Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

A Specificity Protein 1 assists the Progression of the Papillary Thyroid Cell Line by Initiating NECTIN4

Author(s): Jie Chen, Adheesh Bhandari, Suzita Hirachan*, Shihui Lv, Sumnima Mainali, Chen Zheng* and Rutian Hao*

Volume 24, Issue 7, 2024

Published on: 08 November, 2023

Page: [789 - 797] Pages: 9

DOI: 10.2174/1871530323666230413134611

Price: $65

Abstract

Aims: Papillary thyroid cancer (PTC) is one of the subtypes of thyroid cancer with increasing incidence worldwide, but the molecular mechanism is still unclear.

Background: Papillary thyroid cancer (PTC) is one of the subtypes of thyroid cancer with increasing incidence worldwide, but the molecular mechanism is still unclear. Studies have indicated that nectin cell adhesion molecule 4 (NECTIN4) was an oncogene and played an important role in the development and progression of PTC. Meanwhile, specificity protein 1 (SP1) expresses many important oncogenes and tumor suppressor genes. However, the relationship between NECTIN4 and SP1 in regulating PTC growth is unclear.

Objective: In the present study, reverse transcription PCR was utilized to detect the mRNA expression of NECTIN4 and SP1 in thyroid cancer cell lines and normal thyroid cell lines. Chromatin immunoprecipitation assays and luciferase reporter assays were used to study whether SP1 could bind to the promoter region of NECTIN4 and activate its transcription. The biological functions of SP1 correlated with NECTIN4 were also performed in TPC-1 and KTC1 cell lines.

Methods: The study revealed that the mRNA expression level of SP1 and NECTIN-4 showed a positive correlation and were upregulated in PTC cell lines. Moreover, the results of ChIP and luciferase reporter assays showed that SP1 could bind to the NECTIN4 promoter regions and activate the transcriptional level of NECTIN4.

Results: The experiments in vitro showed that SP1 could promote cell proliferation, colony formation, migration, and invasion by regulating NECTIN4 in PTC cells.

Conclusion: In conclusion, our study, for the first time, demonstrated that SP1 could control the transcriptional regulation of NECTIN4 and accelerate the growth of PTC, which may provide a new potential therapeutic target for PTC patients.

Keywords: NECTIN4, SP1, papillary thyroid cancer, transcription factor, proliferation, cancer.

Graphical Abstract
[1]
Zhang, W.; Zheng, D.; Jin, L.; Hirachan, S.; Bhandari, A.; Li, Y.; Chen, B.; Lu, Y.; Wen, J.; Lin, B. PDZK1IP1 gene promotes proliferation, migration, and invasion in papillary thyroid carcinoma. Pathol. Res. Pract., 2022, 238, 154091.
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol., 2016, 12(11), 646-653.
[http://dx.doi.org/10.1038/nrendo.2016.110] [PMID: 27418023]
[4]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[5]
Farahati, J.; Mäder, U.; Gilman, E.; Görges, R.; Maric, I.; Binse, I.; Hänscheid, H.; Herrmann, K.; Buck, A.; Bockisch, A. Changing trends of incidence and prognosis of thyroid carcinoma. Nucl. Med., 2019, 58(2), 86-92.
[http://dx.doi.org/10.1055/a-0859-7454] [PMID: 30917397]
[6]
Adeniran, A.J.; Zhu, Z.; Gandhi, M.; Steward, D.L.; Fidler, J.P.; Giordano, T.J.; Biddinger, P.W.; Nikiforov, Y.E. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol., 2006, 30(2), 216-222.
[http://dx.doi.org/10.1097/01.pas.0000176432.73455.1b] [PMID: 16434896]
[7]
Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res., 2003, 63(7), 1454-1457.
[PMID: 12670889]
[8]
Miličić, B.; Prstačić, R.; Prgomet, D. Skip metastases in papillary thyroid carcinoma-prevalence, predictive and clinicopathological factors. Acta Clin. Croat., 2020, 59(Suppl. 1), 122-128.
[PMID: 34219894]
[9]
Reilly, J.; Faridmoayer, E.; Lapkus, M.; Pastewski, J.; Sun, F.; Elassar, H.; Studzinski, D.M.; Callahan, R.E.; Czako, P.; Nagar, S. Vascular invasion predicts advanced tumor characteristics in papillary thyroid carcinoma. Am. J. Surg., 2022, 223(3), 487-491.
[http://dx.doi.org/10.1016/j.amjsurg.2021.11.038] [PMID: 34952686]
[10]
Pratakpiriya, W.; Seki, F.; Otsuki, N.; Sakai, K.; Fukuhara, H.; Katamoto, H.; Hirai, T.; Maenaka, K.; Techangamsuwan, S.; Lan, N.T.; Takeda, M.; Yamaguchi, R. NECTIN4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence. J. Virol., 2012, 86(18), 10207-10210.
[http://dx.doi.org/10.1128/JVI.00824-12 ] [PMID: 22761370]
[11]
Bekos, C.; Muqaku, B.; Dekan, S.; Horvat, R.; Polterauer, S.; Gerner, C.; Aust, S.; Pils, D. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high grade serous ovarian cancer-an integrative multi-omics approach. Cancers, 2019, 11(5), 698.
[http://dx.doi.org/10.3390/cancers11050698] [PMID: 31137558]
[12]
M-Rabet, M.; Cabaud, O.; Josselin, E.; Finetti, P.; Castellano, R.; Farina, A.; Agavnian-Couquiaud, E.; Saviane, G.; Collette, Y.; Viens, P.; Gonçalves, A.; Ginestier, C.; Charafe-Jauffret, E.; Birnbaum, D.; Olive, D.; Bertucci, F.; Lopez, M. Nectin-4: A new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann. Oncol., 2017, 28(4), 769-776.
[http://dx.doi.org/10.1093/annonc/mdw678] [PMID: 27998973]
[13]
Ma, J.; Sheng, Z.; Lv, Y.; Liu, W.; Yao, Q.; Pan, T.; Xu, Z.; Zhang, C.; Xu, G. Expression and clinical significance of Nectin-4 in hepatocellular carcinoma. OncoTargets Ther., 2016, 9, 183-190.
[PMID: 26793002]
[14]
Zhang, Y.; Zhang, J.; Shen, Q.; Yin, W.; Huang, H.; Liu, Y.; Ni, Q. High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol. Lett., 2018, 15(6), 8789-8795.
[http://dx.doi.org/10.3892/ol.2018.8365] [PMID: 29805618]
[15]
Hao, R.T.; Zheng, C.; Wu, C.Y.; Xia, E.J.; Zhou, X.F.; Quan, R.D.; Zhang, X.H. NECTIN4 promotes papillary thyroid cancer cell proliferation, migration, and invasion and triggers EMT by activating AKT. Cancer Manag. Res., 2019, 11, 2565-2578.
[http://dx.doi.org/10.2147/CMAR.S190332] [PMID: 31114323]
[16]
Safe, S.; Abdelrahim, M. Sp transcription factor family and its role in cancer. Eur. J. Cancer, 2005, 41(16), 2438-2448.
[http://dx.doi.org/10.1016/j.ejca.2005.08.006] [PMID: 16209919]
[17]
Chiefari, E.; Brunetti, A.; Arturi, F.; Bidart, J.M.; Russo, D.; Schlumberger, M.; Filetti, S. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: A role in NIS expression regulation? BMC Cancer, 2002, 2(1), 35.
[http://dx.doi.org/10.1186/1471-2407-2-35] [PMID: 12475396]
[18]
Guan, Y.; Bhandari, A.; Zhang, X.; Wang, O. Uridine phosphorylase 1 associates to biological and clinical significance in thyroid carcinoma cell lines. J. Cell. Mol. Med., 2019, 23(11), 7438-7448.
[http://dx.doi.org/10.1111/jcmm.14612] [PMID: 31496029]
[19]
Zhou, Y.; Xiang, J.; Bhandari, A.; Guan, Y.; Xia, E.; Zhou, X.; Wang, Y.; Wang, O. CLDN10 is associated with papillary thyroid cancer progression. J. Cancer, 2018, 9(24), 4712-4717.
[http://dx.doi.org/10.7150/jca.28636] [PMID: 30588256]
[20]
Xia, E.; Bhandari, A.; Shen, Y.; Zhou, X.; Wang, O. lncRNA LINC00673 induces proliferation, metastasis and epithelial-mesenchymal transition in thyroid carcinoma via Kruppel-like factor2. Int. J. Oncol., 2018, 53(5), 1927-1938.
[http://dx.doi.org/10.3892/ijo.2018.4524 ] [PMID: 30106140]
[21]
Liu, Q.; Guntuku, S.; Cui, X.S.; Matsuoka, S.; Cortez, D.; Tamai, K.; Luo, G.; Carattini-Rivera, S.; DeMayo, F.; Bradley, A.; Donehower, L.A.; Elledge, S.J. Chk1 is an essential kinase that is regulated by Atr and required for the G 2/M DNA damage checkpoint. Genes Dev., 2000, 14(12), 1448-1459.
[http://dx.doi.org/10.1101/gad.14.12.1448 ] [PMID: 10859164]
[22]
Orlando, V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci., 2000, 25(3), 99-104.
[http://dx.doi.org/10.1016/S0968-0004(99)01535-2] [PMID: 10694875]
[23]
Chaikovsky, A.C.; Li, C.; Jeng, E.E.; Loebell, S.; Lee, M.C.; Murray, C.W.; Cheng, R.; Demeter, J.; Swaney, D.L.; Chen, S.H.; Newton, B.W.; Johnson, J.R.; Drainas, A.P.; Shue, Y.T.; Seoane, J.A.; Srinivasan, P.; He, A.; Yoshida, A.; Hipkins, S.Q.; McCrea, E.; Poltorack, C.D.; Krogan, N.J.; Diehl, J.A.; Kong, C.; Jackson, P.K.; Curtis, C.; Petrov, D.A.; Bassik, M.C.; Winslow, M.M.; Sage, J. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature, 2021, 592(7856), 794-798.
[http://dx.doi.org/10.1038/s41586-021-03474-7] [PMID: 33854239]
[24]
Jin, L.; Zheng, D.; Chen, D.; Xia, E.; Guan, Y.; Wen, J.; Bhandari, A.; Wang, O. SYT12 is a novel oncogene that promotes thyroid carcinoma progression and metastasis. J. Cancer, 2021, 12(22), 6851-6860.
[http://dx.doi.org/10.7150/jca.62555] [PMID: 34659573]
[25]
Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer, 2013, 13(3), 184-199.
[http://dx.doi.org/10.1038/nrc3431] [PMID: 23429735]
[26]
Vizcaíno, C.; Mansilla, S.; Portugal, J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol. Ther., 2015, 152, 111-124.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.008] [PMID: 25960131]
[27]
Lemon, B.; Tjian, R. Orchestrated response: A symphony of transcription factors for gene control. Genes Dev., 2000, 14(20), 2551-2569.
[http://dx.doi.org/10.1101/gad.831000] [PMID: 11040209]
[28]
Beishline, K.; Azizkhan-Clifford, J. Sp1 and the ‘hallmarks of cancer’. FEBS J., 2015, 282(2), 224-258.
[http://dx.doi.org/10.1111/febs.13148] [PMID: 25393971]
[29]
Guan, H.; Cai, J.; Zhang, N.; Wu, J.; Yuan, J.; Li, J.; Li, M. Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int. J. Cancer, 2012, 130(3), 593-601.
[http://dx.doi.org/10.1002/ijc.26049] [PMID: 21469139]
[30]
Sankpal, U.T.; Maliakal, P.; Bose, D.; Kayaleh, O.; Buchholz, D.; Basha, R. Expression of specificity protein transcription factors in pancreatic cancer and their association in prognosis and therapy. Curr. Med. Chem., 2012, 19(22), 3779-3786.
[http://dx.doi.org/10.2174/092986712801661077] [PMID: 22725697]
[31]
Weinberger, P.; Ponny, S.R.; Xu, H.; Bai, S.; Smallridge, R.; Copland, J.; Sharma, A. Cell cycle M-phase genes are highly upregulated in anaplastic thyroid carcinoma. Thyroid, 2017, 27(2), 236-252.
[http://dx.doi.org/10.1089/thy.2016.0285] [PMID: 27796151]
[32]
Mo, X.M.; Li, L.; Zhu, P.; Dai, Y.J.; Zhao, T.T.; Liao, L.Y.; Chen, G.G.; Liu, Z.M. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells. Mol. Cell. Endocrinol., 2016, 431, 71-87.
[http://dx.doi.org/10.1016/j.mce.2016.05.010] [PMID: 27179757]
[33]
Ding, W.; Zhao, S.; Shi, Y.; Chen, S. Positive feedback loop SP1/SNHG1/miR-199a-5p promotes the malignant properties of thyroid cancer. Biochem. Biophys. Res. Commun., 2020, 522(3), 724-730.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.075] [PMID: 31791587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy