General Review Article

化学、药物和草药化合物对神经红蛋白影响的研究:文献综述

卷 31, 期 20, 2024

发表于: 22 June, 2023

页: [2944 - 2954] 页: 11

弟呕挨: 10.2174/0929867330666230413093409

价格: $65

Open Access Journals Promotions 2
摘要

神经球蛋白(Neuroglobin, Ngb)是一种氧结合球蛋白,主要表达于中枢和外周神经系统的神经元中。然而,在非神经组织中也检测到中等水平的Ngb。近十年来,由于Ngb和Ngb调节因子在神经系统疾病和缺氧中的神经保护作用,人们对Ngb和Ngb调节因子的研究越来越多。研究表明,许多化学品、药物和草药化合物可以在不同剂量水平上调节Ngb的表达,表明其对神经退行性疾病具有保护作用。这些化合物包括铁螯合剂、激素、降糖药、抗凝血剂、抗抑郁药、植物衍生物和短链脂肪酸。因此,本研究旨在对化学、药物和草药化合物对Ngbs可能的作用及其机制进行综述。

关键词: 医药、草药、化合物、营养、神经球蛋白(Ngb)、铁螯合剂。

[1]
Rassaf, T.; Totzeck, M.; Hendgen-Cotta, U.B.; Shiva, S.; Heusch, G.; Kelm, M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10), 1601-1610.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303822] [PMID: 24643960]
[2]
Burmester, T.; Weich, B.; Reinhardt, S.; Hankeln, T. A vertebrate globin expressed in the brain. Nature, 2000, 407(6803), 520-523.
[http://dx.doi.org/10.1038/35035093] [PMID: 11029004]
[3]
Burmester, T.; Hankeln, T. Function and evolution of vertebrate globins. Acta Physiol., 2014, 211(3), 501-514.
[http://dx.doi.org/10.1111/apha.12312] [PMID: 24811692]
[4]
Ascenzi, P.; di Masi, A.; Leboffe, L.; Fiocchetti, M.; Nuzzo, M.T.; Brunori, M.; Marino, M. Neuroglobin: From structure to function in health and disease. Mol. Aspects Med., 2016, 52, 1-48.
[http://dx.doi.org/10.1016/j.mam.2016.10.004] [PMID: 27825818]
[5]
Gorabi, A.M.; Aslani, S.; Barreto, G.E.; Báez-Jurado, E.; Kiaie, N.; Jamialahmadi, T.; Sahebkar, A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic. Biol. Med., 2021, 162, 471-477.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.002] [PMID: 33166649]
[6]
Jin, K.; Mao, Y.; Mao, X.; Xie, L.; Greenberg, D.A. Neuroglobin expression in ischemic stroke. Stroke, 2010, 41(3), 557-559.
[http://dx.doi.org/10.1161/STROKEAHA.109.567149] [PMID: 20075359]
[7]
Luyckx, E.; Van Acker, Z.P.; Ponsaerts, P.; Dewilde, S. Neuroglobin expression models as a tool to study its function. Oxid. Med. Cell. Long., 2019, 2019
[http://dx.doi.org/10.1155/2019/5728129]
[8]
Khan, A.A.; Mao, X.O.; Banwait, S.; Jin, K.; Greenberg, D.A. Neuroglobin attenuates β-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19114-19119.
[http://dx.doi.org/10.1073/pnas.0706167104] [PMID: 18025470]
[9]
Li, R.C.; Pouranfar, F.; Lee, S.K.; Morris, M.W.; Wang, Y.; Gozal, D. Neuroglobin protects PC12 cells against β-amyloid-induced cell injury. Neurobiol. Aging, 2008, 29(12), 1815-1822.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.001] [PMID: 17560688]
[10]
Guidolin, D.; Tortorella, C.; Marcoli, M.; Maura, G.; Agnati, L. Neuroglobin, a factor playing for nerve cell survival. Int. J. Mol. Sci., 2016, 17(11), 1817.
[http://dx.doi.org/10.3390/ijms17111817] [PMID: 27809238]
[11]
Jin, K.; Mao, X.O.; Xie, L.; Khan, A.A.; Greenberg, D.A. Neuroglobin protects against nitric oxide toxicity. Neurosci. Lett., 2008, 430(2), 135-137.
[http://dx.doi.org/10.1016/j.neulet.2007.10.031] [PMID: 18035490]
[12]
Orlandini, E.; Ciccone, L.; Nencetti, S.; Socci, S. Neuroglobin and neuroprotection: The role of natural and synthetic compounds in neuroglobin pharmacological induction. Neural Regen. Res., 2021, 16(12), 2353-2358.
[http://dx.doi.org/10.4103/1673-5374.300981] [PMID: 33907006]
[13]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[14]
Yu, Z; Poppe, JL; Wang, X Mitochondrial mechanisms of neuroglobin’s neuroprotection. Oxid. Med. Cell. Long., 2013, 1-11.
[http://dx.doi.org/10.1155/2013/756989]
[15]
Sun, Y.; Jin, K.; Mao, X.O.; Zhu, Y.; Greenberg, D.A. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15306-15311.
[http://dx.doi.org/10.1073/pnas.251466698] [PMID: 11742077]
[16]
Ye, S.; Zhou, X.; Lai, X.; Zheng, L.; Chen, X. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3γ. Acta Pharmacol. Sin., 2009, 30(7), 913-918.
[http://dx.doi.org/10.1038/aps.2009.70] [PMID: 19574997]
[17]
Greenberg, D.; Jin, K.; Khan, A. Neuroglobin: An endogenous neuroprotectant. Curr. Opin. Pharmacol., 2008, 8(1), 20-24.
[http://dx.doi.org/10.1016/j.coph.2007.09.003] [PMID: 17942367]
[18]
Watanabe, S.; Wakasugi, K. Zebrafish neuroglobin is a cell-membrane-penetrating globin. Biochemistry, 2008, 47(19), 5266-5270.
[http://dx.doi.org/10.1021/bi800286m] [PMID: 18416560]
[19]
Yu, Z.; Liu, N.; Liu, J.; Yang, K.; Wang, X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int. J. Mol. Sci., 2012, 13(6), 6995-7014.
[http://dx.doi.org/10.3390/ijms13066995] [PMID: 22837676]
[20]
Thomas, I.; Gregg, B. Metformin; a review of its history and future: From lilac to longevity. Pediatr. Diabetes, 2017, 18(1), 10-16.
[http://dx.doi.org/10.1111/pedi.12473] [PMID: 28052534]
[21]
Rotermund, C.; Machetanz, G.; Fitzgerald, J.C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol., 2018, 9, 400.
[http://dx.doi.org/10.3389/fendo.2018.00400] [PMID: 30072954]
[22]
Sanati, M.; Aminyavari, S.; Afshari, A.R.; Sahebkar, A. Mechanistic insight into the role of metformin in Alzheimer’s disease. Life Sci., 2022, 291, 120299.
[http://dx.doi.org/10.1016/j.lfs.2021.120299] [PMID: 34999113]
[23]
Bonea, M.; Filip, G.A.; Toma, V.A.; Baldea, I.; Berghian, A.S.; Decea, N.; Olteanu, D.; Moldovan, R.; Crivii, C.; Vinași, R.C.; Micluția, I.V. The modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of Wistar rats. J. Mol. Neurosci., 2020, 70(12), 1943-1961.
[http://dx.doi.org/10.1007/s12031-020-01593-w] [PMID: 32621100]
[24]
Brittain, T.; Skommer, J.; Raychaudhuri, S.; Birch, N. An antiapoptotic neuroprotective role for neuroglobin. Int. J. Mol. Sci., 2010, 11(6), 2306-2321.
[http://dx.doi.org/10.3390/ijms11062306] [PMID: 20640154]
[25]
Zara, S.; De Colli, M.; Rapino, M.; Pacella, S.; Nasuti, C.; Sozio, P.; Di Stefano, A.; Cataldi, A. Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimer’s disease rat model. Gerontology, 2013, 59(3), 250-260.
[http://dx.doi.org/10.1159/000346445] [PMID: 23428737]
[26]
Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216.
[http://dx.doi.org/10.1038/35102591] [PMID: 11700559]
[27]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[http://dx.doi.org/10.1182/blood.V89.3.739] [PMID: 9028304]
[28]
Jin, K.; Mao, X.; Xie, L.; Greenberg, D.A. Interactions between vascular endothelial growth factor and neuroglobin. Neurosci. Lett., 2012, 519(1), 47-50.
[http://dx.doi.org/10.1016/j.neulet.2012.05.018] [PMID: 22583764]
[29]
Vasudevan, N.; Pfaff, D.W. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front. Neuroendocrinol., 2008, 29(2), 238-257.
[http://dx.doi.org/10.1016/j.yfrne.2007.08.003] [PMID: 18083219]
[30]
Uddin, M.S.; Rahman, M.M.; Jakaria, M.; Rahman, M.S.; Hossain, M.S.; Islam, A.; Ahmed, M.; Mathew, B.; Omar, U.M.; Barreto, G.E.; Ashraf, G.M. Estrogen signaling in Alzheimer’s disease: Molecular insights and therapeutic targets for Alzheimer’s dementia. Mol. Neurobiol., 2020, 57(6), 2654-2670.
[http://dx.doi.org/10.1007/s12035-020-01911-8] [PMID: 32297302]
[31]
De Marinis, E.; Ascenzi, P.; Pellegrini, M.; Galluzzo, P.; Bulzomi, P.; Arevalo, M.A.; Garcia-Segura, L.M.; Marino, M. 17β-estradiol-a new modulator of neuroglobin levels in neurons: Role in neuroprotection against H2O2-induced toxicity. Neurosignals, 2010, 18(4), 223-235.
[http://dx.doi.org/10.1159/000323906] [PMID: 21335947]
[32]
De Marinis, E.; Acaz-Fonseca, E.; Arevalo, M.A.; Ascenzi, P.; Fiocchetti, M.; Marino, M.; Garcia-Segura, L.M. 17β-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor β-mediated neuroglobin up-regulation. J. Neuroendocrinol., 2013, 25(3), 260-270.
[http://dx.doi.org/10.1111/jne.12007] [PMID: 23190172]
[33]
Fiocchetti, M.; Nuzzo, M.; Totta, P.; Acconcia, F.; Ascenzi, P.; Marino, M. Neuroglobin, a pro-survival player in estrogen receptor α-positive cancer cells. Cell Death & Disease, 2014, 5(10), e1449-e1449.
[http://dx.doi.org/10.1038/cddis.2014.418]
[34]
Toro-Urrego, N.; Garcia-Segura, L.M.; Echeverria, V.; Barreto, G.E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci., 2016, 8, 152.
[http://dx.doi.org/10.3389/fnagi.2016.00152] [PMID: 27445795]
[35]
Oliveira, K.C.; da Conceição, R.R.; Piedade, G.C.; de Souza, J.S.; Sato, M.A.; de Barros Maciel, R.M.; Giannocco, G. Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab. Brain Dis., 2015, 30(6), 1401-1408.
[http://dx.doi.org/10.1007/s11011-015-9718-5] [PMID: 26334191]
[36]
Milano, M.; Collomp, R. Erythropoietin and neuroprotection: A therapeutic perspective. J. Oncol. Pharm. Pract., 2005, 11(4), 145-149.
[http://dx.doi.org/10.1191/1078155205jp162oa] [PMID: 16595066]
[37]
Li, Y.; Tang, Y. The effect of erythropoietin on the expression of neuroglobin after cerebral ischemia-reperfusion injury in rats. China Trop. Med., 2010, 10(1), 75-76.
[38]
Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesthesiol., 2019, 72(4), 323-330.
[http://dx.doi.org/10.4097/kja.19259] [PMID: 31220910]
[39]
Liaquat, Z.; Xu, X.; Zilundu, P.L.M.; Fu, R.; Zhou, L. The current role of dexmedetomidine as neuroprotective agent: An updated review. Brain Sci., 2021, 11(7), 846.
[http://dx.doi.org/10.3390/brainsci11070846] [PMID: 34202110]
[40]
Gao, Y.; Zhang, Y.; Dong, Y.; Wu, X.; Liu, H. Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia/reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front. Pharmacol., 2020, 11, 555532.
[http://dx.doi.org/10.3389/fphar.2020.555532] [PMID: 33117159]
[41]
Luthra, R.; Roy, A. Role of medicinal plants against neurodegenerative diseases. Curr. Pharm. Biotechnol., 2022, 23(1), 123-139.
[http://dx.doi.org/10.2174/1389201022666210211123539] [PMID: 33573549]
[42]
Iranshahy, M.; Javadi, B.; Sahebkar, A. Protective effects of functional foods against Parkinson’s disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res., 2022, 36(5), 1952-1989.
[http://dx.doi.org/10.1002/ptr.7425] [PMID: 35244296]
[43]
Keshavarzi, Z.; Shakeri, F.; Barreto, G.E.; Bibak, B.; Sathyapalan, T.; Sahebkar, A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors, 2019, 45(4), 517-535.
[http://dx.doi.org/10.1002/biof.1516] [PMID: 31206893]
[44]
Sahebkar, A.; Khalifeh, M.; Barreto, G.E. Therapeutic potential of trehalose in neurodegenerative diseases: The knowns and unknowns. Neural Regen. Res., 2021, 16(10), 2026-2027.
[http://dx.doi.org/10.4103/1673-5374.308085] [PMID: 33642389]
[45]
Nourbakhsh, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer’s disease. IUBMB Life, 2020, 72(11), 2360-2281.
[http://dx.doi.org/10.1002/iub.2369] [PMID: 32894821]
[46]
Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2022.
[PMID: 36305097]
[47]
Sahebkar, A.; Zahedipour, F.; Hosseini, S.A.; Henney, N.C.; Barreto, G.E. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res., 2022, 17(8), 1675-1684.
[http://dx.doi.org/10.4103/1673-5374.332128] [PMID: 35017414]
[48]
Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol., 2019, 234(6), 8496-8508.
[http://dx.doi.org/10.1002/jcp.27781] [PMID: 30461013]
[49]
Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404.
[http://dx.doi.org/10.1007/s12035-018-1169-7] [PMID: 29948942]
[50]
Renaud, J.; Martinoli, M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(8), 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[51]
Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int. J. Mol. Sci., 2020, 21(7), 2564.
[http://dx.doi.org/10.3390/ijms21072564] [PMID: 32272735]
[52]
Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936.
[http://dx.doi.org/10.3389/fimmu.2019.00936] [PMID: 31118933]
[53]
Ciccone, L.; Tonali, N.; Nencetti, S.; Orlandini, E. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: Analysis of structural data for future drug design. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1145-1162.
[http://dx.doi.org/10.1080/14756366.2020.1760262] [PMID: 32419519]
[54]
Cipolletti, M.; Montalesi, E.; Nuzzo, M.T.; Fiocchetti, M.; Ascenzi, P.; Marino, M. Potentiation of paclitaxel effect by resveratrol in human breast cancer cells by counteracting the 17β-estradiol/estrogen receptor α/neuroglobin pathway. J. Cell. Physiol., 2019, 234(4), 3147-3157.
[http://dx.doi.org/10.1002/jcp.27309] [PMID: 30421506]
[55]
Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric., 2016, 96(6), 1856-1866.
[http://dx.doi.org/10.1002/jsfa.7489] [PMID: 26455344]
[56]
Gan, S.Y.; Wong, L.Z.; Wong, J.W.; Tan, E.L. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int. J. Biol. Macromol., 2019, 121, 207-213.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.021] [PMID: 30300695]
[57]
Liu, N.; Yu, Z.; Gao, X. Establishment of cell-based neuroglobin promoter reporter assay for neuroprotective compounds screening. CNS & Neurological Disorders-Drug Targets, 2016, 15(5), 629-639.
[58]
Jangwan, J.; Kumar, N. Isolation and characterization of new flavonoid glycoside from the seeds of Prunus cerasoides. J. Med. Plants Stud., 2015, 3, 20-22.
[59]
Poonam, V.; Raunak; Kumar, G.; Reddy L, C.S.; Jain, R.; Sharma, S.K.; Prasad, A.K.; Parmar, V.S. Chemical constituents of the genus Prunus and their medicinal properties. Curr. Med. Chem., 2011, 18(25), 3758-3824.
[http://dx.doi.org/10.2174/092986711803414386] [PMID: 21831039]
[60]
Arora, D.S.; Mahajan, H. Major phytoconstituents of Prunus cerasoides responsible for antimicrobial and antibiofilm potential against some reference strains of pathogenic bacteria and clinical isolates of MRSA. Appl. Biochem. Biotechnol., 2019, 188(4), 1185-1204.
[http://dx.doi.org/10.1007/s12010-019-02985-4] [PMID: 30854606]
[61]
Sachdeva, C.; Kumar, S.; Kaushik, N.K. Exploration of anti-plasmodial activity of Prunus cerasoides Buch.-Ham. ex D. Don (family: Rosaceae) and its wood chromatographic fractions. Acta Parasitol., 2021, 66(1), 205-212.
[http://dx.doi.org/10.1007/s11686-020-00272-5] [PMID: 32940831]
[62]
Kim, S.D.; Kim, M.; Wu, H.H.; Jin, B.K.; Jeon, M.S.; Song, Y.S. Prunus cerasoides extract and its component compounds upregulate neuronal neuroglobin levels, mediate antioxidant effects, and ameliorate functional losses in the mouse model of cerebral ischemia. Antioxidants, 2021, 11(1), 99.
[http://dx.doi.org/10.3390/antiox11010099] [PMID: 35052603]
[63]
Su, C.; Zhang, D.; Truong, J.; Jiang, C.; Lee, S.; Jarouche, M.; Hennell, J.R.; Rathbone, M.P.; Sucher, N.J.; Jiang, S. Effects of a novel herbal formulation JSK on acute spinal cord injury in rats. Restor. Neurol. Neurosci., 2013, 31(5), 597-617.
[http://dx.doi.org/10.3233/RNN-120303] [PMID: 23760224]
[64]
Li, G.; Zhu, H.; Luo, L.; Hu, S.; Dong, K.; Zhang, T. Treating Alzheimer′s disease with Yizhijiannao granules by regulating expression of multiple proteins in temporal lobe. Neural Regen. Res., 2014, 9(13), 1283-1287.
[http://dx.doi.org/10.4103/1673-5374.137575] [PMID: 25221580]
[65]
Pace, B.S.; White, G.L.; Dover, G.J.; Boosalis, M.S.; Faller, D.V.; Perrine, S.P. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood, 2002, 100(13), 4640-4648.
[http://dx.doi.org/10.1182/blood-2002-02-0353] [PMID: 12393583]
[66]
Jin, K.; Mao, X.O.; Xie, L.; John, V.; Greenberg, D.A. Pharmacological induction of neuroglobin expression. Pharmacology, 2011, 87(1-2), 81-84.
[http://dx.doi.org/10.1159/000322998] [PMID: 21228614]
[67]
Escudero-Lourdes, C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology, 2016, 53, 223-235.
[http://dx.doi.org/10.1016/j.neuro.2016.02.002] [PMID: 26868456]
[68]
Liu, X.; Gao, Y.; Yao, H.; Zhou, L.; Sun, D.; Wang, J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol. Trace Elem. Res., 2013, 155(3), 439-446.
[http://dx.doi.org/10.1007/s12011-013-9810-9] [PMID: 24057451]
[69]
Liu, X.; Gao, Y.; Liu, Y.; Zhang, W.; Yang, Y.; Fu, X.; Sun, D.; Wang, J. Neuroglobin alleviates arsenic-induced neuronal damage. Environ. Toxicol. Pharmacol., 2021, 84, 103604.
[http://dx.doi.org/10.1016/j.etap.2021.103604] [PMID: 33545379]
[70]
Nawfal, A.J.; Al-Okaily, B.N. Effect of the sublethal dose of lead acetate on malondialdehyde, dopamine, and neuroglobin concentrations in rats. WORLD, 2022, 12(3), 311-315.
[71]
De Marinis, E; Fiocchetti, M; Acconcia, F; Ascenzi, P; Marino, M Neuroglobin upregulation induced by 17β-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell Death & Disease, 2013, 4(2), e508.
[72]
Montalesi, E.; Cipolletti, M.; Cracco, P.; Fiocchetti, M.; Marino, M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers, 2020, 12(1), 167.
[http://dx.doi.org/10.3390/cancers12010167] [PMID: 31936631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy