: The interrelationship as monitored with lasentec FBRM. Abstracts of Papers American Chemical Society 2002, 223(1-2), 91-IEC 91.
[44]
Wu, S.; Long, Z.; Peng, Z.; Qiu, P.; Li, Z.; Li, W. Progress on Application of Process Analytical Technology in Crystallization Process. Fenxi Ceshi Xuebao, 2020, 39(10), 1209-1217.
[45]
Li, K.; Feng, W. Application of in-line infrared spectroscopy in pharmaceutical crystallization. Zhongguo Xin Yao Zazhi, 2019, 28(1), 44-48.
[46]
El Bazi, W.; Moufarej Abou Jaoude, M-T.; Porte, C.; Mabille, I.; Havet, J.L. Isothermal crystallization of glycine in semi-continuous mode by anti-solvent addition. J. Cryst. Growth, 2018, 498, 202-208.
[http://dx.doi.org/10.1016/j.jcrysgro.2018.06.013]
[47]
Ferguson, S.; Morris, G.; Hao, H.; Barrett, M.; Glennon, B. Characterization of the anti-solvent batch, plug flow and MSMPR crystallization of benzoic acid. Chem. Eng. Sci., 2013, 104, 44-54.
[http://dx.doi.org/10.1016/j.ces.2013.09.006]
[48]
Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical principles of Raman spectroscopy. Physical Sciences Reviews, 2019, 4(6)
[49]
Paudel, A.; Raijada, D.; Rantanen, J. Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev., 2015, 89, 3-20.
[http://dx.doi.org/10.1016/j.addr.2015.04.003] [PMID: 25868453]
[50]
Pinzaru, S.C.; Pavel, I.; Leopold, N.; Kiefer, W. Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J. Raman Spectrosc., 2004, 35(5), 338-346.
[http://dx.doi.org/10.1002/jrs.1153]
[51]
Feng, H.; Bondi, R.W., Jr; Anderson, C.A.; Drennen, J.K., III; Igne, B. Investigation of the sensitivity of transmission raman spectroscopy for polymorph detection in pharmaceutical tablets. Appl. Spectrosc., 2017, 71(8), 1856-1867.
[http://dx.doi.org/10.1177/0003702817690407] [PMID: 28357920]
[52]
Andrews, G.P.; Jones, D.S.; Senta-Loys, Z.; Almajaan, A.; Li, S.; Chevallier, O.; Elliot, C.; Healy, A.M.; Kelleher, J.F.; Madi, A.M.; Gilvary, G.C.; Tian, Y. The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products. Int. J. Pharm., 2019, 566, 476-487.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.029] [PMID: 31085253]
[53]
Chen, D.D.; Xie, X.F.; Ao, H.; Liu, J.L.; Peng, C. Raman spectroscopy in quality control of Chinese herbal medicine. J. Chin. Med. Assoc., 2017, 80(5), 288-296.
[http://dx.doi.org/10.1016/j.jcma.2016.11.009] [PMID: 28325576]
[54]
Kail, N.; Briesen, H.; Marquardt, W. Analysis of FBRM measurements by means of a 3D optical model. Powder Technol., 2008, 185(3), 211-222.
[http://dx.doi.org/10.1016/j.powtec.2007.10.015]
[55]
Kail, N.; Marquardt, W.; Briesen, H. Process analysis by means of focused beam reflectance measurements. Ind. Eng. Chem. Res., 2009, 48(6), 2936-2946.
[http://dx.doi.org/10.1021/ie800839s]
[56]
Variankaval, N.; Cote, A.S.; Doherty, M.F. From form to function: Crystallization of active pharmaceutical ingredients. AIChE J., 2008, 54(7), 1682-1688.
[http://dx.doi.org/10.1002/aic.11555]
[57]
Stelzer, T.; Wong, S.Y.; Chen, J.; Myerson, A.S. Evaluation of PAT methods for potential application in small-scale, multipurpose pharmaceutical manufacturing platforms. Org. Process Res. Dev., 2016, 20(8), 1431-1438.
[http://dx.doi.org/10.1021/acs.oprd.6b00129]
[58]
Feng, L.L.; Berglund, K.A. Application of ATR-FTIR in controlled cooling batch crystallization. Abstracts of Papers of the American Chemical Society, 2002, 223, U641-U641.
[59]
Surwase, S.A.; Itkonen, L.; Aaltonen, J.; Saville, D.; Rades, T.; Peltonen, L.; Strachan, C.J. Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. Eur. J. Pharm. Biopharm., 2015, 96, 32-43.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.005] [PMID: 26092472]
[60]
Sharma, P.; Denny, W.A.; Garg, S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int. J. Pharm., 2009, 380(1-2), 40-48.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.029] [PMID: 19576976]
[61]
De Beer, T.R.M.; Baeyens, W.R.G.; Ouyang, J.; Vervaet, C.; Remon, J.P. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. Analyst, 2006, 131(10), 1137-1144.
[http://dx.doi.org/10.1039/b605299a] [PMID: 17003862]
[62]
Wieland, K.; Tauber, S.; Gasser, C.; Rettenbacher, L.A.; Lux, L.; Radel, S.; Lendl, B. In-line ultrasound-enhanced raman spectroscopy allows for highly sensitive analysis with improved selectivity in suspensions. Anal. Chem., 2019, 91(22), 14231-14238.
[http://dx.doi.org/10.1021/acs.analchem.9b01105] [PMID: 31610645]
[63]
Acevedo, D.; Wu, W.L.; Yang, X.; Pavurala, N.; Mohammad, A.; O’Connor, T.F. Evaluation of focused beam reflectance measurement (FBRM) for monitoring and predicting the crystal size of carbamazepine in crystallization processes. CrystEngComm, 2021, 23(4), 972-985.
[http://dx.doi.org/10.1039/D0CE01388A]
[64]
Hou, G.; Power, G.; Barrett, M.; Glennon, B.; Morris, G.; Zhao, Y. Development and characterization of a single stage mixed-suspension, mixed-product-removal crystallization process with a novel transfer unit. Cryst. Growth Des., 2014, 14(4), 1782-1793.
[http://dx.doi.org/10.1021/cg401904a]
[65]
Zhang, D.; Liu, L.; Xu, S.; Du, S.; Dong, W.; Gong, J. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization. J. Cryst. Growth, 2018, 486, 1-9.
[http://dx.doi.org/10.1016/j.jcrysgro.2017.12.046]
[66]
Yu, Z.Q.; Tan, R.B.H.; Chow, P.S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. J. Cryst. Growth, 2005, 279(3-4), 477-488.
[http://dx.doi.org/10.1016/j.jcrysgro.2005.02.050]
[67]
Yang, Y.; Song, L.; Zhang, Y.; Nagy, Z.K. Application of wet milling-based automated direct nucleation control in continuous cooling crystallization processes. Ind. Eng. Chem. Res., 2016, 55(17), 4987-4996.
[http://dx.doi.org/10.1021/acs.iecr.5b04956]
[68]
Acevedo, D.; Kamaraju, V.K.; Glennon, B.; Nagy, Z.K. Modeling and characterization of an in Situ wet mill operation. Org. Process Res. Dev., 2017, 21(7), 1069-1079.
[http://dx.doi.org/10.1021/acs.oprd.7b00192]
[69]
Nagy, Z.K.; Aamir, E. Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator. Chem. Eng. Sci., 2012, 84, 656-670.
[http://dx.doi.org/10.1016/j.ces.2012.08.048]
[70]
Fujiwara, M.; Nagy, Z.K.; Chew, J.W.; Braatz, R.D. First-principles and direct design approaches for the control of pharmaceutical crystallization. J. Process Contr., 2005, 15(5), 493-504.
[http://dx.doi.org/10.1016/j.jprocont.2004.08.003]
[71]
Nagy, Z.K.; Chew, J.W.; Fujiwara, M.; Braatz, R.D. Comparative performance of concentration and temperature controlled batch crystallizations. J. Process Contr., 2008, 18(3-4), 399-407.
[http://dx.doi.org/10.1016/j.jprocont.2007.10.006]
[72]
Fujiwara, M.; Chow, P.S.; Ma, D.L.; Braatz, R.D. Paracetamol crystallization using laser backscattering and ATR-FTIR spectroscopy: Metastability, agglomeration, and control. Cryst. Growth Des., 2002, 2(5), 363-370.
[http://dx.doi.org/10.1021/cg0200098]
[73]
Saleemi, A.N.; Rielly, C.D.; Nagy, Z.K. Comparative Investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/vis Spectroscopy and FBRM. Cryst. Growth Des., 2012, 12(4), 1792-1807.
[http://dx.doi.org/10.1021/cg201269c]
[74]
Hansen, T.B.; Simone, E.; Nagy, Z.; Qu, H. Process Analytical Tools To Control polymorphism and particle size in batch crystallization processes. Org. Process Res. Dev., 2017, 21(6), 855-865.
[http://dx.doi.org/10.1021/acs.oprd.7b00087]
[75]
Weinberg, M.C. Crystal-growth and interfacial transport in classical nucleation theory. Phys. Chem. Glasses, 1990, 31(1), 44-45.
[76]
Erdemir, D.; Lee, A.Y.; Myerson, A.S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res., 2009, 42(5), 621-629.
[http://dx.doi.org/10.1021/ar800217x] [PMID: 19402623]
[77]
Simone, E.; Nagy, Z.K. A link between the ATR-UV/Vis and Raman spectra of zwitterionic solutions and the polymorphic outcome in cooling crystallization. CrystEngComm, 2015, 17(34), 6538-6547.
[http://dx.doi.org/10.1039/C5CE00702J]
[78]
Malamatari, M.; Ross, S.A.; Douroumis, D.; Velaga, S.P. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Deliv. Rev., 2017, 117, 162-177.
[http://dx.doi.org/10.1016/j.addr.2017.08.006] [PMID: 28811184]
[79]
Chen, X.; Li, J.; Li, T.; Liu, H.; Wang, Y. Application of infrared spectroscopy combined with chemometrics in mushroom. Appl. Spectrosc. Rev., 2021, 1-28.
[http://dx.doi.org/10.1080/05704928.2021.1994415]
[80]
Jain, B.; Yadav, P. Vibrational spectroscopy and chemometrics in GSR: Review and current trend. Egypt. J. Forensic Sci., 2021, 11(1), 1-7.
[http://dx.doi.org/10.1186/s41935-021-00229-3]
[81]
Morita, S. Chemometrics and related fields in python. Anal. Sci., 2020, 36, 107-111.
[http://dx.doi.org/10.2116/analsci.19R006] [PMID: 31735763]
[82]
Mohamed, T.A. Raman, infrared and nmr spectroscopy: advances in structural, conformational and environmental analysis. Comb. Chem. High Throughput Screen., 2020, 23(7), 566-567.
[http://dx.doi.org/10.2174/138620732307200713120351] [PMID: 33028182]
[83]
Ozaki, Y. Recent advances in molecular spectroscopy of electronic and vibrational transitions in condensed phase and its application to chemistry. Bull. Chem. Soc. Jpn., 2019, 92(3), 629-654.
[http://dx.doi.org/10.1246/bcsj.20180319]
[84]
Siddique, H.; Brown, C.J.; Houson, I.; Florence, A.J. Establishment of a continuous sonocrystallization process for lactose in an oscillatory baffled crystallizer. Org. Process Res. Dev., 2015, 19(12), 1871-1881.
[http://dx.doi.org/10.1021/acs.oprd.5b00127]
[85]
Testa, C.J.; Hu, C.; Shvedova, K.; Wu, W.; Sayin, R.; Casati, F.; Halkude, B.S.; Hermant, P.; Shen, D.E.; Ramnath, A.; Su, Q.; Born, S.C.; Takizawa, B.; Chattopadhyay, S.; O’Connor, T.F.; Yang, X.; Ramanujam, S.; Mascia, S. Design and commercialization of an end-to-end continuous pharmaceutical production process: a pilot plant case study. Org. Process Res. Dev., 2020, 24(12), 2874-2889.
[http://dx.doi.org/10.1021/acs.oprd.0c00383]
[86]
Tahir, F.; Krzemieniewska-Nandwani, K.; Mack, J.; Lovett, D.; Siddique, H.; Mabbott, F.; Raval, V.; Houson, I.; Florence, A. Advanced control of a continuous oscillatory flow crystalliser. Control Eng. Pract., 2017, 67, 64-75.
[http://dx.doi.org/10.1016/j.conengprac.2017.07.008]
[87]
Nagy, Z.K.; Braatz, R.D. Advances and new directions in crystallization control. Annu. Rev. Chem. Biomol. Eng., 2012, 3(1), 55-75, 55-75.
[http://dx.doi.org/10.1146/annurev-chembioeng-062011-081043] [PMID: 22468599]
[88]
Nicoud, L.; Licordari, F.; Myerson, A.S. Polymorph control in MSMPR crystallizers. a case study with paracetamol. Org. Process Res. Dev., 2019, 23(5), 794-806.
[http://dx.doi.org/10.1021/acs.oprd.8b00351]
[89]
Zhou, L.; Wang, Z.; Zhang, M.; Guo, M.; Xu, S.; Yin, Q. Determination of metastable zone and induction time of analgin for cooling crystallization. Chin. J. Chem. Eng., 2017, 25(3), 313-318.
[http://dx.doi.org/10.1016/j.cjche.2016.05.046]
[90]
Herrero, A.M. Raman spectroscopy for monitoring protein structure in muscle food systems. Crit. Rev. Food Sci. Nutr., 2008, 48(6), 512-523.
[http://dx.doi.org/10.1080/10408390701537385] [PMID: 18568857]
[91]
Lin, M.; Wu, Y.; Rohani, S. Simultaneous measurement of solution concentration and slurry density by raman spectroscopy with artificial neural network. Cryst. Growth Des., 2020, 20(3), 1752-1759.
[http://dx.doi.org/10.1021/acs.cgd.9b01482]
[92]
Yang, Y.; Zhang, C.; Pal, K.; Koswara, A.; Quon, J.; McKeown, R.; Goss, C.; Nagy, Z.K. Application of ultra-performance liquid chromatography as an online process analytical technology tool in pharmaceutical crystallization. Cryst. Growth Des., 2016, 16(12), 7074-7082.
[http://dx.doi.org/10.1021/acs.cgd.6b01302]
[93]
Powell, K.A.; Saleemi, A.N.; Rielly, C.D.; Nagy, Z.K. Monitoring continuous crystallization of paracetamol in the presence of an additive using an integrated pat array and multivariate methods. Org. Process Res. Dev., 2016, 20(3), 626-636.
[http://dx.doi.org/10.1021/acs.oprd.5b00373]
[94]
Simone, E.; Saleemi, A.N.; Nagy, Z.K. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system. Org. Process Res. Dev., 2015, 19(1), 167-177.
[http://dx.doi.org/10.1021/op5000122]
[95]
Powell, K.A.; Bartolini, G.; Wittering, K.E.; Saleemi, A.N.; Wilson, C.C.; Rielly, C.D.; Nagy, Z.K. Toward continuous crystallization of urea-barbituric acid: a polymorphic co-crystal system. Cryst. Growth Des., 2015, 15(10), 4821-4836.
[http://dx.doi.org/10.1021/acs.cgd.5b00599]
[96]
Jiang, M.; Zhu, X.; Molaro, M.C.; Rasche, M.L.; Zhang, H.; Chadwick, K.; Raimondo, D.M.; Kim, K.K.K.; Zhou, L.; Zhu, Z.; Wong, M.H.; O’Grady, D.; Hebrault, D.; Tedesco, J.; Braatz, R.D. Modification of crystal shape through deep temperature cycling. Ind. Eng. Chem. Res., 2014, 53(13), 5325-5336.
[http://dx.doi.org/10.1021/ie400859d]
[97]
Zhang, H.; Quon, J.; Alvarez, A.J.; Evans, J.; Myerson, A.S.; Trout, B.I.I. Development of continuous anti-solvent/cooling crystallization process using cascaded mixed suspension, mixed product removal crystallizers. Org. Process Res. Dev., 2012, 16(5), 915-924.
[http://dx.doi.org/10.1021/op2002886]
[98]
Yu, Z.Q.; Chow, P.S.; Tan, R.B.H.; Ang, W.H. PAT-enabled determination of design space for seeded cooling crystallization. Org. Process Res. Dev., 2013, 17(3), 549-556.
[http://dx.doi.org/10.1021/op300319t]
[99]
Yu, Z.Q.; Yeoh, A.; Chow, P.S.; Tan, R.B.H. Particle size control in batch crystallization of pyrazinamide on different scales. Org. Process Res. Dev., 2016, 20(12), 2100-2107.
[http://dx.doi.org/10.1021/acs.oprd.6b00327]
[100]
Moriyama, K.; Furuno, N.; Yamakawa, N. Crystal face identification by Raman microscopy for assessment of crystal habit of a drug. Int. J. Pharm., 2015, 480(1-2), 101-106.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.031] [PMID: 25615983]
[101]
Wong, S.W.; Georgakis, C.; Botsaris, G.D.; Saranteas, K.; Bakale, R. Online estimation of diastereomer composition using raman: differentiation in high and low slurry density partial least square models. Cryst. Growth Des., 2008, 8(12), 4398-4408.
[http://dx.doi.org/10.1021/cg701201x]
[102]
Xiouras, C.; Belletti, G.; Venkatramanan, R.; Nordon, A.; Meekes, H.; Vlieg, E.; Stefanidis, G.D.; Ter Horst, J.H. Toward continuous deracemization via racemic crystal transformation monitored by in situ raman spectroscopy. Cryst. Growth Des., 2019, 19(10), 5858-5868.
[http://dx.doi.org/10.1021/acs.cgd.9b00867]
[103]
Tanaka, R.; Hattori, Y.; Ashizawa, K.; Otsuka, M. Kinetics study of cocrystal formation between indomethacin and saccharin using high-shear granulation with in situ raman spectroscopy. J. Pharm. Sci., 2019, 108(10), 3201-3208.
[http://dx.doi.org/10.1016/j.xphs.2019.06.019] [PMID: 31279736]
[104]
Chaves, T.F.; Soares, F.L.F.; Cardoso, D.; Carneiro, R.L. Monitoring of the crystallization of zeolite LTA using Raman and chemometric tools. Analyst, 2015, 140(3), 854-859.
[http://dx.doi.org/10.1039/C4AN00913D] [PMID: 25460364]
[105]
Beato, C.; Fernández, M.S.; Fermani, S.; Reggi, M.; Neira-Carrillo, A.; Rao, A.; Falini, G.; Arias, J.L. Calcium carbonate crystallization in tailored constrained environments. CrystEngComm, 2015, 17(31), 5953-5961.
[http://dx.doi.org/10.1039/C5CE00783F]
[106]
Hertrampf, A.; Müller, H.; Menezes, J.C.; Herdling, T. A PAT-based qualification of pharmaceutical excipients produced by batch or continuous processing. J. Pharm. Biomed. Anal., 2015, 114, 208-215.
[http://dx.doi.org/10.1016/j.jpba.2015.05.012] [PMID: 26072012]
[107]
Yang, Y.; Song, L.; Nagy, Z.K. Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization. Cryst. Growth Des., 2015, 15(12), 5839-5848.
[http://dx.doi.org/10.1021/acs.cgd.5b01219]
[108]
Acevedo, D.; Yang, X.; Liu, Y.C.; O’Connor, T.F.; Koswara, A.; Nagy, Z.K.; Madurawe, R.; Cruz, C.N. Encrustation in continuous pharmaceutical crystallization processes-a review. Org. Process Res. Dev., 2019, 23(6), 1134-1142.
[http://dx.doi.org/10.1021/acs.oprd.9b00072]
[109]
Bosits, M.H.; Szalay, Z.; Pataki, H.; Marosi, G.; Demeter, Á. Development of a continuous crystallization process of the spironolactone hydrate form with a turbidity-based level control method. Org. Process Res. Dev., 2021, 25(4), 760-768.
[http://dx.doi.org/10.1021/acs.oprd.0c00409]
[110]
Liu, W.J.; Ma, C.Y.; Liu, J.J.; Zhang, Y.; Wang, X.Z. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers. AIChE J., 2017, 63(3), 967-974.
[http://dx.doi.org/10.1002/aic.15438]
[111]
Liu, W.J.; Ma, C.Y.; Liu, J.J.; Zhang, Y.; Wang, X.Z. Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process. AIChE J., 2015, 61(2), 503-517.
[http://dx.doi.org/10.1002/aic.14662]
[112]
Kacker, R.; Maaß, S.; Emmerich, J.; Kramer, H. Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer. AIChE J., 2018, 64(7), 2450-2461.
[http://dx.doi.org/10.1002/aic.16145]
[113]
Borsos, Á. Szilágyi, B.; Agachi, P.Ş.; Nagy, Z.K. Real-Time Image Processing based online feedback control system for cooling batch crystallization. Org. Process Res. Dev., 2017, 21(4), 511-519.
[http://dx.doi.org/10.1021/acs.oprd.6b00242]
[114]
Ezeanowi, N.; Pajari, H.; Laitinen, A.; Koiranen, T. Monitoring the dynamics of a continuous sonicated tubular cooling crystallizer. Cryst. Growth Des., 2020, 20(3), 1458-1466.
[http://dx.doi.org/10.1021/acs.cgd.9b01103]
[115]
Silva, A.F.T.; Burggraeve, A.; Denon, Q.; Van der Meeren, P.; Sandler, N.; Van Den Kerkhof, T.; Hellings, M.; Vervaet, C.; Remon, J.P.; Lopes, J.A.; De Beer, T. Particle sizing measurements in pharmaceutical applications: Comparison of in-process methods versus off-line methods. Eur. J. Pharm. Biopharm., 2013, 85(3), 1006-1018.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.032] [PMID: 23583493]
[116]
Raval, V.; Siddique, H.; Brown, C.J.; Florence, A.J. Development and characterisation of a cascade of moving baffle oscillatory crystallisers (CMBOC). CrystEngComm, 2020, 22(13), 2288-2296.
[http://dx.doi.org/10.1039/D0CE00069H]
[117]
Hu, C.; Shores, B.T.; Derech, R.A.; Testa, C.J.; Hermant, P.; Wu, W.; Shvedova, K.; Ramnath, A.; Al Ismaili, L.Q.; Su, Q.; Sayin, R.; Born, S.C.; Takizawa, B.; O’Connor, T.F.; Yang, X.; Ramanujam, S.; Mascia, S. Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs. React. Chem. Eng., 2020, 5(10), 1950-1962.
[http://dx.doi.org/10.1039/D0RE00216J]
[118]
Chen, W. Optimization of Sludge Dewatering Through Pretreatment, Equipment Selection, and Testing. Dry. Technol., 2013, 31(2), 193-201.
[http://dx.doi.org/10.1080/07373937.2012.723658]
[119]
Reynolds, T.; Boychyn, M.; Sanderson, T.; Bulmer, M.; More, J.; Hoare, M. Scale-down of continuous filtration for rapid bioprocess design: Recovery and dewatering of protein precipitate suspensions. Biotechnol. Bioeng., 2003, 83(4), 454-464.
[http://dx.doi.org/10.1002/bit.10687] [PMID: 12800139]
[120]
Acevedo, D.; Peña, R.; Yang, Y.; Barton, A.; Firth, P.; Nagy, Z.K. Evaluation of mixed suspension mixed product removal crystallization processes coupled with a continuous filtration system. Chem. Eng. Process., 2016, 108, 212-219.
[http://dx.doi.org/10.1016/j.cep.2016.08.006]
[121]
Liu, Y.C.; Domokos, A.; Coleman, S.; Firth, P.; Nagy, Z.K. Development of continuous filtration in a novel continuous filtration carousel integrated with Continuous crystallization. Org. Process Res. Dev., 2019, 23(12), 2655-2665.
[http://dx.doi.org/10.1021/acs.oprd.9b00342]
[122]
Chayen, N.E. Rigorous filtration for protein crystallization. J. Appl. Cryst., 2009, 42(4), 743-744.
[http://dx.doi.org/10.1107/S0021889809021700]
[123]
Puel, F.; Verdurand, E.; Taulelle, P.; Bebon, C.; Colson, D.; Klein, J.P.; Veesler, S. Crystallization mechanisms of acicular crystals. J. Cryst. Growth, 2008, 310(1), 110-115.
[http://dx.doi.org/10.1016/j.jcrysgro.2007.10.006]
[124]
Jiang, M.; Braatz, R.D. Low-cost noninvasive real-time imaging for tubular continuous-flow crystallization. Chem. Eng. Technol., 2018, 41(1), 143-148.
[http://dx.doi.org/10.1002/ceat.201600276]
[125]
Agnew, L.R.; McGlone, T.; Wheatcroft, H.P.; Robertson, A.; Parsons, A.R.; Wilson, C.C. Continuous crystallization of paracetamol (Acetaminophen) Form II: selective access to a metastable solid form. Cryst. Growth Des., 2017, 17(5), 2418-2427.
[http://dx.doi.org/10.1021/acs.cgd.6b01831]
[126]
Hu, C.; Testa, C.J.; Shores, B.T.; Wu, W.; Shvedova, K.; Born, S.C.; Chattopadhyay, S.; Takizawa, B.; Mascia, S. An experimental study on polymorph control and continuous heterogeneous crystallization of carbamazepine. CrystEngComm, 2019, 21(34), 5076-5083.
[http://dx.doi.org/10.1039/C9CE00908F]
[127]
Long, B.; Walker, G.M.; Ryan, K.M.; Padrela, L. Controlling Polymorphism of carbamazepine nanoparticles in a continuous supercritical-CO2 -Assisted spray drying process. Cryst. Growth Des., 2019, 19(7), 3755-3767.
[http://dx.doi.org/10.1021/acs.cgd.9b00154]
[128]
Hausman, D.S.; Cambron, R.T.; Sakr, A. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability. Int. J. Pharm., 2005, 299(1-2), 19-33.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.005] [PMID: 15979262]
[129]
Wood, B.; Girard, K.P.; Polster, C.S.; Croker, D.M. Progress to date in the design and operation of continuous crystallization processes for pharmaceutical applications. Org. Process Res. Dev., 2019, 23(2), 122-144.
[http://dx.doi.org/10.1021/acs.oprd.8b00319]
[130]
Jolliffe, H.G.; Gerogiorgis, D.I. Technoeconomic optimisation and comparative environmental impact evaluation of continuous crystallisation and antisolvent selection for artemisinin recovery. Comput. Chem. Eng., 2017, 103, 218-232.
[http://dx.doi.org/10.1016/j.compchemeng.2017.02.046]
[131]
Gao, Z.; Wu, Y.; Gong, J.; Wang, J.; Rohani, S. Continuous crystallization of α-form L-glutamic acid in an MSMPR-Tubular crystallizer system. J. Cryst. Growth, 2019, 507, 344-351.
[http://dx.doi.org/10.1016/j.jcrysgro.2018.07.007]
[132]
Koyama, M.; Kudo, S.; Amari, S.; Takiyama, H. Development of novel cascade type crystallizer for continuous production of crystalline particles. J. Ind. Eng. Chem., 2020, 89, 111-114.
[http://dx.doi.org/10.1016/j.jiec.2020.06.021]
[133]
Johnson, M.D.; May, S.A.; Calvin, J.R.; Remacle, J.; Stout, J.R.; Diseroad, W.D.; Zaborenko, N.; Haeberle, B.D.; Sun, W.M.; Miller, M.T.; Brennan, J. Development and scale-up of a continuous, high-pressure, asymmetric hydrogenation reaction, workup, and isolation. Org. Process Res. Dev., 2012, 16(5), 1017-1038.
[http://dx.doi.org/10.1021/op200362h]
[134]
McGlone, T.; Briggs, N.E.B.; Clark, C.A.; Brown, C.J.; Sefcik, J.; Florence, A.J. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization. Org. Process Res. Dev., 2015, 19(9), 1186-1202.
[http://dx.doi.org/10.1021/acs.oprd.5b00225]
[135]
Orehek, J. Češnovar, M.; Teslić, D.; Likozar, B. Mechanistic crystal size distribution (CSD)-based modelling of continuous antisolvent crystallization of benzoic acid. Chem. Eng. Res. Des., 2021, 170, 256-269.
[http://dx.doi.org/10.1016/j.cherd.2021.04.007]
[136]
Yuan, M.; Wang, J.; Huang, X.; Wang, T.; Wang, N.; Zhou, L.; Hao, H. Ultrasound-assisted slug-flow tubular crystallization for preparation of fine ibuprofen crystals. Chem. Eng. Technol., 2022, 45(4), 727-736.
[http://dx.doi.org/10.1002/ceat.202100574]
[137]
Yu, F.; Mao, Y.; Zhao, H.; Zhang, X.; Wang, T.; Yuan, M.; Ding, S.; Wang, N.; Huang, X.; Hao, H. Enhancement of continuous crystallization of lysozyme through ultrasound. Org. Process Res. Dev., 2021, 25(11), 2508-2515.
[http://dx.doi.org/10.1021/acs.oprd.1c00292]
[138]
Meadhra, R.Ó. Continuous crystallization strategy for recovery of fermentation products. Chem. Eng. Res. Des., 2005, 83(8), 1000-1008.
[http://dx.doi.org/10.1205/cherd.03069]
[139]
Lakerveld, R.; Benyahia, B.; Heider, P.L.; Zhang, H.; Wolfe, A.; Testa, C.J.; Ogden, S.; Hersey, D.R.; Mascia, S.; Evans, J.M.B.; Braatz, R.D.; Barton, P.I. The application of an automated control strategy for an integrated continuous Pharmaceutical pilot plant. Org. Process Res. Dev., 2015, 19(9), 1088-1100.
[http://dx.doi.org/10.1021/op500104d]
[140]
de Moraes, M.G.F.; de Souza, M.B., Jr; Secchi, A.R. Dynamics and MPC of an Evaporative Continuous Crystallization Process. 28th European Symposium on Computer-Aided Process Engineering (ESCAPE), 2018, pp. 997-1002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy