[1]
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature, 1962, 194, 178-180.
[2]
Balasubramanian, K. Combinatorics, Big Data, Neural Network & AI for Medicinal Chemistry & Drug Administration. Lett. Drug Design Discov., 2021, 18(10), 943-948.
[3]
Uesawa, Y. AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP. Yakugaku Zasshi, 2020, 140(4), 499-505.
[4]
Mao, J.; Akhtar, J.; Zhang, X.; Sun, L.; Guan, S.; Li, X.; Chen, G.; Liu, J.; Jeon, H.N.; Kim, M.S.; No, K.T.; Wang, G. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience, 2021, 24(9), 103052.
[5]
Walters, W.P.; Barzilay, R. Critical assessment of AI in drug discovery. Expert Opin. Drug Discov., 2021, 16(9), 937-947.
[6]
Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N. Cedrón. F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J., 2021, 19, 4538-4558.
[7]
Dewaker, V.; Prabhakar, Y.S. Molecular Dynamics Simulations of HDAC-Ligand Complexes towards the Design of New Anticancer Compounds. Curr. Topics Med. Chem., 2023.
[8]
Noviċ, M. Quantitative Structure Activity/Toxicity Relationship through Neural Networks for Drug Discovery or Regulatory Use. Curr. Topics Med. Chem., 2023.
[9]
Bhatia, K.S.; Gupta, A.K.; Saxena, A.K. Physicochemical significance of Topological indices: Importance in drug discovery research. Curr. Topics Med. Chem., 2023.
[10]
Tsopka, I.C.; Hadjipavlou-Litina, D. QSAR studies of nitric oxide synthase inhibitors. Curr. Topics Med. Chem., 2023.
[11]
Banjare, P.; Matore, B.W.; Murmu, A.; Kumar, V.; Singh, J.; Roy, P.R. In-silico Strategy: A promising implement in the development of multi-target drugs against neurodegenerative diseases. Curr. Topics Med. Chem., 2023.