Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Neuroanatomical Correlates of the Late Positive Potential in Youth with Pediatric Bipolar Disorder

Author(s): Alessio Simonetti, Marijn Lijffijt*, Sherin Kurian, Johanna Saxena, Delfina Janiri, Marianna Mazza, Giulio Carriero, Lorenzo Moccia, Benson Mwangi, Alan C. Swann and Jair C. Soares

Volume 21, Issue 7, 2023

Published on: 14 April, 2023

Page: [1617 - 1630] Pages: 14

DOI: 10.2174/1570159X21666230413104536

Price: $65

Abstract

Background: The late positive potential (LPP) could be a marker of emotion dysregulation in youth with pediatric bipolar disorder (PBD). However, the neuroanatomical correlates of the LPP are still not clarified.

Objective: To provide cortical and deep gray matter correlates of the LPP in youth, specifically, youth with PBD.

Methods: Twenty-four 7 to 17 years-old children with PBD and 28 healthy controls (HC) underwent cortical thickness and deep gray matter volumes measurements through magnetic resonance imaging and LPP measurement elicited by passively viewing emotional faces through electroencephalography. T-tests compared group differences in LPP, cortical thickness, and deep gray matter volumes. Linear regressions tested the relationship between LPP amplitude and cortical thickness/deep gray matter volumes.

Results: PBD had a more pronounced LPP amplitude for happy faces and a thinner cortex in prefrontal areas than HC. While considering both groups, a higher LPP amplitude was associated with a thicker cortex across occipital and frontal lobes, and with a smaller right globus pallidus volume. In addition, a higher LPP amplitude for happy faces was associated with smaller left caudate and left globus pallidus volumes across both groups. Finally, the LPP amplitude correlated negatively with right precentral gyrus thickness across youth with PBD, but positively across HC.

Conclusion: Neural correlates of LPP in youth included fronto-occipital areas that have been associated also with emotion processing and control. The opposite relationship between BPD and HC of LPP amplitude and right precentral gyrus thickness might explain the inefficacy of the emotional control system in PBD.

Keywords: Pediatric bipolar disorder, event-related potentials, late positive potential, magnetic resonance imaging, cortical thickness, subcortical volumes.

« Previous
Graphical Abstract
[1]
Singh, M.K.; Ketter, T.; Chang, K.D. Distinguishing bipolar disorder from other psychiatric disorders in children. Curr. Psychiatry Rep., 2014, 16(12), 516.
[http://dx.doi.org/10.1007/s11920-014-0516-2] [PMID: 25315116]
[2]
Rich, BA; Vinton, DT; Roberson-nay, R; Hommer, RE; Berghorst, LH; Mcclure, EB Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. 2006, 103(2), 8900-8905.
[http://dx.doi.org/ 10.1073/pnas.0603246103]
[3]
McClure, E.B.; Treland, J.E.; Snow, J.; Schmajuk, M.; Dickstein, D.P.; Towbin, K.E.; Charney, D.S.; Pine, D.S.; Leibenluft, E. Deficits in social cognition and response flexibility in pediatric bipolar disorder. Am. J. Psychiatry, 2005, 162(9), 1644-1651.
[http://dx.doi.org/10.1176/appi.ajp.162.9.1644] [PMID: 16135623]
[4]
Schenkel, L.S.; Pavuluri, M.N.; Herbener, E.S.; Harral, E.M.; Sweeney, J.A. Facial emotion processing in acutely ill and euthymic patients with pediatric bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry, 2007, 46(8), 1070-1079.
[http://dx.doi.org/10.1097/chi.0b013e3180600fd6] [PMID: 17667485]
[5]
Rich, B.A.; Fromm, S.J.; Berghorst, L.H.; Dickstein, D.P.; Brotman, M.A.; Pine, D.S.; Leibenluft, E. Neural connectivity in children with bipolar disorder: Impairment in the face emotion processing circuit. J. Child Psychol. Psychiatry, 2008, 49(1), 88-96.
[http://dx.doi.org/10.1111/j.1469-7610.2007.01819.x] [PMID: 18181882]
[6]
Rosen, H.R.; Rich, B.A. Neurocognitive correlates of emotional stimulus processing in pediatric bipolar disorder: A review. Postgrad. Med., 2010, 122(4), 94-104.
[http://dx.doi.org/10.3810/pgm.2010.07.2177] [PMID: 20675973]
[7]
Pavuluri, M.N.; O’Connor, M.M.; Harral, E.; Sweeney, J.A. Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol. Psychiatry, 2007, 62(2), 158-167.
[http://dx.doi.org/10.1016/j.biopsych.2006.07.011] [PMID: 17097071]
[8]
Vizueta, N.; Rudie, J.D.; Townsend, J.D.; Torrisi, S.; Moody, T.D.; Bookheimer, S.Y.; Altshuler, L.L. Regional fMRI hypoactivation and altered functional connectivity during emotion processing in nonmedicated depressed patients with bipolar II disorder. Am. J. Psychiatry, 2012, 169(8), 831-840.
[http://dx.doi.org/10.1176/appi.ajp.2012.11030349] [PMID: 22773540]
[9]
Kalmar, J.H.; Wang, F.; Chepenik, L.G.; Womer, F.Y.; Jones, M.M.; Pittman, B.; Shah, M.P.; Martin, A.; Constable, R.T.; Blumberg, H.P. Relation between amygdala structure and function in adolescents with bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry, 2009, 48(6), 636-642.
[http://dx.doi.org/10.1097/CHI.0b013e31819f6fbc] [PMID: 19454919]
[10]
Simonetti, A.; Saxena, K.; Koukopoulos, A.E.; Janiri, D.; Lijffijt, M.; Swann, A.C.; Kotzalidis, G.D.; Sani, G. Amygdala structure and function in paediatric bipolar disorder and high-risk youth: A systematic review of magnetic resonance imaging findings. World J. Biol. Psychiatry, 2022, 23(2), 103-126.
[http://dx.doi.org/10.1080/15622975.2021.1935317] [PMID: 34165050]
[11]
Pina-Camacho, L.; Del Rey-Mejías, Á.; Janssen, J.; Bioque, M.; González-Pinto, A.; Arango, C.; Lobo, A.; Sarró, S.; Desco, M.; Sanjuan, J.; Lacalle-Aurioles, M.; Cuesta, M.J.; Saiz-Ruiz, J.; Bernardo, M.; Parellada, M. Age at first episode modulates diagnosis-related structural brain abnormalities in psychosis. Schizophr. Bull., 2016, 42(2), 344-357.
[http://dx.doi.org/10.1093/schbul/sbv128] [PMID: 26371339]
[12]
Jalbrzikowski, M.; Freedman, D.; Hegarty, C.E.; Mennigen, E.; Karlsgodt, K.H.; Olde Loohuis, L.M.; Ophoff, R.A.; Gur, R.E.; Bearden, C.E. Structural brain alterations in youth with psychosis and bipolar spectrum symptoms. J. Am. Acad. Child Adolesc. Psychiatry, 2019, 58(11), 1079-1091.
[http://dx.doi.org/10.1016/j.jaac.2018.11.012] [PMID: 30768396]
[13]
Huber, R.S.; Subramaniam, P.; Kondo, D.G.; Shi, X.; Renshaw, P.F.; Yurgelun-Todd, D.A. Reduced lateral orbitofrontal cortex volume and suicide behavior in youth with bipolar disorder. Bipolar Disord., 2019, 21(4), 321-329.
[http://dx.doi.org/10.1111/bdi.12729] [PMID: 30471169]
[14]
Simonetti, A.; Lijffijt, M.; Kahlon, R.S.; Gandy, K.; Arvind, R.P.; Amin, P.; Arciniegas, D.B.; Swann, A.C.; Soares, J.C.; Saxena, K. Early and late cortical reactivity to passively viewed emotional faces in pediatric bipolar disorder. J. Affect. Disord., 2019, 253, 240-247.
[http://dx.doi.org/10.1016/j.jad.2019.04.076] [PMID: 31060010]
[15]
Dennis, T.A.; Hajcak, G. The late positive potential: A neurophysiological marker for emotion regulation in children. J. Child Psychol. Psychiatry, 2009, 50(11), 1373-1383.
[http://dx.doi.org/10.1111/j.1469-7610.2009.02168.x] [PMID: 19754501]
[16]
Hajcak, G.; Dunning, J.P.; Foti, D. Motivated and controlled attention to emotion: Time-course of the late positive potential. Clin. Neurophysiol., 2009, 120(3), 505-510.
[http://dx.doi.org/10.1016/j.clinph.2008.11.028] [PMID: 19157974]
[17]
Hajcak, G.; MacNamara, A.; Olvet, D.M. Event-related potentials, emotion, and emotion regulation: An integrative review. Dev. Neuropsychol., 2010, 35(2), 129-155.
[http://dx.doi.org/10.1080/87565640903526504] [PMID: 20390599]
[18]
Sabatinelli, D.; Lang, P.J.; Keil, A.; Bradley, M.M. Emotional perception: Correlation of functional MRI and event-related potentials. Cereb. Cortex, 2006, 17(5), 1085-1091.
[http://dx.doi.org/10.1093/cercor/bhl017] [PMID: 16769742]
[19]
Sabatinelli, D.; Keil, A.; Frank, D.W.; Lang, P.J. Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biol. Psychol., 2013, 92(3), 513-519.
[http://dx.doi.org/10.1016/j.biopsycho.2012.04.005] [PMID: 22560889]
[20]
Liu, Y.; Huang, H.; McGinnis-Deweese, M.; Keil, A.; Ding, M. Neural substrate of the late positive potential in emotional processing. J. Neurosci., 2012, 32(42), 14563-14572.
[http://dx.doi.org/10.1523/JNEUROSCI.3109-12.2012] [PMID: 23077042]
[21]
Wessing, I.; Rehbein, M.A.; Romer, G.; Achtergarde, S.; Dobel, C.; Zwitserlood, P.; Fürniss, T.; Junghöfer, M. Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network. Dev. Cogn. Neurosci., 2015, 13, 1-10.
[http://dx.doi.org/10.1016/j.dcn.2015.01.012] [PMID: 25796042]
[22]
Bunford, N.; Kujawa, A.; Fitzgerald, K.D.; Monk, C.S.; Phan, K.L. Convergence of BOLD and ERP measures of neural reactivity to emotional faces in children and adolescents with and without anxiety disorders. Biol. Psychol., 2018, 134, 9-19.
[http://dx.doi.org/10.1016/j.biopsycho.2018.02.006] [PMID: 29462655]
[23]
Hibar, D.P.; Westlye, L.T.; van Erp, T.G.M.; Rasmussen, J.; Leonardo, C.D.; Faskowitz, J.; Haukvik, U.K.; Hartberg, C.B.; Doan, N.T.; Agartz, I.; Dale, A.M.; Gruber, O.; Krämer, B.; Trost, S.; Liberg, B.; Abé, C.; Ekman, C.J.; Ingvar, M.; Landén, M.; Fears, S.C.; Freimer, N.B.; Bearden, C.E.; Sprooten, E.; Glahn, D.C.; Pearlson, G.D.; Emsell, L.; Kenney, J.; Scanlon, C.; McDonald, C.; Cannon, D.M.; Almeida, J.; Versace, A.; Caseras, X.; Lawrence, N.S.; Phillips, M.L.; Dima, D.; Delvecchio, G.; Frangou, S.; Satterthwaite, T.D.; Wolf, D.; Houenou, J.; Henry, C.; Malt, U.F.; Bøen, E.; Elvsåshagen, T.; Young, A.H.; Lloyd, A.J.; Goodwin, G.M.; Mackay, C.E.; Bourne, C.; Bilderbeck, A.; Abramovic, L.; Boks, M.P.; van Haren, N.E.M.; Ophoff, R.A.; Kahn, R.S.; Bauer, M.; Pfennig, A.; Alda, M.; Hajek, T.; Mwangi, B.; Soares, J.C.; Nickson, T.; Dimitrova, R.; Sussmann, J.E.; Hagenaars, S.; Whalley, H.C.; McIntosh, A.M.; Thompson, P.M.; Andreassen, O.A. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry, 2016, 21(12), 1710-1716.
[http://dx.doi.org/10.1038/mp.2015.227] [PMID: 26857596]
[24]
Hibar, D.P.; Westlye, L.T.; Doan, N.T.; Jahanshad, N.; Cheung, J.W.; Ching, C.R.K.; Versace, A.; Bilderbeck, A.C.; Uhlmann, A.; Mwangi, B.; Krämer, B.; Overs, B.; Hartberg, C.B.; Abé, C.; Dima, D.; Grotegerd, D.; Sprooten, E.; Bøen, E.; Jimenez, E.; Howells, F.M.; Delvecchio, G.; Temmingh, H.; Starke, J.; Almeida, J.R.C.; Goikolea, J.M.; Houenou, J.; Beard, L.M.; Rauer, L.; Abramovic, L.; Bonnin, M.; Ponteduro, M.F.; Keil, M.; Rive, M.M.; Yao, N.; Yalin, N.; Najt, P.; Rosa, P.G.; Redlich, R.; Trost, S.; Hagenaars, S.; Fears, S.C.; Alonso-Lana, S.; van Erp, T.G.M.; Nickson, T.; Chaim-Avancini, T.M.; Meier, T.B.; Elvsåshagen, T.; Haukvik, U.K.; Lee, W.H.; Schene, A.H.; Lloyd, A.J.; Young, A.H.; Nugent, A.; Dale, A.M.; Pfennig, A.; McIntosh, A.M.; Lafer, B.; Baune, B.T.; Ekman, C.J.; Zarate, C.A.; Bearden, C.E.; Henry, C.; Simhandl, C.; McDonald, C.; Bourne, C.; Stein, D.J.; Wolf, D.H.; Cannon, D.M.; Glahn, D.C.; Veltman, D.J.; Pomarol-Clotet, E.; Vieta, E.; Canales-Rodriguez, E.J.; Nery, F.G.; Duran, F.L.S.; Busatto, G.F.; Roberts, G.; Pearlson, G.D.; Goodwin, G.M.; Kugel, H.; Whalley, H.C.; Ruhe, H.G.; Soares, J.C.; Fullerton, J.M.; Rybakowski, J.K.; Savitz, J.; Chaim, K.T.; Fatjó-Vilas, M.; Soeirode-Souza, M.G.; Boks, M.P.; Zanetti, M.V.; Otaduy, M.C.G.; Schaufelberger, M.S.; Alda, M.; Ingvar, M.; Phillips, M.L.; Kempton, M.J.; Bauer, M.; Landén, M.; Lawrence, N.S.; van Haren, N.E.M.; Horn, N.R.; Freimer, N.B.; Gruber, O.; Schofield, P.R.; Mitchell, P.B.; Kahn, R.S.; Lenroot, R.; Machado-Vieira, R.; Ophoff, R.A.; Sarró, S.; Frangou, S.; Satterthwaite, T.D.; Hajek, T.; Dannlowski, U.; Malt, U.F.; Arolt, V.; Gattaz, W.F.; Drevets, W.C.; Caseras, X.; Agartz, I.; Thompson, P.M.; Andreassen, O.A. Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry, 2018, 23(4), 932-942.
[http://dx.doi.org/10.1038/mp.2017.73] [PMID: 28461699]
[25]
Trotti, R.L.; Parker, D.A.; Sabatinelli, D.; Tamminga, C.A.; Gershon, E.S.; Keedy, S.K.; Keshavan, M.S.; Pearlson, G.D.; Sweeney, J.A.; McDowell, J.E.; Clementz, B.A. Electrophysiological correlates of emotional scene processing in bipolar disorder. J. Psychiatr. Res., 2020, 120, 83-90.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.005] [PMID: 31634753]
[26]
Key, A.P.; Corbett, B.A. ERP responses to face repetition during passive viewing: A nonverbal measure of social motivation in children with autism and typical development. Dev. Neuropsychol., 2014, 39(6), 474-495.
[http://dx.doi.org/10.1080/87565641.2014.940620] [PMID: 25144259]
[27]
APA. Diagnostic and statistical manual of mental disorders, 5th ed; American Psychiatric Association, 2013.
[http://dx.doi.org/10.1176/appi.books.9780890425596]
[28]
Axelson, D.; Birmaher, B.; Strober, M.; Gill, M.K.; Valeri, S.; Chiappetta, L.; Ryan, N.; Leonard, H.; Hunt, J.; Iyengar, S.; Bridge, J.; Keller, M. Phenomenology of children and adolescents with bipolar spectrum disorders. Arch. Gen. Psychiatry, 2006, 63(10), 1139-1148.
[http://dx.doi.org/10.1001/archpsyc.63.10.1139] [PMID: 17015816]
[29]
Sheehan, D.V.; Sheehan, K.H.; Shytle, R.D.; Janavs, J.; Bannon, Y.; Rogers, J.E.; Milo, K.M.; Stock, S.L.; Wilkinson, B. Reliability and Validity of the mini international neuropsychiatric interview for children and adolescents (MINI-KID). J. Clin. Psychiatry, 2010, 71(3), 313-326.
[http://dx.doi.org/10.4088/JCP.09m05305whi] [PMID: 20331933]
[30]
Wechsler, D. Wechsler Abbreviated Scale of Intelligence; The Psychological Corporation: San Antonio, TX, 1999.
[31]
Mayes, T.L.; Bernstein, I.H.; Haley, C.L.; Kennard, B.D.; Emslie, G.J. Psychometric properties of the children’s depression rating scale–revised in adolescents. J. Child Adolesc. Psychopharmacol., 2010, 20(6), 513-516.
[http://dx.doi.org/10.1089/cap.2010.0063] [PMID: 21186970]
[32]
Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A rating scale for mania: Reliability, validity and sensitivity. Br. J. Psychiatry, 1978, 133(5), 429-435.
[http://dx.doi.org/10.1192/bjp.133.5.429] [PMID: 728692]
[33]
Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; Albert, M.S.; Killiany, R.J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 2006, 31(3), 968-980.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.021] [PMID: 16530430]
[34]
Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging, 1998, 17(1), 87-97.
[http://dx.doi.org/10.1109/42.668698] [PMID: 9617910]
[35]
Ségonne, F.; Pacheco, J.; Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging, 2007, 26(4), 518-529.
[http://dx.doi.org/10.1109/TMI.2006.887364] [PMID: 17427739]
[36]
Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 1999, 9(2), 179-194.
[http://dx.doi.org/10.1006/nimg.1998.0395] [PMID: 9931268]
[37]
Fischl, B.; Liu, A.; Dale, A.M. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging, 2001, 20(1), 70-80.
[http://dx.doi.org/10.1109/42.906426] [PMID: 11293693]
[38]
Fischl, B.; Dale, A.; Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97: 11050-11055. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 11050-11055.
[http://dx.doi.org/10.1073/pnas.200033797] [PMID: 10984517]
[39]
Fischl, B.; Sereno, M.I.; Dale, A.M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 1999, 9(2), 195-207.
[http://dx.doi.org/10.1006/nimg.1998.0396] [PMID: 9931269]
[40]
Fischl, B.; van der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; Caviness, V.; Makris, N.; Rosen, B.; Dale, A.M. Automatically parcellating the human cerebral cortex. Cereb. Cortex, 2004, 14(1), 11-22.
[http://dx.doi.org/10.1093/cercor/bhg087] [PMID: 14654453]
[41]
Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; Montillo, A.; Makris, N.; Rosen, B.; Dale, A.M. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 2002, 33(3), 341-355.
[http://dx.doi.org/10.1016/S0896-6273(02)00569-X] [PMID: 11832223]
[42]
Fischl, B.; Salat, D.H.; van der Kouwe, A.J.W.; Makris, N.; Ségonne, F.; Quinn, B.T.; Dale, A.M. Sequence-independent segmentation of magnetic resonance images. Neuroimage, 2004, 23(S1), S69-S84.
[http://dx.doi.org/10.1016/j.neuroimage.2004.07.016] [PMID: 15501102]
[43]
Jovicich, J.; Czanner, S.; Han, X.; Salat, D.; van der Kouwe, A.; Quinn, B.; Pacheco, J.; Albert, M.; Killiany, R.; Blacker, D.; Maguire, P.; Rosas, D.; Makris, N.; Gollub, R.; Dale, A.; Dickerson, B.C.; Fischl, B. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage, 2009, 46(1), 177-192.
[http://dx.doi.org/10.1016/j.neuroimage.2009.02.010] [PMID: 19233293]
[44]
Morey, R.A.; Petty, C.M.; Xu, Y.; Pannu Hayes, J.; Wagner, H.R., II; Lewis, D.V.; LaBar, K.S.; Styner, M.; McCarthy, G. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage, 2009, 45(3), 855-866.
[http://dx.doi.org/10.1016/j.neuroimage.2008.12.033] [PMID: 19162198]
[45]
Buckner, R.L.; Head, D.; Parker, J.; Fotenos, A.F.; Marcus, D.; Morris, J.C.; Snyder, A.Z. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 2004, 23(2), 724-738.
[http://dx.doi.org/10.1016/j.neuroimage.2004.06.018] [PMID: 15488422]
[46]
Sanfilipo, M.P.; Benedict, R.H.B.; Zivadinov, R.; Bakshi, R. Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: The proportion vs. residual method. Neuroimage, 2004, 22(4), 1732-1743.
[http://dx.doi.org/10.1016/j.neuroimage.2004.03.037] [PMID: 15275929]
[47]
Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods, 2004, 134(1), 9-21.
[http://dx.doi.org/10.1016/j.jneumeth.2003.10.009] [PMID: 15102499]
[48]
Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci., 2014, 8, 213.
[http://dx.doi.org/10.3389/fnhum.2014.00213] [PMID: 24782741]
[49]
Onton, J.; Westerfield, M.; Townsend, J.; Makeig, S. Imaging human EEG dynamics using independent component analysis. Neurosci. Biobehav. Rev., 2006, 30(6), 808-822.
[http://dx.doi.org/10.1016/j.neubiorev.2006.06.007] [PMID: 16904745]
[50]
Kujawa, A.; Hajcak, G.; Torpey, D.; Kim, J.; Klein, D.N. Electrocortical reactivity to emotional faces in young children and associations with maternal and paternal depression. J. Child Psychol. Psychiatry, 2012, 53(2), 207-215.
[http://dx.doi.org/10.1111/j.1469-7610.2011.02461.x] [PMID: 21895650]
[51]
Dickstein, D.P.; Milham, M.P.; Nugent, A.C.; Drevets, W.C.; Charney, D.S.; Pine, D.S.; Leibenluft, E. Frontotemporal alterations in pediatric bipolar disorder: Results of a voxel-based morphometry study. Arch. Gen. Psychiatry, 2005, 62(7), 734-741.
[http://dx.doi.org/10.1001/archpsyc.62.7.734] [PMID: 15997014]
[52]
Gao, W.; Cui, D.; Jiao, Q.; Su, L.; Lu, G.; Yang, R. Altered spatiotemporal consistency in pediatric bipolar disorder patients with and without psychotic symptoms. BMC Psychiatry, 2021, 21(1), 506.
[http://dx.doi.org/10.1186/s12888-021-03524-4] [PMID: 34654382]
[53]
McLaren, M.E.; Szymkowicz, S.M.; O’Shea, A.; Woods, A.J.; Anton, S.D.; Dotson, V.M. Dimensions of depressive symptoms and cingulate volumes in older adults. Transl. Psychiatry, 2016, 6(4), e788.
[http://dx.doi.org/10.1038/tp.2016.49] [PMID: 27093070]
[54]
Simonetti, A.; Kurian, S.; Saxena, J.; Verrico, C.D.; Soares, J.C.; Sani, G.; Saxena, K. Cognitive correlates of impulsive aggression in youth with pediatric bipolar disorder and bipolar offspring. J. Affect. Disord., 2021, 287, 387-396.
[http://dx.doi.org/10.1016/j.jad.2021.03.044] [PMID: 33838473]
[55]
Lembke, A.; Ketter, T.A. Impaired recognition of facial emotion in mania. Am. J. Psychiatry, 2002, 159(2), 302-304.
[http://dx.doi.org/10.1176/appi.ajp.159.2.302] [PMID: 11823275]
[56]
Dickstein, D.P.; Brazel, A.C.; Goldberg, L.D.; Hunt, J.I. Affect regulation in pediatric bipolar disorder. Child Adolesc. Psychiatr. Clin. N. Am., 2009, 18(2), 405-420. ix.
[http://dx.doi.org/10.1016/j.chc.2008.12.003] [PMID: 19264270]
[57]
Miskowiak, K.W.; Mariegaard, J.; Jahn, F.S.; Kjærstad, H.L. Associations between cognition and subsequent mood episodes in patients with bipolar disorder and their unaffected relatives: A systematic review. J. Affect. Disord., 2022, 297, 176-188.
[http://dx.doi.org/10.1016/j.jad.2021.10.044] [PMID: 34699850]
[58]
Kotzalidis, G.; Rapinesi, C.; Savoja, V.; Cuomo, I.; Simonetti, A.; Ambrosi, E.; Panaccione, I.; Gubbini, S.; Rossi, P.; Chiara, L.; Janiri, D.; Sani, G.; Koukopoulos, A.; Manfredi, G.; Napoletano, F.; Caloro, M.; Pancheri, L.; Puzella, A.; Callovini, G.; Angeletti, G.; Casale, A. Neurobiological evidence for the primacy of mania hypothesis. Curr. Neuropharmacol., 2017, 15(3), 339-352.
[http://dx.doi.org/10.2174/1570159X14666160708231216] [PMID: 28503105]
[59]
Sani, G.; Simonetti, A.; Reginaldi, D.; Koukopoulos, A.; Casale, A.; Manfredi, G.; Kotzalidis, G.; Girardi, P. Free interval duration: Clinical evidence of the primary role of excitement in bipolar disorder. Curr. Neuropharmacol., 2017, 15(3), 394-401.
[http://dx.doi.org/10.2174/1570159X14666160607085851] [PMID: 28503111]
[60]
Corbetta, M.; Shulman, G.L. Human cortical mechanisms of visual attention during orienting and search. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1998, 353(1373), 1353-1362.
[http://dx.doi.org/10.1098/rstb.1998.0289] [PMID: 9770228]
[61]
Arciniegas, D.B.; Anderson, C.A.; Filley, C.M.; Garcia, T.A. Behavioral neurology & neuropsychiatry; Cambridge University Press, 2013.
[http://dx.doi.org/10.1017/CBO9781139016919]
[62]
Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness in major depression. Med. Hypotheses, 2016, 87, 14-21.
[http://dx.doi.org/10.1016/j.mehy.2015.12.013] [PMID: 26826634]
[63]
Groves, S.J.; Pitcher, T.L.; Melzer, T.R.; Jordan, J.; Carter, J.D.; Malhi, G.S.; Johnston, L.C.; Porter, R.J. Brain activation during processing of genuine facial emotion in depression: Preliminary findings. J. Affect. Disord., 2018, 225, 91-96.
[http://dx.doi.org/10.1016/j.jad.2017.07.049] [PMID: 28802727]
[64]
Mirabito, G.; Taiwo, Z.; Bezdek, M.; Light, S.N. Fronto-striatal activity predicts anhedonia and positive empathy subtypes. Brain Imaging Behav., 2019, 13(6), 1554-1565.
[http://dx.doi.org/10.1007/s11682-019-00081-z] [PMID: 30868401]
[65]
Vijayaraghavan, L.; Vaidya, J.G.; Humphreys, C.T.; Beglinger, L.J.; Paradiso, S. Emotional and motivational changes after bilateral lesions of the globus pallidus. Neuropsychology, 2008, 22(3), 412-418.
[http://dx.doi.org/10.1037/0894-4105.22.3.412] [PMID: 18444719]
[66]
Chen, K.H.; Hua, A.Y.; Lwi, S.J.; Haase, C.M.; Rosen, H.J.; Miller, B.L.; Levenson, R.W. Smaller volume in left-lateralized brain structures correlates with greater experience of negative non-target emotions in neurodegenerative diseases. Cereb. Cortex, 2021, 31(1), 15-31.
[http://dx.doi.org/10.1093/cercor/bhaa193] [PMID: 32820325]
[67]
Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27(31), 8161-8165.
[http://dx.doi.org/10.1523/JNEUROSCI.1554-07.2007] [PMID: 17670959]
[68]
Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol., 2008, 86(3), 141-155.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.004] [PMID: 18824075]
[69]
Tricomi, E.M.; Delgado, M.R.; Fiez, J.A. Modulation of caudate activity by action contingency. Neuron, 2004, 41(2), 281-292.
[http://dx.doi.org/10.1016/S0896-6273(03)00848-1] [PMID: 14741108]
[70]
Lin, F.; Han, X.; Wang, Y.; Ding, W.; Sun, Y.; Zhou, Y.; Lei, H. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity. Brain Imaging Behav., 2021, 15(1), 1-13.
[http://dx.doi.org/10.1007/s11682-019-00227-z] [PMID: 31898088]
[71]
Roesch, M.R.; Olson, C.R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science, 2004, 304(5668), 307-310.
[http://dx.doi.org/10.1126/science.1093223] [PMID: 15073380]
[72]
Roesch, M.R.; Olson, C.R. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol., 2003, 90(3), 1766-1789.
[http://dx.doi.org/10.1152/jn.00019.2003] [PMID: 12801905]
[73]
Christensen, M.S.; Lundbye-Jensen, J.; Geertsen, S.S.; Petersen, T.H.; Paulson, O.B.; Nielsen, J.B. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat. Neurosci., 2007, 10(4), 417-419.
[http://dx.doi.org/10.1038/nn1873] [PMID: 17369825]
[74]
Pastor-Bernier, A.; Tremblay, E.; Cisek, P. Dorsal premotor cortex is involved in switching motor plans. Front. Neuroeng., 2012, 5, 5.
[http://dx.doi.org/10.3389/fneng.2012.00005] [PMID: 22493577]
[75]
Cabeza, R.; Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci., 2000, 12(1), 1-47.
[http://dx.doi.org/10.1162/08989290051137585] [PMID: 10769304]
[76]
Théoret, H.; Kobayashi, M.; Merabet, L.; Wagner, T.; Tormos, J.M.; Pascual-Leone, A. Modulation of right motor cortex excitability without awareness following presentation of masked self-images. Brain Res. Cogn. Brain Res., 2004, 20(1), 54-57.
[http://dx.doi.org/10.1016/j.cogbrainres.2004.01.003] [PMID: 15130589]
[77]
Seo, D.; Olman, C.A.; Haut, K.M.; Sinha, R.; MacDonald, A.W., III; Patrick, C.J. Neural correlates of preparatory and regulatory control over positive and negative emotion. Soc. Cogn. Affect. Neurosci., 2014, 9(4), 494-504.
[http://dx.doi.org/10.1093/scan/nst115] [PMID: 23887812]
[78]
Sani, G.; Chiapponi, C.; Piras, F.; Ambrosi, E.; Simonetti, A.; Danese, E.; Janiri, D.; Brugnoli, R.; De Filippis, S.; Caltagirone, C.; Girardi, P.; Spalletta, G. Gray and white matter trajectories in patients with bipolar disorder. Bipolar Disord., 2016, 18(1), 52-62.
[http://dx.doi.org/10.1111/bdi.12359] [PMID: 26782273]
[79]
Luders, E.; Narr, K.L.; Thompson, P.M.; Rex, D.E.; Woods, R.P.; DeLuca, H.; Jancke, L.; Toga, A.W. Gender effects on cortical thickness and the influence of scaling. Hum. Brain Mapp., 2006, 27(4), 314-324.
[http://dx.doi.org/10.1002/hbm.20187] [PMID: 16124013]
[80]
Sani, G.; Kotzalidis, G.D.; Vöhringer, P.; Pucci, D.; Simonetti, A.; Manfredi, G.; Savoja, V.; Tamorri, S.M.; Mazzarini, L.; Pacchiarotti, I.; Telesforo, C.L.; Ferracuti, S.; Brugnoli, R.; Ambrosi, E.; Caloro, M.; Del Casale, A.; Koukopoulos, A.E.; Vergne, D.E.; Girardi, P.; Ghaemi, S.N. Effectiveness of short-term olanzapine in patients with bipolar I disorder, with or without comorbidity with substance use disorder. J. Clin. Psychopharmacol., 2013, 33(2), 231-235.
[http://dx.doi.org/10.1097/JCP.0b013e318287019c] [PMID: 23422396]
[81]
De Filippis, S.; Cuomo, I.; Lionetto, L.; Janiri, D.; Simmaco, M.; Caloro, M.; De Persis, S.; Piazzi, G.; Simonetti, A.; Telesforo, C.L.; Sciarretta, A.; Caccia, F.; Gentile, G.; Kotzalidis, G.D.; Girardi, P. Intramuscular aripiprazole in the acute management of psychomotor agitation. Pharmacotherapy, 2013, 33(6), 603-614.
[http://dx.doi.org/10.1002/phar.1260] [PMID: 23505124]
[82]
Musenga, A.; Saracino, M.; Sani, G.; Raggi, M. Antipsychotic and antiepileptic drugs in bipolar disorder: The importance of therapeutic drug monitoring. Curr. Med. Chem., 2009, 16(12), 1463-1481.
[http://dx.doi.org/10.2174/092986709787909604] [PMID: 19355900]
[83]
Centorrino, F.; Fogarty, K.V.; Sani, G.; Salvatore, P.; Cincotta, S.L.; Hennen, J.; Guzzetta, F.; Talamo, A.; Saadeh, M.G.; Baldessarini, R.J. Use of combinations of antipsychotics: McLean Hospital inpatients, 2002. Hum. Psychopharmacol., 2005, 20(7), 485-492.
[http://dx.doi.org/10.1002/hup.719] [PMID: 16116665]
[84]
Janiri, D.; Simonetti, A.; Piras, F.; Ciullo, V.; Spalletta, G.; Sani, G. Predominant polarity and hippocampal subfield volumes in Bipolar disorders. Bipolar Disord., 2020, 22(5), 490-497.
[http://dx.doi.org/10.1111/bdi.12857] [PMID: 31630469]
[85]
Koukopoulos, A.; Sani, G.; Koukopoulos, A.E.; Albert, M.J.; Girardi, P.; Tatarelli, R. Endogenous and exogenous cyclicity and temperament in bipolar disorder: Review, new data and hypotheses. J. Affect. Disord., 2006, 96(3), 165-175.
[http://dx.doi.org/10.1016/j.jad.2006.08.031] [PMID: 16997381]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy