Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Utilization of Bioactive Silk Protein in the Development of Optical Devices: Recent Advancements and Applications

Author(s): Rishav Sharma and Rishabha Malviya*

Volume 24, Issue 5, 2023

Published on: 08 May, 2023

Page: [404 - 422] Pages: 19

DOI: 10.2174/1389203724666230412092734

Price: $65

Abstract

Typically, materials used to create optical devices have chemical and physical properties that have been precisely designed for a narrowly defined purpose, allowing for changes in design to account for device variability. There is a growing need for devices built of materials with changeable optical responses, as optical systems are incorporated into platforms with much functionality. Regenerated silk fibroin is described in this article as an enabling gadget with an active optical response as a result of the inherent characteristics of proteins. Silk's capacity for controlled movement, to swell and shrink reversibly, alter conformation and degradation that is customizable, impacts both the shape and the response of the optical structure-representative silk-based gadgets. The diversity of silk material is shown and discussed in this paper, concentrating on architectures that show reconfigurable behavior, an optical waveguide that is physically temporary and provides reversible responses. Finally, innovative research directions for silk-based materials and optical devices are presented in this paper. Since ancient times, silk, a natural biopolymer, has been used as a repair material in medicine. In the past 20 years, it has attracted a lot of interest to be used in several biomedical applications. Various healthcare items with silk as their substrate have been developed thanks to significant advancements in silk biomaterial research. Silk is a fabric created from spider and silkworm cocoons. Hierarchical structures and conventional structural elements are present in them. Different silk types can be produced using certain methods, such as films, fibers, microspheres, sponges, and hydrogels. The structural characteristics of secondary proteins present in silk can also be modified. This paper investigates the use of silk in biomedical and optical applications, and examines the technical trend in electronic fields.

Keywords: Silk, biopolymer, silk fibroin, drug delivery, lithography, polydimethylsiloxane, biodegradability.

Graphical Abstract
[1]
Marshall, A.J.; Blyth, J.; Davidson, C.A.B.; Lowe, C.R. pH-sensitive holographic sensors. Anal. Chem., 2003, 75(17), 4423-4431.
[http://dx.doi.org/10.1021/ac020730k] [PMID: 14632046]
[2]
Kim, U.J.; Park, J.; Li, C.; Jin, H.J.; Valluzzi, R.; Kaplan, D.L. Structure and properties of silk hydrogels. Biomacromolecules, 2004, 5(3), 786-792.
[http://dx.doi.org/10.1021/bm0345460] [PMID: 15132662]
[3]
Karageorgiou, V.; Meinel, L.; Hofmann, S.; Malhotra, A.; Volloch, V.; Kaplan, D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res., 2004, 71A(3), 528-537.
[http://dx.doi.org/10.1002/jbm.a.30186] [PMID: 15478212]
[4]
Jin, H.J.; Park, J.; Karageorgiou, V.; Kim, U.J.; Valluzzi, R.; Cebe, P.; Kaplan, D.L. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater., 2005, 15(8), 1241-1247.
[http://dx.doi.org/10.1002/adfm.200400405]
[5]
Jiang, C.; Wang, X.; Gunawidjaja, R.; Lin, Y.H.; Gupta, M.K.; Kaplan, D.L.; Naik, R.R.; Tsukruk, V.V. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater., 2007, 17(13), 2229-2237.
[http://dx.doi.org/10.1002/adfm.200601136]
[6]
Gupta, M.K.; Khokhar, S.K.; Phillips, D.M.; Sowards, L.A.; Drummy, L.F.; Kadakia, M.P.; Naik, R.R. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir, 2007, 23(3), 1315-1319.
[http://dx.doi.org/10.1021/la062047p] [PMID: 17241052]
[7]
Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials, 2003, 24(3), 401-416.
[http://dx.doi.org/10.1016/S0142-9612(02)00353-8] [PMID: 12423595]
[8]
Gil, E.S.; Panilaitis, B.; Bellas, E.; Kaplan, D.L. Functionalized silk biomaterials for wound healing. Adv. Healthc. Mater., 2013, 2(1), 206-217.
[http://dx.doi.org/10.1002/adhm.201200192] [PMID: 23184644]
[9]
Bai, S.; Liu, S.; Zhang, C.; Xu, W.; Lu, Q.; Han, H.; Kaplan, D.L.; Zhu, H. Controllable transition of silk fibroin nanostructures: An insight into in vitro silk self-assembly process. Acta Biomater., 2013, 9(8), 7806-7813.
[http://dx.doi.org/10.1016/j.actbio.2013.04.033] [PMID: 23628774]
[10]
Kim, S.; Marelli, B.; Brenckle, M.A.; Mitropoulos, A.N.; Gil, E.S.; Tsioris, K.; Tao, H.; Kaplan, D.L.; Omenetto, F.G. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol., 2014, 9(4), 306-310.
[http://dx.doi.org/10.1038/nnano.2014.47] [PMID: 24658173]
[11]
Brenckle, M.A.; Tao, H.; Kim, S.; Paquette, M.; Kaplan, D.L.; Omenetto, F.G. Protein-protein nanoimprinting of silk fibroin films. Adv. Mater., 2013, 25(17), 2409-2414.
[http://dx.doi.org/10.1002/adma.201204678] [PMID: 23483712]
[12]
Pal, R.K.; Farghaly, A.A.; Collinson, M.M.; Kundu, S.C.; Yadavalli, V.K. Photolithographic micropatterning of conducting polymers on flexible silk matrices. Adv. Mater., 2016, 28(7), 1406-1412.
[http://dx.doi.org/10.1002/adma.201504736] [PMID: 26641445]
[13]
Pal, R.K.; Kurland, N.E.; Wang, C.; Kundu, S.C.; Yadavalli, V.K. Biopatterning of silk proteins for soft micro-optics. ACS Appl. Mater. Interfaces, 2015, 7(16), 8809-8816.
[http://dx.doi.org/10.1021/acsami.5b01380] [PMID: 25853731]
[14]
Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. J. Hazard. Mater., 2022, 426, 127822.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127822] [PMID: 34823952]
[15]
Amsden, J.J.; Domachuk, P.; Gopinath, A.; White, R.D.; Negro, L.D.; Kaplan, D.L.; Omenetto, F.G. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater., 2010, 22(15), 1746-1749.
[http://dx.doi.org/10.1002/adma.200903166] [PMID: 20496408]
[16]
Wang, Y.; Aurelio, D.; Li, W.; Tseng, P.; Zheng, Z.; Li, M.; Kaplan, D.L.; Liscidini, M.; Omenetto, F.G. Modulation of multiscale 3D lattices through conformational control: painting silk inverse opals with water and light. Adv. Mater., 2017, 29(38), 1702769.
[http://dx.doi.org/10.1002/adma.201702769] [PMID: 28833734]
[17]
Li, W.; Wang, Y.; Li, M.; Garbarini, L.P.; Omenetto, F.G. Inkjet printing of patterned, multispectral, and biocompatible photonic crystals. Adv. Mater., 2019, 31(36), 1901036.
[http://dx.doi.org/10.1002/adma.201901036] [PMID: 31309624]
[18]
Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.V.N.; Trinh, Q.T.; Kim, S.Y.; Le, Q.V. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel), 2019, 11(12), 1933.
[http://dx.doi.org/10.3390/polym11121933] [PMID: 31771251]
[19]
Aigner, T.B.; DeSimone, E.; Scheibel, T. Biomedical applications of recombinant silk-based materials. Adv. Mater., 2018, 30(19), 1704636.
[http://dx.doi.org/10.1002/adma.201704636] [PMID: 29436028]
[20]
Rizzo, G.; Lo Presti, M.; Giannini, C.; Sibillano, T.; Milella, A.; Guidetti, G.; Musio, R.; Omenetto, F.G.; Farinola, G.M. Bombyx mori silk fibroin regeneration in solution of lanthanide ions: a systematic investigation. Front. Bioeng. Biotechnol., 2021, 9, 653033.
[http://dx.doi.org/10.3389/fbioe.2021.653033] [PMID: 34178956]
[21]
Janani, G.; Nandi, S.K.; Mandal, B.B. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater., 2018, 67, 167-182.
[http://dx.doi.org/10.1016/j.actbio.2017.11.053] [PMID: 29223705]
[22]
Asakura, T.; Sato, Y.; Aoki, A. Stretching-induced conformational transition of the crystalline and noncrystalline domains of 13C-labeled Bombyx mori silk fibroin monitored by solid state NMR. Macromolecules, 2015, 48(16), 5761-5769.
[http://dx.doi.org/10.1021/acs.macromol.5b01365]
[23]
Zhang, Y.; Fan, S.; Zhang, Y. Bio-memristors based on silk fibroin. Mater. Horiz., 2021, 8(12), 3281-3294.
[http://dx.doi.org/10.1039/D1MH01433A] [PMID: 34661227]
[24]
Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952), 1057-1061.
[http://dx.doi.org/10.1038/nature01809] [PMID: 12944968]
[25]
Dicko, C. Kenney, J.M.; Vollrath, F. β-silks: enhancing and controlling aggregation. Adv. Protein Chem., 2006, 73, 17-53.
[http://dx.doi.org/10.1016/S0065-3233(06)73002-9] [PMID: 17190610]
[26]
Shen, T.; Wang, T.; Cheng, G.; Huang, L.; Chen, L.; Wu, D. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. Int. J. Biol. Macromol., 2018, 113, 458-463.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.022] [PMID: 29421494]
[27]
Mogas-Soldevila, L.; Matzeu, G.; Presti, M.L.; Omenetto, F.G. Additively manufactured leather-like silk protein materials. Mater. Des., 2021, 203, 109631.
[http://dx.doi.org/10.1016/j.matdes.2021.109631]
[28]
Yazawa, K.; Ishida, K.; Masunaga, H.; Hikima, T.; Numata, K. Influence of water content on the β-sheet formation, thermal stability, water removal, and mechanical properties of silk materials. Biomacromolecules, 2016, 17(3), 1057-1066.
[http://dx.doi.org/10.1021/acs.biomac.5b01685] [PMID: 26835719]
[29]
Lin, N.; Cao, L.; Huang, Q.; Wang, C.; Wang, Y.; Zhou, J.; Liu, X.Y. Functionalization of silk fibroin materials at mesoscale. Adv. Funct. Mater., 2016, 26(48), 8885-8902.
[http://dx.doi.org/10.1002/adfm.201603826]
[30]
Qin, N.; Zhang, S.; Jiang, J.; Corder, S.G.; Qian, Z.; Zhou, Z.; Lee, W.; Liu, K.; Wang, X.; Li, X.; Shi, Z.; Mao, Y.; Bechtel, H.A.; Martin, M.C.; Xia, X.; Marelli, B.; Kaplan, D.L.; Omenetto, F.G.; Liu, M.; Tao, T.H. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun., 2016, 7(1), 13079.
[http://dx.doi.org/10.1038/ncomms13079] [PMID: 27713412]
[31]
Tadepalli, S.; Slocik, J.M.; Gupta, M.K.; Naik, R.R.; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev., 2017, 117(20), 12705-12763.
[http://dx.doi.org/10.1021/acs.chemrev.7b00153] [PMID: 28937748]
[32]
Zhou, Z.; Zhang, S.; Cao, Y.; Marelli, B.; Xia, X.; Tao, T.H. Engineering the future of silk materials through advanced manufacturing. Adv. Mater., 2018, 30(33), 1706983.
[http://dx.doi.org/10.1002/adma.201706983] [PMID: 29956397]
[33]
Xiong, R.; Luan, J.; Kang, S.; Ye, C.; Singamaneni, S.; Tsukruk, V.V. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem. Soc. Rev., 2020, 49(3), 983-1031.
[http://dx.doi.org/10.1039/C8CS01007B] [PMID: 31960001]
[34]
Mehrotra, S.; Chouhan, D.; Konwarh, R.; Kumar, M.; Jadi, P.K.; Mandal, B.B. Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomater. Sci. Eng., 2019, 5(5), 2054-2078.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01560] [PMID: 33405710]
[35]
Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater., 2016, 31, 1-16.
[http://dx.doi.org/10.1016/j.actbio.2015.09.005] [PMID: 26360593]
[36]
Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci., 2021, 22(3), 1499.
[http://dx.doi.org/10.3390/ijms22031499] [PMID: 33540895]
[37]
Perry, H.; Gopinath, A.; Kaplan, D.L.; Dal Negro, L.; Omenetto, F.G. Nano-and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater., 2008, 20(16), 3070-3072.
[http://dx.doi.org/10.1002/adma.200800011]
[38]
Mondia, J.P.; Amsden, J.J.; Lin, D.; Negro, L.D.; Kaplan, D.L.; Omenetto, F.G. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission. Adv. Mater., 2010, 22(41), 4596-4599.
[http://dx.doi.org/10.1002/adma.201001238] [PMID: 20859936]
[39]
Tao, H.; Marelli, B.; Yang, M.; An, B.; Onses, M.S.; Rogers, J.A.; Kaplan, D.L.; Omenetto, F.G. Inkjet printing of regenerated silk fibroin: From printable forms to printable functions. Adv. Mater., 2015, 27(29), 4273-4279.
[http://dx.doi.org/10.1002/adma.201501425] [PMID: 26079217]
[40]
Wu, P.; Wang, J.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz., 2020, 7(2), 338-365.
[http://dx.doi.org/10.1039/C9MH01389J]
[41]
Parker, S.T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J.A.; Kaplan, D.L.; Omenetto, F.G. Biocompatible silk printed optical waveguides. Adv. Mater., 2009, 21(23), 2411-2415.
[http://dx.doi.org/10.1002/adma.200801580]
[42]
Lin, D.; Tao, H.; Trevino, J.; Mondia, J.P.; Kaplan, D.L.; Omenetto, F.G.; Dal Negro, L. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films. Adv. Mater., 2012, 24(45), 6088-6093.
[http://dx.doi.org/10.1002/adma.201201888] [PMID: 22941856]
[43]
Kim, S.; Mitropoulos, A.N.; Spitzberg, J.D.; Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk inverse opals. Nat. Photonics, 2012, 6(12), 818-823.
[http://dx.doi.org/10.1038/nphoton.2012.264]
[44]
Hu, X.; Shmelev, K.; Sun, L.; Gil, E.S.; Park, S.H.; Cebe, P.; Kaplan, D.L. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules, 2011, 12(5), 1686-1696.
[http://dx.doi.org/10.1021/bm200062a] [PMID: 21425769]
[45]
Lu, Q.; Hu, X.; Wang, X.; Kluge, J.A.; Lu, S.; Cebe, P.; Kaplan, D.L. Water-insoluble silk films with silk I structure. Acta Biomater., 2010, 6(4), 1380-1387.
[http://dx.doi.org/10.1016/j.actbio.2009.10.041] [PMID: 19874919]
[46]
Sagnella, A.; Pistone, A.; Bonetti, S.; Donnadio, A.; Saracino, E.; Nocchetti, M.; Dionigi, C.; Ruani, G.; Muccini, M.; Posati, T.; Benfenati, V.; Zamboni, R. Effect of different fabrication methods on the chemo-physical properties of silk fibroin films and on their interaction with neural cells. RSC Advances, 2016, 6(11), 9304-9314.
[http://dx.doi.org/10.1039/C5RA20684G]
[47]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics, 2019, 11(10), 494.
[http://dx.doi.org/10.3390/pharmaceutics11100494] [PMID: 31561578]
[48]
Min, K.; Kim, S.; Kim, S. Deformable and conformal silk hydrogel inverse opal. Proc. Natl. Acad. Sci. USA, 2017, 114(24), 6185-6190.
[http://dx.doi.org/10.1073/pnas.1701092114] [PMID: 28559327]
[49]
Li, M.; Wang, Y.; Chen, A.; Naidu, A.; Napier, B.S.; Li, W.; Rodriguez, C.L.; Crooker, S.A.; Omenetto, F.G. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA, 2018, 115(32), 8119-8124.
[http://dx.doi.org/10.1073/pnas.1805832115] [PMID: 30037994]
[50]
Marelli, B.; Patel, N.; Duggan, T.; Perotto, G.; Shirman, E.; Li, C.; Kaplan, D.L.; Omenetto, F.G. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl. Acad. Sci. USA, 2017, 114(3), 451-456.
[http://dx.doi.org/10.1073/pnas.1612063114] [PMID: 28028213]
[51]
Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot., 2018, 3(16), eaar8580.
[http://dx.doi.org/10.1126/scirobotics.aar8580] [PMID: 33141750]
[52]
Vogel, N.; Retsch, M.; Fustin, C.A.; del Campo, A.; Jonas, U. Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem. Rev., 2015, 115(13), 6265-6311.
[http://dx.doi.org/10.1021/cr400081d] [PMID: 26098223]
[53]
Phillips, K.R.; England, G.T.; Sunny, S.; Shirman, E.; Shirman, T.; Vogel, N.; Aizenberg, J. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev., 2016, 45(2), 281-322.
[http://dx.doi.org/10.1039/C5CS00533G] [PMID: 26395819]
[54]
Wang, Y.; Li, M.; Colusso, E.; Li, W.; Omenetto, F.G. Designing the iridescences of biopolymers by assembly of photonic crystal superlattices. Adv. Opt. Mater., 2018, 6(10), 1800066.
[http://dx.doi.org/10.1002/adom.201800066]
[55]
Kang, L.; Jenkins, R.P.; Werner, D.H. Recent progress in active optical metasurfaces. Adv. Opt. Mater., 2019, 7(14), 1801813.
[http://dx.doi.org/10.1002/adom.201801813]
[56]
Wen, D.L.; Sun, D.H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.D.; Kim, B.; Brugger, J.; Zhang, H.X.; Zhang, X.S. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng., 2021, 7(1), 35.
[http://dx.doi.org/10.1038/s41378-021-00261-2] [PMID: 34567749]
[57]
Kwon, H.; Kim, S. Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films. ACS Photonics, 2015, 2(12), 1675-1680.
[http://dx.doi.org/10.1021/acsphotonics.5b00470]
[58]
Hey Tow, K.; Chow, D.M.; Vollrath, F.; Dicaire, I.; Gheysens, T.; Thévenaz, L. Exploring the use of native spider silk as an optical fiber for chemical sensing. J. Lightwave Technol., 2018, 36(4), 1138-1144.
[http://dx.doi.org/10.1109/JLT.2017.2756095]
[59]
Tao, H.; Amsden, J.J.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D.; Omenetto, F.G. Metamaterial silk composites at terahertz frequencies. Adv. Mater., 2010, 22(32), 3527-3531.
[http://dx.doi.org/10.1002/adma.201000412] [PMID: 20665563]
[60]
Kim, H.S.; Cha, S.H.; Roy, B.; Kim, S.; Ahn, Y.H. Humidity sensing using THz metamaterial with silk protein fibroin. Opt. Express, 2018, 26(26), 33575-33581.
[http://dx.doi.org/10.1364/OE.26.033575] [PMID: 30650790]
[61]
Jain, A. Spider silk in medicine. Young Scientists Journal, 2016, (18), 36.
[62]
Arif, S.; Umar, M.; Kim, S. Interacting metal–insulator–metal resonator by nanoporous silver and silk protein nanomembranes and its water-sensing application. ACS Omega, 2019, 4(5), 9010-9016.
[http://dx.doi.org/10.1021/acsomega.9b00838] [PMID: 31459989]
[63]
Lee, M.; Jeon, H.; Kim, S. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett., 2015, 15(5), 3358-3363.
[http://dx.doi.org/10.1021/acs.nanolett.5b00680] [PMID: 25821994]
[64]
Cronin-Golomb, M.; Murphy, A.R.; Mondia, J.P.; Kaplan, D.L.; Omenetto, F.G. Optically induced birefringence and holography in silk. J. Polym. Sci., B, Polym. Phys., 2012, 50(4), 257-262.
[http://dx.doi.org/10.1002/polb.23003]
[65]
Xu, L.; Jiang, X.; Zhao, G.; Ma, D.; Tao, H.; Liu, Z.; Omenetto, F.G.; Yang, L. High-Q silk fibroin whispering gallery microresonator. Opt. Express, 2016, 24(18), 20825-20830.
[http://dx.doi.org/10.1364/OE.24.020825] [PMID: 27607686]
[66]
Wang, Y.; Kim, B.J.; Peng, B.; Li, W.; Wang, Y.; Li, M.; Omenetto, F.G. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc. Natl. Acad. Sci. USA, 2019, 116(43), 21361-21368.
[http://dx.doi.org/10.1073/pnas.1911563116] [PMID: 31591247]
[67]
Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater., 2019, 8(1), 1800465.
[http://dx.doi.org/10.1002/adhm.201800465] [PMID: 30238637]
[68]
Zhang, W.; Chen, L.; Chen, J.; Wang, L.; Gui, X.; Ran, J.; Xu, G.; Zhao, H.; Zeng, M.; Ji, J.; Qian, L.; Zhou, J.; Ouyang, H.; Zou, X. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv. Healthc. Mater., 2017, 6(10), 1700121.
[http://dx.doi.org/10.1002/adhm.201700121] [PMID: 28337854]
[69]
Gholipourmalekabadi, M.; Sapru, S.; Samadikuchaksaraei, A.; Reis, R.L.; Kaplan, D.L.; Kundu, S.C. Silk fibroin for skin injury repair: Where do things stand? Adv. Drug Deliv. Rev., 2020, 153, 28-53.
[http://dx.doi.org/10.1016/j.addr.2019.09.003] [PMID: 31678360]
[70]
Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6(10), 1612-1631.
[http://dx.doi.org/10.1038/nprot.2011.379] [PMID: 21959241]
[71]
Bhattacharjee, P.; Kundu, B.; Naskar, D.; Kim, H.W.; Maiti, T.K.; Bhattacharya, D.; Kundu, S.C. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater., 2017, 63, 1-17.
[http://dx.doi.org/10.1016/j.actbio.2017.09.027] [PMID: 28941652]
[72]
Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R.J.; Biggs, C.A.; Zhao, X. Magnetic-silk core–shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater. Sci. Eng., 2017, 3(6), 1027-1038.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00153] [PMID: 33429579]
[73]
Shi, C.; Hu, F.; Wu, R.; Xu, Z.; Shao, G.; Yu, R.; Liu, X.Y. New silk road: From mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials. Adv. Mater., 2021, 33(50), 2005910.
[http://dx.doi.org/10.1002/adma.202005910]
[74]
Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X.Y. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. Small, 2019, 15(31), 1901558.
[http://dx.doi.org/10.1002/smll.201901558] [PMID: 31116907]
[75]
Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27), 5474-5491.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[76]
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7), 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[77]
Singh, A.; Hede, S.; Sastry, M. Spider silk as an active scaffold in the assembly of gold nanoparticles and application of the gold-silk bioconjugate in vapor sensing. Small, 2007, 3(3), 466-473.
[http://dx.doi.org/10.1002/smll.200600413] [PMID: 17318808]
[78]
Sun, L.; Zhou, Z.; Qin, N.; Tao, T.H. Transient multi-mode silk memory devices. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea (South), Jan. 27-31, IEEE., 2019, pp. 519-521.
[http://dx.doi.org/10.1109/MEMSYS.2019.8870696]
[79]
Hwang, S.W.; Tao, H.; Kim, D.H.; Cheng, H.; Song, J.K.; Rill, E.; Brenckle, M.A.; Panilaitis, B.; Won, S.M.; Kim, Y.S.; Song, Y.M.; Yu, K.J.; Ameen, A.; Li, R.; Su, Y.; Yang, M.; Kaplan, D.L.; Zakin, M.R.; Slepian, M.J.; Huang, Y.; Omenetto, F.G.; Rogers, J.A. A physically transient form of silicon electronics. Science, 2012, 337(6102), 1640-1644.
[http://dx.doi.org/10.1126/science.1226325] [PMID: 23019646]
[80]
Toffanin, S.; Kim, S.; Cavallini, S.; Natali, M.; Benfenati, V.; Amsden, J.J.; Kaplan, D.L.; Zamboni, R.; Muccini, M.; Omenetto, F.G. Low-threshold blue lasing from silk fibroin thin films. Appl. Phys. Lett., 2012, 101(9), 091110.
[http://dx.doi.org/10.1063/1.4748120]
[81]
Jung, H.; Min, K.; Jeon, H.; Kim, S. Physically transient distributed feedback laser using optically activated silk bio-ink. Adv. Opt. Mater., 2016, 4(11), 1738-1743.
[http://dx.doi.org/10.1002/adom.201600369]
[82]
Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci., 2007, 32(8-9), 991-1007.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.013] [PMID: 19543442]
[83]
Murphy, A.R.; Kaplan, D.L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem., 2009, 19(36), 6443-6450.
[http://dx.doi.org/10.1039/b905802h] [PMID: 20161439]
[84]
Cai, X.; Zhou, Z.; Tao, T.H. Programmable vanishing multifunctional optics. Adv. Sci. (Weinh.), 2019, 6(4), 1801746.
[http://dx.doi.org/10.1002/advs.201801746] [PMID: 30828536]
[85]
Min, K.; Kim, S.; Kim, C.G.; Kim, S. Colored and fluorescent nanofibrous silk as a physically transient chemosensor and vitamin deliverer. Sci. Rep., 2017, 7(1), 5448.
[http://dx.doi.org/10.1038/s41598-017-05842-8] [PMID: 28710484]
[86]
Kundu, S.C.; Kundu, B.; Talukdar, S.; Bano, S.; Nayak, S.; Kundu, J.; Mandal, B.B.; Bhardwaj, N.; Botlagunta, M.; Dash, B.C.; Acharya, C.; Ghosh, A.K. Nonmulberry silk biopolymers. Biopolymers, 2012, 97(6), 455-467.
[http://dx.doi.org/10.1002/bip.22024] [PMID: 22241173]
[87]
Vollrath, F.; Porter, D. Spider silk as a model biomaterial. Appl. Phys., A Mater. Sci. Process., 2006, 82(2), 205-212.
[http://dx.doi.org/10.1007/s00339-005-3437-4]
[88]
Arslan, Y.E.; Ozudogru, E.; Sezgin Arslan, T.; Derkus, B.; Emregul, E.; Emregul, K.C. Sophisticated biocomposite scaffolds from renewable biomaterials for bone tissue engineering. In: Regenerative Medicine and Plastic Surgery; Duscher, D.; Shiffman, M.A., Eds.; Springer: Chem., 2019; pp. 17-31.
[http://dx.doi.org/10.1007/978-3-030-19958-6_4]
[89]
Mahendran, B.; Acharya, C.; Dash, R.; Ghosh, S.K.; Kundu, S.C. Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene, 2006, 370, 51-57.
[http://dx.doi.org/10.1016/j.gene.2005.11.010] [PMID: 16455212]
[90]
Hu, Y.; Zhang, Q.; You, R.; Wang, L.; Li, M. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv. Mater. Sci. Eng., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/185905]
[91]
Rnjak-Kovacina, J.; Wray, L.S.; Burke, K.A.; Torregrosa, T.; Golinski, J.M.; Huang, W.; Kaplan, D.L. Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater. Sci. Eng., 2015, 1(4), 260-270.
[http://dx.doi.org/10.1021/ab500149p] [PMID: 25984573]
[92]
Kumar, J.P.; Mandal, B.B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic. Biol. Med., 2017, 108, 803-818.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.002] [PMID: 28476503]
[93]
Kunz, R.I. Brancalhمo, R.M.C.; Ribeiro, L.F.C.; Natali, M.R.M. d, F.C.;& Natali, M.R.M.Silkworm sericin: Properties and biomedical applications. BioMed Res. Int., 2016, 2016, 1-19.
[http://dx.doi.org/10.1155/2016/8175701] [PMID: 27965981]
[94]
Cai, Y.; Guo, J.; Chen, C.; Yao, C.; Chung, S.M.; Yao, J.; Lee, I.S.; Kong, X. Silk fibroin membrane used for guided bone tissue regeneration. Mater. Sci. Eng. C, 2017, 70(Pt 1), 148-154.
[http://dx.doi.org/10.1016/j.msec.2016.08.070] [PMID: 27770874]
[95]
Kumar, J.P.; Alam, S.; Jain, A.K.; Ansari, K.M.; Mandal, B.B. Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl. Bio Mater., 2018, 1(6), 2120-2132.
[http://dx.doi.org/10.1021/acsabm.8b00558] [PMID: 34996273]
[96]
Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev., 2013, 65(4), 457-470.
[http://dx.doi.org/10.1016/j.addr.2012.09.043] [PMID: 23137786]
[97]
Bandyopadhyay, A.; Chowdhury, S.K.; Dey, S.; Moses, J.C.; Mandal, B.B. Silk: A promising biomaterial opening new vistas towards affordable healthcare solutions. J. Indian Inst. Sci., 2019, 99(3), 445-487.
[http://dx.doi.org/10.1007/s41745-019-00114-y]
[98]
Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther., 2018, 12, 3117-3145.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[99]
Li, X.; Liu, Y.; Zhang, J.; You, R.; Qu, J.; Li, M. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing. Mater. Sci. Eng. C, 2017, 72, 394-404.
[http://dx.doi.org/10.1016/j.msec.2016.11.085] [PMID: 28024602]
[100]
Sheikh, F.A.; Ju, H.W.; Lee, J.M.; Moon, B.M.; Park, H.J.; Lee, O.J.; Kim, J.H.; Kim, D.K.; Park, C.H. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine, 2015, 11(3), 681-691.
[http://dx.doi.org/10.1016/j.nano.2014.11.007] [PMID: 25555351]
[101]
Vidal, S.E.L.; Tamamoto, K.A.; Nguyen, H.; Abbott, R.D.; Cairns, D.M.; Kaplan, D.L. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials, 2019, 198, 194-203.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.044] [PMID: 29709325]
[102]
Hou, X.; Mu, L.; Chen, F.; Hu, X. Emerging investigator series: design of hydrogel nanocomposites for the detection and removal of pollutants: from nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environ. Sci. Nano, 2018, 5(10), 2216-2240.
[http://dx.doi.org/10.1039/C8EN00552D]
[103]
Nezhad-Mokhtari, P.; Ghorbani, M.; Roshangar, L.; Soleimani Rad, J. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int. J. Biol. Macromol., 2019, 139, 760-772.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.047] [PMID: 31400425]
[104]
Bang, S.; Ko, Y.G.; Kim, W.I.; Cho, D.; Park, W.H.; Kwon, O.H. Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int. J. Biol. Macromol., 2017, 105(Pt 1), 886-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.103] [PMID: 28729217]
[105]
Hoang Thi, T.T.; Lee, Y.; Le Thi, P.; Park, K.D. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. J. Ind. Eng. Chem., 2019, 78, 34-52.
[http://dx.doi.org/10.1016/j.jiec.2019.05.026]
[106]
Partlow, B.P.; Hanna, C.W.; Rnjak-Kovacina, J.; Moreau, J.E.; Applegate, M.B.; Burke, K.A.; Marelli, B.; Mitropoulos, A.N.; Omenetto, F.G.; Kaplan, D.L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater., 2014, 24(29), 4615-4624.
[http://dx.doi.org/10.1002/adfm.201400526] [PMID: 25395921]
[107]
Xiong, R.; Grant, A.M.; Ma, R.; Zhang, S.; Tsukruk, V.V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Mater. Sci. Eng. Rep., 2018, 125, 1-41.
[http://dx.doi.org/10.1016/j.mser.2018.01.002]
[108]
Qian, L.; Zhang, H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol., 2011, 86(2), 172-184.
[http://dx.doi.org/10.1002/jctb.2495]
[109]
Maleki, H.; Huesing, N. Silica-silk fibroin hybrid (bio)aerogels: two-step versus one-step hybridization. J. Sol-Gel Sci. Technol., 2021, 98(2), 430-438.
[http://dx.doi.org/10.1007/s10971-019-04933-4] [PMID: 34720431]
[110]
Mandal, B.B.; Kundu, S.C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 2009, 30(15), 2956-2965.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.006] [PMID: 19249094]
[111]
Mu, X.; Wang, Y.; Guo, C.; Li, Y.; Ling, S.; Huang, W.; Cebe, P.; Hsu, H.H.; De Ferrari, F.; Jiang, X.; Xu, Q.; Balduini, A.; Omenetto, F.G.; Kaplan, D.L. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol. Biosci., 2020, 20(1), 1900191.
[http://dx.doi.org/10.1002/mabi.201900191] [PMID: 31433126]
[112]
Rodriguez, M.J.; Dixon, T.A.; Cohen, E.; Huang, W.; Omenetto, F.G.; Kaplan, D.L. 3D freeform printing of silk fibroin. Acta Biomater., 2018, 71, 379-387.
[http://dx.doi.org/10.1016/j.actbio.2018.02.035] [PMID: 29550442]
[113]
Jose, R.R.; Brown, J.E.; Polido, K.E.; Omenetto, F.G.; Kaplan, D.L. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater. Sci. Eng., 2015, 1(9), 780-788.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00160] [PMID: 33445255]
[114]
Sommer, M.R.; Schaffner, M.; Carnelli, D.; Studart, A.R. 3D printing of hierarchical silk fibroin structures. ACS Appl. Mater. Interfaces, 2016, 8(50), 34677-34685.
[http://dx.doi.org/10.1021/acsami.6b11440] [PMID: 27933765]
[115]
Brown, J.E.; Moreau, J.E.; Berman, A.M.; McSherry, H.J.; Coburn, J.M.; Schmidt, D.F.; Kaplan, D.L. Shape memory silk protein sponges for minimally invasive tissue regeneration. Adv. Healthc. Mater., 2017, 6(2), 1600762.
[http://dx.doi.org/10.1002/adhm.201600762] [PMID: 27863133]
[116]
Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L. Injectable silk foams for soft tissue regeneration. Adv. Healthc. Mater., 2015, 4(3), 452-459.
[http://dx.doi.org/10.1002/adhm.201400506] [PMID: 25323438]
[117]
Chambre, L.; Parker, R.N.; Allardyce, B.J.; Valente, F.; Rajkhowa, R.; Dilley, R.J.; Wang, X.; Kaplan, D.L. Tunable biodegradable silk-based memory foams with controlled release of antibiotics. ACS Appl. Bio Mater., 2020, 3(4), 2466-2472.
[http://dx.doi.org/10.1021/acsabm.0c00186] [PMID: 35025296]
[118]
Ornell, K.J.; Taylor, J.S.; Zeki, J.; Ikegaki, N.; Shimada, H.; Coburn, J.M.; Chiu, B. Local delivery of dinutuximab from lyophilized silk fibroin foams for treatment of an orthotopic neuroblastoma model. Cancer Med., 2020, 9(8), 2891-2903.
[http://dx.doi.org/10.1002/cam4.2936] [PMID: 32096344]
[119]
Belda Marín, C.; Fitzpatrick, V.; Kaplan, D.L.; Landoulsi, J.; Guénin, E.; Egles, C. Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials. Front Chem., 2020, 8, 604398.
[http://dx.doi.org/10.3389/fchem.2020.604398] [PMID: 33335889]
[120]
Lu, S.; Wang, X.; Lu, Q.; Zhang, X.; Kluge, J.A.; Uppal, N.; Omenetto, F.; Kaplan, D.L. Insoluble and flexible silk films containing glycerol. Biomacromolecules, 2010, 11(1), 143-150.
[http://dx.doi.org/10.1021/bm900993n] [PMID: 19919091]
[121]
Zhou, J.; Zhang, B.; Shi, L.; Zhong, J.; Zhu, J.; Yan, J.; Wang, P.; Cao, C.; He, D. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(24), 21813-21821.
[http://dx.doi.org/10.1021/am502278b] [PMID: 25536875]
[122]
Stinson, J.A.; Palmer, C.R.; Miller, D.P.; Li, A.B.; Lightner, K.; Jost, H.; Weldon, W.C.; Oberste, M.S.; Kluge, J.A.; Kosuda, K.M. Thin silk fibroin films as a dried format for temperature stabilization of inactivated polio vaccine. Vaccine, 2020, 38(7), 1652-1660.
[http://dx.doi.org/10.1016/j.vaccine.2019.12.062] [PMID: 31959422]
[123]
Lawrence, B.D.; Marchant, J.K.; Pindrus, M.A.; Omenetto, F.G.; Kaplan, D.L. Silk film biomaterials for cornea tissue engineering. Biomaterials, 2009, 30(7), 1299-1308.
[http://dx.doi.org/10.1016/j.biomaterials.2008.11.018] [PMID: 19059642]
[124]
Gil, E.S.; Mandal, B.B.; Park, S.H.; Marchant, J.K.; Omenetto, F.G.; Kaplan, D.L. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials, 2010, 31(34), 8953-8963.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.017] [PMID: 20801503]
[125]
Lovett, M.; Cannizzaro, C.; Daheron, L.; Messmer, B.; Vunjak-Novakovic, G.; Kaplan, D.L. Silk fibroin microtubes for blood vessel engineering. Biomaterials, 2007, 28(35), 5271-5279.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.008] [PMID: 17727944]
[126]
Alessandrino, A.; Chiarini, A.; Biagiotti, M.; Dal Prà, I.; Bassani, G.A.; Vincoli, V.; Settembrini, P.; Pierimarchi, P.; Freddi, G.; Armato, U. Three-layered silk fibroin tubular scaffold for the repair and regeneration of small caliber blood vessels: from design to in vivo pilot tests. Front. Bioeng. Biotechnol., 2019, 7, 356.
[http://dx.doi.org/10.3389/fbioe.2019.00356] [PMID: 31850325]
[127]
Belanger, K.; Schlatter, G.; Hébraud, A.; Marin, F.; Testelin, S.; Dakpé, S.; Devauchelle, B.; Egles, C. A multi-layered nerve guidance conduit design adapted to facilitate surgical implantation. Health Sci. Rep., 2018, 1(12), e86.
[http://dx.doi.org/10.1002/hsr2.86] [PMID: 30623049]
[128]
Lan, Y.; Li, W.; Jiao, Y.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns. Acta Biomater., 2014, 10(7), 3167-3176.
[http://dx.doi.org/10.1016/j.actbio.2014.03.029] [PMID: 24704698]
[129]
Li, H.; Zhu, J.; Chen, S.; Jia, L.; Ma, Y. Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Advances, 2017, 7(89), 56550-56558.
[http://dx.doi.org/10.1039/C7RA12394A]
[130]
Lovett, M.L.; Wang, X.; Yucel, T.; York, L.; Keirstead, M.; Haggerty, L.; Kaplan, D.L. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur. J. Pharm. Biopharm., 2015, 95(Pt B), 271-278.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.029] [PMID: 25592326]
[131]
Yucel, T.; Lovett, M.L.; Kaplan, D.L. Silk-based biomaterials for sustained drug delivery. J. Control. Release, 2014, 190, 381-397.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.059] [PMID: 24910193]
[132]
Janani, G.; Kumar, M.; Chouhan, D.; Moses, J.C.; Gangrade, A.; Bhattacharjee, S.; Mandal, B.B. Insight into silk-based biomaterials: From physicochemical attributes to recent biomedical applications. ACS Appl. Bio Mater., 2019, 2(12), 5460-5491.
[http://dx.doi.org/10.1021/acsabm.9b00576] [PMID: 35021544]
[133]
Jhawat, V.C.; Saini, V.; Kamboj, S.; Maggon, N. Transdermal drug delivery systems: approaches and advancements in drug absorption through skin. Int. J. Pharm. Sci. Rev. Res., 2013, 20(1), 47-56.
[134]
Gangrade, A.; Mandal, B.B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater. Sci. Eng., 2019, 5(5), 2365-2381.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00416] [PMID: 33405786]
[135]
Auer, J.A.; Goodship, A.; Arnoczky, S.; Pearce, S.; Price, J.; Claes, L.; von Rechenberg, B.; Hofmann-Amtenbrinck, M.; Schneider, E.; Müller-Terpitz, R.; Thiele, F.; Rippe, K.P.; Grainger, D.W. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet. Disord., 2007, 8(1), 72.
[http://dx.doi.org/10.1186/1471-2474-8-72] [PMID: 17678534]
[136]
Anker, S.D.; Coats, A.J.S.; Cristian, G.; Dragomir, D.; Pusineri, E.; Piredda, M.; Bettari, L.; Dowling, R.; Volterrani, M.; Kirwan, B.A.; Filippatos, G.; Mas, J.L.; Danchin, N.; Solomon, S.D.; Lee, R.J.; Ahmann, F.; Hinson, A.; Sabbah, H.N.; Mann, D.L. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur. Heart J., 2015, 36(34), 2297-2309.
[http://dx.doi.org/10.1093/eurheartj/ehv259] [PMID: 26082085]
[137]
Janani, G.; Pillai, M.M.; Selvakumar, R.; Bhattacharyya, A.; Sabarinath, C. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis. Biofabrication, 2017, 9(1), 015016.
[http://dx.doi.org/10.1088/1758-5090/aa5510] [PMID: 28000609]
[138]
Jewell, M.; Daunch, W.; Bengtson, B.; Mortarino, E. The development of SERI ® Surgical Scaffold, an engineered biological scaffold. Ann. N. Y. Acad. Sci., 2015, 1358(1), 44-55.
[http://dx.doi.org/10.1111/nyas.12886] [PMID: 26376101]
[139]
Almesberger, D.; Zingaretti, N.; Di Loreto, C.; Massarut, S.; Pasqualucci, A.; Parodi, P.C. Seri™: A surgical scaffold for breast reconstruction or for bacterial growth? J. Plast. Reconstr. Aesthet. Surg., 2015, 68(6), 870-871.
[http://dx.doi.org/10.1016/j.bjps.2015.02.012] [PMID: 25733198]
[140]
van Turnhout, A.A.W.M.; Franke, C.J.J.; Vriens-Nieuwenhuis, E.J.C.; van der Sluis, W.B. The use of SERI™ Surgical Scaffolds in direct-to-implant reconstruction after skin-sparing mastectomy: A retrospective study on surgical outcomes and a systematic review of current literature. J. Plast. Reconstr. Aesthet. Surg., 2018, 71(5), 644-650.
[http://dx.doi.org/10.1016/j.bjps.2018.01.002] [PMID: 29398609]
[141]
Ling, S.; Wang, Q.; Zhang, D.; Zhang, Y.; Mu, X.; Kaplan, D.L.; Buehler, M.J. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater., 2018, 28(9), 1705291.
[http://dx.doi.org/10.1002/adfm.201705291] [PMID: 30505261]
[142]
Tao, H.; Brenckle, M.A.; Yang, M.; Zhang, J.; Liu, M.; Siebert, S.M.; Averitt, R.D.; Mannoor, M.S.; McAlpine, M.C.; Rogers, J.A.; Kaplan, D.L.; Omenetto, F.G. Silk-based conformal, adhesive, edible food sensors. Adv. Mater., 2012, 24(8), 1067-1072.
[http://dx.doi.org/10.1002/adma.201103814] [PMID: 22266768]
[143]
Liu, Y.; Tao, L.Q.; Wang, D.Y.; Zhang, T.Y.; Yang, Y.; Ren, T.L. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett., 2017, 110(12), 123508.
[http://dx.doi.org/10.1063/1.4978374]
[144]
Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy, 2016, 164, 57-63.
[http://dx.doi.org/10.1016/j.apenergy.2015.11.038]
[145]
Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. nature, 2004, 428(6986), 911-918.
[146]
Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater., 2014, 26(9), 1336-1342.
[http://dx.doi.org/10.1002/adma.201304248] [PMID: 24347340]
[147]
Zhu, B.; Wang, H.; Leow, W.R.; Cai, Y.; Loh, X.J.; Han, M.Y.; Chen, X. Silk fibroin for flexible electronic devices. Adv. Mater., 2016, 28(22), 4250-4265.
[http://dx.doi.org/10.1002/adma.201504276] [PMID: 26684370]
[148]
Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9(3), 2556-2564.
[http://dx.doi.org/10.1021/nn506394r] [PMID: 25703427]
[149]
Yun, Y.S.; Cho, S.Y.; Shim, J.; Kim, B.H.; Chang, S.J.; Baek, S.J.; Huh, Y.S.; Tak, Y.; Park, Y.W.; Park, S.; Jin, H.J. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater., 2013, 25(14), 1993-1998.
[http://dx.doi.org/10.1002/adma.201204692] [PMID: 23436254]
[150]
Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D.; Kim, H.; Singh, G.; Singh, S.K.; Das, M.; Sharma, R.K. Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochim. Acta, 2015, 160, 244-253.
[http://dx.doi.org/10.1016/j.electacta.2015.02.019]
[151]
Arsenault, A.C.; Puzzo, D.P.; Manners, I.; Ozin, G.A. Photonic-crystal full-colour displays. Nat. Photonics, 2007, 1(8), 468-472.
[http://dx.doi.org/10.1038/nphoton.2007.140]
[152]
Diao, Y.Y.; Liu, X.Y.; Toh, G.W.; Shi, L.; Zi, J. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater., 2013, 23(43), 5373-5380.
[http://dx.doi.org/10.1002/adfm.201203672]
[153]
Burke, K.A.; Brenckle, M.A.; Kaplan, D.L.; Omenetto, F.G. Evaluation of the spectral response of functionalized silk inverse opals as colorimetric immunosensors. ACS Appl. Mater. Interfaces, 2016, 8(25), 16218-16226.
[http://dx.doi.org/10.1021/acsami.6b02215] [PMID: 27322909]
[154]
Zhou, Z.; Shi, Z.; Cai, X.; Zhang, S.; Corder, S.G.; Li, X.; Zhang, Y.; Zhang, G.; Chen, L.; Liu, M.; Kaplan, D.L.; Omenetto, F.G.; Mao, Y.; Tao, Z.; Tao, T.H. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv. Mater., 2017, 29(15), 1605471.
[http://dx.doi.org/10.1002/adma.201605471] [PMID: 28195379]
[155]
Lee, M.J.; Park, Y.; Suh, D.S.; Lee, E.H.; Seo, S.; Kim, D.C.; Jung, R.; Kang, B.S.; Ahn, S.E.; Lee, C.B.; Seo, D.H.; Cha, Y-K.; Yoo, I-K.; Kim, J-S.; Park, B.H. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater., 2007, 19(22), 3919-3923.
[http://dx.doi.org/10.1002/adma.200700251]
[156]
Tsioris, K.; Tilburey, G.E.; Murphy, A.R.; Domachuk, P.; Kaplan, D.L.; Omenetto, F.G. Functionalized-silk-based active optofluidic devices. Adv. Funct. Mater., 2010, 20(7), 1083-1089.
[http://dx.doi.org/10.1002/adfm.200902050]
[157]
Colusso, E.; Perotto, G.; Wang, Y.; Sturaro, M.; Omenetto, F.; Martucci, A. Bioinspired stimuli-responsive multilayer film made of silk–titanate nanocomposites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(16), 3924-3931.
[http://dx.doi.org/10.1039/C7TC00149E]
[158]
Li, Q.; Qi, N.; Peng, Y.; Zhang, Y.; Shi, L.; Zhang, X.; Lai, Y.; Wei, K.; Kim, I.S.; Zhang, K.Q. Sub-micron silk fibroin film with high humidity sensibility through color changing. RSC Advances, 2017, 7(29), 17889-17897.
[http://dx.doi.org/10.1039/C6RA28460D]
[159]
Wu, Z.; Chen, X.; Wang, M.; Dong, J.; Zheng, Y. High-performance ultrathin active chiral metamaterials. ACS Nano, 2018, 12(5), 5030-5041.
[http://dx.doi.org/10.1021/acsnano.8b02566] [PMID: 29708728]
[160]
Mannoor, M.S.; Tao, H.; Clayton, J.D.; Sengupta, A.; Kaplan, D.L.; Naik, R.R.; Verma, N.; Omenetto, F.G.; McAlpine, M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun., 2012, 3(1), 763.
[http://dx.doi.org/10.1038/ncomms1767] [PMID: 22453836]
[161]
Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater., 2009, 21(25-26), 2632-2663.
[http://dx.doi.org/10.1002/adma.200900375]
[162]
Sekitani, T.; Someya, T. Human-friendly organic integrated circuits. Mater. Today, 2011, 14(9), 398-407.
[http://dx.doi.org/10.1016/S1369-7021(11)70184-5]
[163]
Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A natural silk fibroin protein-based transparent biomemristor. Adv. Funct. Mater., 2012, 22(21), 4493-4499.
[http://dx.doi.org/10.1002/adfm.201200073]
[164]
Wang, H.; Zhu, B.; Ma, X.; Hao, Y.; Chen, X. Physically transient resistive switching memory based on silk protein. Small, 2016, 12(20), 2715-2719.
[http://dx.doi.org/10.1002/smll.201502906] [PMID: 27028213]
[165]
Guo, C.; Li, C.; Mu, X.; Kaplan, D.L. Engineering silk materials: From natural spinning to artificial processing. Appl. Phys. Rev., 2020, 7(1), 011313.
[http://dx.doi.org/10.1063/1.5091442] [PMID: 34367402]
[166]
Guidetti, G.; Wang, Y.; Omenetto, F.G. Active optics with silk. Nanophotonics, 2020, 10(1), 137-148.
[http://dx.doi.org/10.1515/nanoph-2020-0358]
[167]
Applegate, M.B.; Perotto, G.; Kaplan, D.L.; Omenetto, F.G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express, 2015, 6(11), 4221-4227.
[http://dx.doi.org/10.1364/BOE.6.004221] [PMID: 26600988]
[168]
Borkner, C.B.; Elsner, M.B.; Scheibel, T. Coatings and films made of silk proteins. ACS Appl. Mater. Interfaces, 2014, 6(18), 15611-15625.
[http://dx.doi.org/10.1021/am5008479] [PMID: 25004395]
[169]
Park, J.; Choi, Y.; Lee, M.; Jeon, H.; Kim, S. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer. Nanoscale, 2015, 7(2), 426-431.
[http://dx.doi.org/10.1039/C4NR05172F] [PMID: 25407052]
[170]
Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Zhou, P.; Xu, M. Mechanical properties and application analysis of spider silk bionic material. e-Polymers, 2020, 20(1), 443-457.
[171]
Wang, W.; Zhou, G.; Wang, Y.; Sun, B.; Zhou, M.; Fang, C.; Xu, C.; Dong, J.; Wang, F.; Duan, S.; Song, Q. An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(41), 14583-14588.
[http://dx.doi.org/10.1039/D1TC03315H]
[172]
Amsden, J.J.; Perry, H.; Boriskina, S.V.; Gopinath, A.; Kaplan, D.L.; Dal Negro, L.; Omenetto, F.G. Spectral analysis of induced color change on periodically nanopatterned silk films. Opt. Express, 2009, 17(23), 21271-21279.
[http://dx.doi.org/10.1364/OE.17.021271] [PMID: 19997366]
[173]
Rathore, O.; Sogah, D.Y. Nanostructure formation through β-sheet self-assembly in silk-based materials. Macromolecules, 2001, 34(5), 1477-1486.
[http://dx.doi.org/10.1021/ma001553x]
[174]
Salama, A. Cellulose/silk fibroin assisted calcium phosphate growth: Novel biocomposite for dye adsorption. Int. J. Biol. Macromol., 2020, 165(Pt B), 1970-1977.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.074] [PMID: 33086113]
[175]
Yin, C.; Han, X.; Lu, Q.; Qi, X.; Guo, C.; Wu, X. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds. Int. J. Biol. Macromol., 2022, 201, 14-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.156] [PMID: 34995653]
[176]
Mukherjee, P.; Mishra, N.S.; Saravanan, P. Polydopamine modified silk fibroin 3-D anode for enhanced microbial fuel cell operation. Sustain. Energy Technol. Assess., 2022, 49, 101696.
[http://dx.doi.org/10.1016/j.seta.2021.101696]
[177]
Chen, Y.; Duan, L.; Ma, Y.; Han, Q.; Li, X.; Li, J.; Wang, A.; Bai, S.; Yin, J. Preparation of transient electronic devices with silk fibroin film as a flexible substrate. Colloids Surf. A Physicochem. Eng. Asp., 2020, 600, 124896.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124896]
[178]
Dong, Z.; Wu, D.; Engqvist, H.; Luo, J.; Persson, C. Silk fibroin hydrogels induced and reinforced by acidic calcium phosphate – A simple way of producing bioactive and drug-loadable composites for biomedical applications. Int. J. Biol. Macromol., 2021, 193(Pt A), 433-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.160] [PMID: 34715202]
[179]
Choi, J.H.; Kim, D.K.; Song, J.E.; Oliveira, J.M.; Reis, R.L.; Khang, G. Silk fibroin-based scaffold for bone tissue engineering. In: Novel Biomaterials for Regenerative Medicine; Chun, H.; Park, K.; Kim, C.H.; Khang, G., Eds.; Springer: Singapore, 2018; pp. 371-387.
[http://dx.doi.org/10.1007/978-981-13-0947-2_20]
[180]
Tow, K.H.; Chow, D.M.; Vollrath, F.; Dicaire, I.; Gheysens, T.; Thévenaz, L. April. Towards a new generation of fibre-optic chemical sensors based on spider silk threads. 25th Optical Fiber Sensors Conference, Jeju, Korea (South), April 24-28, 2017, IEEE, 2017, pp. 1-4.
[181]
Zheng, K.; Zhong, J.; Qi, Z.; Ling, S.; Kaplan, D.L. Isolation of silk mesostructures for electronic and environmental applications. Adv. Funct. Mater., 2018, 28(51), 1806380.
[http://dx.doi.org/10.1002/adfm.201806380]
[182]
Ling, S.; Jin, K.; Kaplan, D.L.; Buehler, M.J. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett., 2016, 16(6), 3795-3800.
[http://dx.doi.org/10.1021/acs.nanolett.6b01195] [PMID: 27076389]
[183]
DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol., 2010, 5(2), 91-91.
[http://dx.doi.org/10.1038/nnano.2010.2] [PMID: 20130583]
[184]
Kujala, S.; Mannila, A.; Karvonen, L.; Kieu, K.; Sun, Z. Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties. Sci. Rep., 2016, 6(1), 22358.
[http://dx.doi.org/10.1038/srep22358] [PMID: 26926272]
[185]
Bibbo, L.; Khan, K.; Tareen, A.K. The Silk, Versatile Material for Biological, Optical, and Electronic Fields: Review. Global J. Res. Eng., 2021, 21(F3), 1-30.
[http://dx.doi.org/10.34257/GJREFVOL21IS3PG1]
[186]
Melikov, R.; Press, D.A.; Kumar, B.G.; Dogru, I.B.; Sadeghi, S.; Chirea, M. Yılgör, İ.; Nizamoglu, S. Silk-hydrogel lenses for light-emitting diodes. Sci. Rep., 2017, 7(1), 7258.
[http://dx.doi.org/10.1038/s41598-017-07817-1] [PMID: 28775265]
[187]
Kumar, D.; Shrivastava, S.; Gong, C.; Shukla, S. Silk: An amazing biomaterial for future medication. In: Natural Materials and Products from Insects: Chemistry and Applications; , 2020; pp. 39-49.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy