Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Impact of Benzimidazole Containing Scaffolds as Anticancer Agents through Diverse Modes of Action

Author(s): Shikha Sharma, Muskan Gupta, Mukesh Gupta and Jagdish K. Sahu*

Volume 19, Issue 9, 2023

Published on: 15 May, 2023

Article ID: e060423215472 Pages: 12

DOI: 10.2174/1573407219666230406082148

Open Access Journals Promotions 2
Abstract

Background: Cancer has turned into a health issue that requires the most rapid attention. Because of the disease's global reach and the high number of deaths it causes, research and development of novel anticancer treatments that are both effective and have fewer adverse effects is crucial. According to a 2015 survey by the World Health Organization (WHO), Cancer kills 8.8 million people each year, accounting for 60% of all fatalities.

Objective: Because of its wide variety of biological properties and the widespread usage of benzimidazole as a potent anticancer agent, this study emphasizes the importance of this moiety as an anticancer agent.

Results: The benzimidazole ring structure has a wide range of pharmacological activity in a number of drugs used to treat diseases such as hypertension, malaria, cancer, microbial diseases, inflammatory disorders, and more. Furthermore, this fused heterocycle benzimidazole core may interact with various anions and cations, as well as biomolecules, in the human body, resulting in a wide range of biological activities such as antineoplastic, antibacterial and antifungal, antiinflammatory and analgesic, antihypertensive, antiviral, and antidepressant.

Conclusion: The focus of this review is on recent advances in drug design and development, as well as benzimidazole derivatives and how they work on various sites of action.

Keywords: Cancer, benzimidazole, scaffold, anticancer agents, antiviral, anti-inflammatory.

Graphical Abstract
[1]
Tolner, B.; Hartley, J.A.; Hochhauser, D. Transcriptional regulation of topoisomerase II alpha at confluence and pharmacological modulation of expression by bis-benzimidazole drugs. Mol. Pharmacol., 2001, 59(4), 699-706.
[http://dx.doi.org/10.1124/mol.59.4.699] [PMID: 11259613]
[2]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[3]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[http://dx.doi.org/10.1016/j.bmc.2013.04.018] [PMID: 23643901]
[4]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7(1), 13-23.
[http://dx.doi.org/10.2174/157488512800389164]
[5]
Ali, I.; Wani, W.A.; Saleem, K. Cancer scenario in india with future perspectives. Cancer Ther., 2011, 8, 56-70.
[6]
Ali, I. Rahis-ud-din, S.K.; Aboul-Enein, H.Y. Rather A. Social Aspects of Cancer Genesis. Cancer Ther., 2011, 8, 6-14.
[7]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[8]
Ali, I. Rahis-Uddin; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 135-146.
[http://dx.doi.org/10.2174/156800911794328493] [PMID: 21158724]
[9]
Ali, I.; Rahisuddin, S.K.; Haque, A.; El-Azzouny, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium (III) complexes. Egypt.Pharmaceut. J., 2010, 9, 133-179.
[10]
Hammond, L.A.; Davidson, K.; Lawrence, R.; Camden, J.B.; Von Hoff, D.D.; Weitman, S.; Izbicka, E. Exploring the mechanisms of action of FB642 at the cellular level. J. Cancer Res. Clin. Oncol., 2001, 127(5), 301-313.
[http://dx.doi.org/10.1007/s004320000212] [PMID: 11355145]
[11]
Hao, D.; Rizzo, J.D.; Stringer, S.; Moore, R.V.; Marty, J.; Dexter, D.L.; Mangold, G.L.; Camden, J.B.; Von Hoff, D.D.; Weitman, S.D. Preclinical antitumor activity and pharmacokinetics of methyl-2-benzimidazolecarbamate (FB642). Invest. New Drugs, 2002, 20(3), 261-270.
[http://dx.doi.org/10.1023/A:1016253716438] [PMID: 12201489]
[13]
White, A.W.; Almassy, R.; Calvert, A.H.; Curtin, N.J.; Griffin, R.J.; Hostomsky, Z.; Maegley, K.; Newell, D.R.; Srinivasan, S.; Golding, B.T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem., 2000, 43(22), 4084-4097.
[http://dx.doi.org/10.1021/jm000950v] [PMID: 11063605]
[14]
Haque, R.A.; Iqbal, M.A.; Khadeer Ahamed, M.B.; Majid, A.M.S.A.; Abdul Hameed, Z.A. Design, synthesis and structural studies of meta-xylyl linked bis-benzimidazolium salts: potential anticancer agents against ‘human colon cancer’. Chem. Cent. J., 2012, 6(1), 68.
[http://dx.doi.org/10.1186/1752-153X-6-68] [PMID: 22809051]
[15]
Harkala, K.J.; Eppakayala, L.; Maringanti, T.C. Synthesis and biological evaluation of benzimidazole-linked 1,2,3-triazole congeners as agents. Org. Med. Chem. Lett., 2014, 4(1), 14-18.
[http://dx.doi.org/10.1186/s13588-014-0014-x] [PMID: 26548990]
[16]
Lata, S.; Narasimhan, B. 21st Century: The era of heterocyclic compounds in medicinal chemistry. Narasimhan Balasubramanian.Ed. Lap Lambert Academic Publishing, 2014, 2, 176-259.
[17]
ElRashedy, A.A. AboulEnein, H.Y. Benzimidazole derivatives as potential chemo-therapeutic agents. Curr. Drug Ther., 2013, 8(14), 1-14.
[18]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[19]
Schulz, W.G.; Islam, I.; Skibo, E.B. Pyrrolo[1,2-a]benzimidazole-based quinones and iminoquinones. The role of the 3-substituent on cytotoxicity. J. Med. Chem., 1995, 38(1), 109-118.
[http://dx.doi.org/10.1021/jm00001a016] [PMID: 7837221]
[20]
Aboul-Enein, H.Y.; El Rashedy, A.A. Benzimidazole derivatives as centerally acting agents. Curr. Drug Ther., 2013, 8(10), 145-154.
[21]
Debus, H. Ueber die Einwirkung des Ammoniaks auf Glyoxal. Justus Liebigs Ann. Chem., 1858, 107(2), 199-208.
[http://dx.doi.org/10.1002/jlac.18581070209]
[22]
Hobrecker, F. Ber. Ueber Reductions produkte der Nitracetamid verbindungen. Ber. Dtsch. Chem. Ges., 1872, 5(2), 920-924.
[http://dx.doi.org/10.1002/cber.18720050295]
[23]
Yadav, G.; Ganguly, S. Structure Activity Relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[24]
Achesonr, M.; King, F.E.; Spensleyp, C. Benziminazole analogues of paludrine. Nature, 1947, 53(160), 17.
[25]
Grimmett, M.R. Advances in imidazole chemistry. Adv. Heterocycl. Chem., 1970, 12, 103-183.
[http://dx.doi.org/10.1016/S0065-2725(08)60973-3]
[26]
Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[27]
Alpan, A.S.; Gunes, H.S.; Topcu, Z. 1H-Benzimidazole derivatives as mammalian DNA topoisomerase I inhibitors. Acta Biochim. Pol., 2007, 54(3), 561-565.
[http://dx.doi.org/10.18388/abp.2007_3229] [PMID: 17823665]
[28]
Ramla, M.M.; Omar, M.A.; Tokuda, H.; El-Diwani, H.I. Synthesis and inhibitory activity of new benzimidazole derivatives against Burkitt’s lymphoma promotion. Bioorg. Med. Chem., 2007, 15(19), 6489-6496.
[http://dx.doi.org/10.1016/j.bmc.2007.04.010] [PMID: 17643992]
[29]
Gao, C.; Li, B.; Zhang, B.; Sun, Q.; Li, L.; Li, X.; Chen, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2015, 23(8), 1800-1807.
[http://dx.doi.org/10.1016/j.bmc.2015.02.036] [PMID: 25778766]
[30]
Pandey, S.; Tripathi, P.; Parashar, P.; Maurya, V.; Malik, M.Z.; Singh, R.; Yadav, P.; Tandon, V. Synthesis and biological evaluation of novel 1 H -Benzo[ d]imidazole derivatives as potential anticancer agents targeting human topoisomerase I. ACS Omega, 2022, 7(3), 2861-2880.
[http://dx.doi.org/10.1021/acsomega.1c05743] [PMID: 35097282]
[31]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Photosynthetic stages and light-absorbing pigments. In: Molecular Cell Biology, 4th Edition; W.H. Freeman: New York, 2000.
[32]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[33]
Huang, S.T.; Hsei, I.J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg. Med. Chem., 2006, 14(17), 6106-6119.
[http://dx.doi.org/10.1016/j.bmc.2006.05.007] [PMID: 16714116]
[34]
Zhou, W.; Zhang, W. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase II catalytic inhibitors. Molecules, 2020, 25(14), 3180.
[35]
Siddik, Z.H. The Handbook of Cancer; The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA, 2005, pp. 1-3.
[36]
Demirayak, Ş.; Abu Mohsen, U.; Çağri Karaburun, A. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives. Eur. J. Med. Chem., 2002, 37(3), 255-260.
[http://dx.doi.org/10.1016/S0223-5234(01)01313-7] [PMID: 11900869]
[37]
He, X.F.; Vogels, C.M.; Decken, A.; Westcott, S.A. Pyridyl benzimidazole, benzoxazole, and benzothiazole platinum complexes. Polyhedron, 2004, 23(1), 155-160.
[http://dx.doi.org/10.1016/j.poly.2003.09.020]
[38]
Kamal, A.; Ramulu, P.; Srinivas, O.; Ramesh, G.; Kumar, P.P. Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine–benzimidazole conjugates with remarkable DNA-binding affinity. Bioorg. Med. Chem. Lett., 2004, 14(18), 4791-4794.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.069] [PMID: 15324909]
[39]
Le Sann, C.; Baron, A.; Mann, J.; van den Berg, H.; Gunaratnam, M.; Neidle, S. New mustard-linked 2-aryl-bis-benzimidazoles with anti-proliferative activity. Org. Biomol. Chem., 2006, 4(7), 1305-1312.
[http://dx.doi.org/10.1039/b600567e] [PMID: 16557319]
[40]
Gellis, A.; Kovacic, H.; Boufatah, N.; Vanelle, P. Synthesis and cytotoxicity evaluation of some benzimidazole-4,7-diones as bioreductive anticancer agents. Eur. J. Med. Chem., 2008, 43(9), 1858-1864.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.020] [PMID: 18222567]
[41]
Gowda, N.R.T.; Kavitha, C.V.; Chiruvella, K.K.; Joy, O.; Rangappa, K.S.; Raghavan, S.C. Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg. Med. Chem. Lett., 2009, 19(16), 4594-4600.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.103] [PMID: 19616939]
[42]
Fu, X.B.; Lin, Z.H.; Liu, H.F.; Le, X.Y. A new ternary copper(II) complex derived from 2-(2′-pyridyl)benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 122, 22-33.
[http://dx.doi.org/10.1016/j.saa.2013.11.006] [PMID: 24291450]
[43]
Lu, N.Z.; Wardell, S.E.; Burnstein, K.L.; Defranco, D.; Fuller, P.J.; Giguere, V.; Hochberg, R.B.; McKay, L.; Renoir, J.M.; Weigel, N.L.; Wilson, E.M.; McDonnell, D.P.; Cidlowski, J.A. Thepharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev., 2006, 58, 782-797.
[http://dx.doi.org/10.1124/pr.58.4.9] [PMID: 17132855]
[44]
Roy, A.K.; Lavrovsky, Y.; Song, C.S.; Chen, S.; Jung, M.H.; Velu, N.K.; Bi, B.Y.; Chatterjee, B. Regulation of androgen action. Vitam. Horm., 1998, 55, 309-352.
[http://dx.doi.org/10.1016/S0083-6729(08)60938-3] [PMID: 9949684]
[45]
Heemers, H.V.; Tindall, D.J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev., 2007, 28(7), 778-808.
[http://dx.doi.org/10.1210/er.2007-0019] [PMID: 17940184]
[46]
Rathkopf, D.; Scher, H.I. Androgen receptor antagonists in castration-resistant prostate cancer. Cancer J., 2013, 19(1), 43-49.
[http://dx.doi.org/10.1097/PPO.0b013e318282635a] [PMID: 23337756]
[47]
Ng, R.A.; Guan, J.; Alford, V.C., Jr; Lanter, J.C.; Allan, G.F.; Sbriscia, T.; Linton, O.; Lundeen, S.G.; Sui, Z. Synthesis and SAR of potent and selective androgen receptor antagonists: 5,6-Dichloro-benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2007, 17(3), 784-788.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.071] [PMID: 17095226]
[48]
Ng, R.A.; Lanter, J.C.; Alford, V.C.; Allan, G.F.; Sbriscia, T.; Lundeen, S.G.; Sui, Z. Synthesis of potent and tissue-selective androgen receptor modulators (SARMs): 2-(2,2,2)-Trifluoroethyl-benzimidazole scaffold. Bioorg. Med. Chem. Lett., 2007, 17(6), 1784-1787.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.045] [PMID: 17197181]
[49]
Munuganti, R.S.N.; Leblanc, E.; Axerio-Cilies, P.; Labriere, C.; Frewin, K.; Singh, K.; Hassona, M.D.H.; Lack, N.A.; Li, H.; Ban, F.; Tomlinson Guns, E.; Young, R.; Rennie, P.S.; Cherkasov, A. Targeting the binding function 3 (BF3) site of the androgen receptor through virtual screening. 2. development of 2-((2-phenoxyethyl) thio)-1H-benzimidazole derivatives. J. Med. Chem., 2013, 56(3), 1136-1148.
[http://dx.doi.org/10.1021/jm3015712] [PMID: 23301637]
[50]
Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr., 2014, 24(1), 15-28.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875] [PMID: 24579667]
[51]
Buisson, R.; Dion-Côté, A.M.; Coulombe, Y.; Launay, H.; Cai, H.; Stasiak, A.Z.; Stasiak, A.; Xia, B.; Masson, J.Y. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol., 2010, 17(10), 1247-1254.
[http://dx.doi.org/10.1038/nsmb.1915] [PMID: 20871615]
[52]
Zhu, G.D.; Gandhi, V.B.; Gong, J.; Thomas, S.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, F.E.; Frost, D.; Donawho, C.; Jarvis, K.; Bouska, J.; Marsh, K.C.; Rosenberg, S.H.; Giranda, V.L.; Penning, T.D. Synthesis and SAR of novel, potent and orally bioavailable benzimidazoleinhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent. Bioorg. Med. Chem. Lett., 2008, 18, 3955-3958.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.023] [PMID: 18586490]
[53]
Tong, Y.; Bouska, J.J.; Ellis, P.A.; Johnson, E.F.; Leverson, J.; Liu, X.; Marcotte, P.A.; Olson, A.M.; Osterling, D.J.; Przytulinska, M.; Rodriguez, L.E.; Shi, Y.; Soni, N.; Stavropoulos, J.; Thomas, S.; Donawho, C.K.; Frost, D.J. Luo,Y.; Giranda, V.L. Penning, T.D. Synthesis and Evaluation of a New Generation of Orally Efficacious Benzimidazole-BasedPoly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors as Anticancer Agents. J. Med. Chem., 2009, 52, 6803-6813.
[http://dx.doi.org/10.1021/jm900697r] [PMID: 19888760]
[54]
Pantić, D.N.; Aranđelović, S.; Radulović, S.; Roller, A.; Arion, V.B.; Grgurić-Šipka, S. Synthesis, characterisation and cytotoxic activity of organoruthenium(II)-halido complexes with 1H-benzimidazole-2-carboxylic acid. J. Organomet. Chem., 2016, 819, 61-68.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.024]
[55]
Witt, A.; Bergman, J. Recent Developments in the Field of Quinazoline Chemistry. Curr. Org. Chem., 2003, 7(7), 659-677.
[http://dx.doi.org/10.2174/1385272033486738]
[56]
Davoll, J.; Johnson, A.M. Quinazoline analogues of folic acid. J. Chem. Soc., Perkin Trans. 1, 1970, 8, 997-1002.
[PMID: 5464281]
[57]
Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19(56), 6550-6565.
[http://dx.doi.org/10.1038/sj.onc.1204082] [PMID: 11426640]
[58]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[59]
LaBarbera, D.V.; Skibo, E.B. Synthesis of imidazo[1,5,4-de]quinoxalin-9-ones, benzimidazole analogues of pyrroloiminoquinone marine natural products. Bioorg. Med. Chem., 2005, 13(2), 387-395.
[http://dx.doi.org/10.1016/j.bmc.2004.10.016] [PMID: 15598560]
[60]
Yadav, S.; Sinha, D.; Singh, S.K.; Singh, V.K. Novel benzimidazole analogs as inhibitors of EGFR tyrosine kinase. Chem. Biol. Drug Des., 2012, 80(4), 625-630.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01407.x] [PMID: 22564276]
[61]
Łukowska-Chojnacka, E.; Wińska, P.; Wielechowska, M.; Poprzeczko, M.; Bretner, M. Synthesis of novel polybrominated benzimidazole derivatives—potential CK2 inhibitors with anticancer and proapoptotic activity. Bioorg. Med. Chem., 2016, 24(4), 735-741.
[http://dx.doi.org/10.1016/j.bmc.2015.12.041] [PMID: 26778657]
[62]
Denu, J.M.; Dixon, J.E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol., 1998, 2(5), 633-641.
[http://dx.doi.org/10.1016/S1367-5931(98)80095-1] [PMID: 9818190]
[63]
Goebel-Goody, S.M.; Wilson-Wallis, E.D.; Royston, S.; Tagliatela, S.M.; Naegele, J.R.; Lombroso, P.J. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav., 2012, 11(5), 586-600.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00781.x] [PMID: 22405502]
[64]
Habala, L.; Bartel, C.; Giester, G.; Jakupec, M.A.; Keppler, B.K.; Rompel, A. Complexes of N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid with group 12 metals and vanadium—Synthesis, structure and bioactivity of the vanadium complex. J. Inorg. Biochem., 2015, 147, 147-152.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.04.004] [PMID: 25920686]
[65]
Chen, M.J.; Shimada, T.; Moulton, A.D.; Harrison, M.; Nienhuis, A.W. Intronless human dihydrofolate reductase genes are derived from processed RNA molecules. Proc. Natl. Acad. Sci., 1982, 79(23), 7435-7439.
[http://dx.doi.org/10.1073/pnas.79.23.7435] [PMID: 6961421]
[66]
Huennekens, F.M. The methotrexate story: A paradigm for development of cancer chemotherapeutic agents. Adv. Enzyme Regul., 1994, 34, 397-419.
[http://dx.doi.org/10.1016/0065-2571(94)90025-6] [PMID: 7942284]
[67]
McGuire, J. Anticancer antifolates: current status and future directions. Curr. Pharm. Des., 2003, 9(31), 2593-2613.
[http://dx.doi.org/10.2174/1381612033453712] [PMID: 14529544]
[68]
Singla, P.; Luxami, V.; Paul, K. Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012] [PMID: 25792141]
[69]
Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R.B.G.; Knossow, M. Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top. Curr. Chem., 2008, 286, 259-278.
[http://dx.doi.org/10.1007/128_2008_11] [PMID: 23563615]
[70]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[71]
Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatin-benzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res., 2011, 34(10), 1615-1621.
[http://dx.doi.org/10.1007/s12272-011-1005-3] [PMID: 22076761]
[72]
Wang, W.; Kong, D.; Cheng, H.; Tan, L.; Zhang, Z.; Zhuang, X.; Long, H.; Zhou, Y.; Xu, Y.; Yang, X.; Ding, K. New benzimidazole-2-urea derivates as tubulin inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4250-4253.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.035] [PMID: 25091926]
[73]
Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur. J. Med. Chem., 2014, 87, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.071] [PMID: 25262051]
[74]
Kamal, A.; Rao, A.V.S.; Nayak, V.L.; Reddy, N.V.S.; Swapna, K.; Ramakrishna, G.; Alvala, M. Synthesis and biological evaluation of imidazo[1,5-a]pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Org. Biomol. Chem., 2014, 12(48), 9864-9880.
[http://dx.doi.org/10.1039/C4OB01930J] [PMID: 25354805]
[75]
Abdullah, I.; Chee, C.F.; Lee, Y.K.; Thunuguntla, S.S.R.; Satish Reddy, K.; Nellore, K.; Antony, T.; Verma, J.; Mun, K.W.; Othman, S.; Subramanya, H.; Rahman, N.A. Benzimidazole derivatives as potential dual inhibitors for PARP-1 and DHODH. Bioorg. Med. Chem., 2015, 23(15), 4669-4680.
[http://dx.doi.org/10.1016/j.bmc.2015.05.051] [PMID: 26088338]
[76]
Abd El-All, A.S.; Magd-El-Din, A.A.; Ragab, F.A.F.; ElHefnawi, M.; Abdalla, M.M.; Galal, S.A.; El-Rashedy, A.A. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities. Arch. Pharm., 2015, 348(7), 475-486.
[http://dx.doi.org/10.1002/ardp.201400441] [PMID: 25900113]
[77]
Kamal, A.; Nagaseshadri, B.; Nayak, V.L.; Srinivasulu, V.; Sathish, M.; Kapure, J.S.; Suresh Reddy, C. Synthesis and biological evaluation of benzimidazole–oxindole conjugates as microtubule-targeting agents. Bioorg. Chem., 2015, 63, 72-84.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.003] [PMID: 26469740]
[78]
Kamal, A.; Shaik, A.B.; Polepalli, S.; Kumar, G.B.; Reddy, V.S.; Mahesh, R.; Garimella, S.; Jain, N. Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg. Med. Chem., 2015, 23(5), 1082-1095.
[http://dx.doi.org/10.1016/j.bmc.2015.01.004] [PMID: 25648686]
[79]
Wang, Y.T.; Qin, Y.J.; Yang, N.; Zhang, Y.L.; Liu, C.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.021] [PMID: 26070164]
[80]
Kamal, A.; Reddy, T.S.; Vishnuvardhan, M.V.P.S.; Nimbarte, V.D.; Subba Rao, A.V.; Srinivasulu, V.; Shankaraiah, N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2015, 23(15), 4608-4623.
[http://dx.doi.org/10.1016/j.bmc.2015.05.060] [PMID: 26169762]
[81]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]

© 2024 Bentham Science Publishers | Privacy Policy