Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy

Author(s): Jiaming Luo, Lei Zeng, Ji Li, Shiyuan Xu* and Wei Zhao*

Volume 21, Issue 10, 2023

Published on: 27 June, 2023

Page: [2134 - 2150] Pages: 17

DOI: 10.2174/1570159X21666230404102122

Price: $65

Abstract

Objective: Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention.

Methods: Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes.

Results: The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice.

Conclusion: Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.

Keywords: Autophagy flux, bupivacaine, neurotoxicity, PARP-1, pregnancy, neuronal DNA damage.

Graphical Abstract
[1]
Moen, V.; Irestedt, L. Neurological complications following central neuraxial blockades in obstetrics. Curr. Opin. Anaesthesiol., 2008, 21(3), 275-280.
[http://dx.doi.org/10.1097/ACO.0b013e3282f8e22f] [PMID: 18458541]
[2]
Viitanen, H.; Porthan, L.; Viitanen, M.; Heula, A-L.; Heikkilä, M. Postpartum neurologic symptoms following single-shot spinal block for labour analgesia. Acta Anaesthesiol. Scand., 2005, 49(7), 1015-1022.
[http://dx.doi.org/10.1111/j.1399-6576.2005.00720.x] [PMID: 16045665]
[3]
Forget, P.; Borovac, J.A.; Thackeray, E.M.; Pace, N.L. Transient neurological symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics in adult surgical patients: A network meta-analysis. Cochrane Libr., 2019, 12(12), CD003006.
[http://dx.doi.org/10.1002/14651858.CD003006.pub4] [PMID: 31786810]
[4]
Rorarius, M.; Suominen, P.; HaanpÄÄ, M.; Puura, A.; Baer, G.; Pajunen, P.; Tuimala, R. Neurologic sequelae after caesarean section. Acta Anaesthesiol. Scand., 2001, 45(1), 34-41.
[http://dx.doi.org/10.1034/j.1399-6576.2001.450106.x] [PMID: 11152030]
[5]
Liu, Z.; Zhao, W.; Yuan, P.; Zhu, P.; Fan, K.; Xia, Z.; Xu, S. The mechanism of CaMK2α-MCU-mitochondrial oxidative stress in bupivacaine-induced neurotoxicity. Free Radic. Biol. Med., 2020, 152, 363-374.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.04.002] [PMID: 32275945]
[6]
Toboła-Wróbel, K.; Pietryga, M.; Dydowicz, P.; Napierała, M.; Brązert, J.; Florek, E. Association of oxidative stress on pregnancy. Oxid. Med. Cell. Longev., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6398520] [PMID: 33014274]
[7]
Filev, A.D.; Shmarina, G.V.; Ershova, E.S.; Veiko, N.N.; Martynov, A.V.; Borzikova, M.A.; Poletkina, A.A.; Dolgikh, O.A.; Veiko, V.P.; Bekker, A.A.; Chirkov, A.V.; Volynshchikov, Z.N.; Deviataikina, A.S.; Shashin, D.M.; Puretskiy, V.K.; Tabakov, V.J.; Izhevskaya, V.L.; Kutsev, S.I.; Kostyuk, S.V.; Umriukhin, P.E. Oxidized cell-free DNA role in the antioxidant defense mechanisms under stress. Oxid. Med. Cell. Longev., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/1245749] [PMID: 31360293]
[8]
Kumar, N.; Raja, S.; Van Houten, B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res., 2020, 48(20), 11227-11243.
[http://dx.doi.org/10.1093/nar/gkaa777] [PMID: 33010169]
[9]
Naumann, M.; Pal, A.; Goswami, A.; Lojewski, X.; Japtok, J.; Vehlow, A.; Naujock, M.; Günther, R.; Jin, M.; Stanslowsky, N.; Reinhardt, P.; Sterneckert, J.; Frickenhaus, M.; Pan-Montojo, F.; Storkebaum, E.; Poser, I.; Freischmidt, A.; Weishaupt, J.H.; Holzmann, K.; Troost, D.; Ludolph, A.C.; Boeckers, T.M.; Liebau, S.; Petri, S.; Cordes, N.; Hyman, A.A.; Wegner, F.; Grill, S.W.; Weis, J.; Storch, A.; Hermann, A. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun., 2018, 9(1), 335.
[http://dx.doi.org/10.1038/s41467-017-02299-1] [PMID: 29362359]
[10]
Yang, M.; Liu, L.; Xie, M.; Sun, X.; Yu, Y.; Kang, R.; Yang, L.; Zhu, S.; Cao, L.; Tang, D. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy, 2015, 11(2), 214-224.
[http://dx.doi.org/10.4161/15548627.2014.994400] [PMID: 25607248]
[11]
Jang, K.H.; Hwang, Y.; Kim, E. PARP1 Impedes SIRT1-mediated autophagy during degeneration of the retinal pigment epithelium under oxidative stress. Mol. Cells, 2020, 43(7), 632-644.
[PMID: 32732457]
[12]
Rivat, C.; Sar, C.; Mechaly, I.; Leyris, J.P.; Diouloufet, L.; Sonrier, C.; Philipson, Y.; Lucas, O.; Mallié, S.; Jouvenel, A.; Tassou, A.; Haton, H.; Venteo, S.; Pin, J.P.; Trinquet, E.; Charrier-Savournin, F.; Mezghrani, A.; Joly, W.; Mion, J.; Schmitt, M.; Pattyn, A.; Marmigère, F.; Sokoloff, P.; Carroll, P.; Rognan, D.; Valmier, J. Inhibition of neuronal FLT3 receptor tyrosine kinase alleviates peripheral neuropathic pain in mice. Nat. Commun., 2018, 9(1), 1042.
[http://dx.doi.org/10.1038/s41467-018-03496-2] [PMID: 29531216]
[13]
Gao, Y.; Bai, L.; Zhou, W.; Yang, Y.; Zhang, J.; Li, L.; Jiang, M.; Mi, Y.; Li, T.T.; Zhang, X.; Zhang, W.; Xu, J.T. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav. Immun., 2020, 88, 482-496.
[http://dx.doi.org/10.1016/j.bbi.2020.04.019] [PMID: 32283287]
[14]
Han, X.; Sun, S.; Sun, Y.; Song, Q.; Zhu, J.; Song, N.; Chen, M.; Sun, T.; Xia, M.; Ding, J.; Lu, M.; Yao, H.; Hu, G. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy, 2019, 15(11), 1860-1881.
[http://dx.doi.org/10.1080/15548627.2019.1596481] [PMID: 30966861]
[15]
Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; Shen, Y.; Pervouchine, D.D.; Djebali, S.; Thurman, R.E.; Kaul, R.; Rynes, E.; Kirilusha, A.; Marinov, G.K.; Williams, B.A.; Trout, D.; Amrhein, H.; Fisher-Aylor, K.; Antoshechkin, I.; DeSalvo, G.; See, L.H.; Fastuca, M.; Drenkow, J.; Zaleski, C.; Dobin, A.; Prieto, P.; Lagarde, J.; Bussotti, G.; Tanzer, A.; Denas, O.; Li, K.; Bender, M.A.; Zhang, M.; Byron, R.; Groudine, M.T.; McCleary, D.; Pham, L.; Ye, Z.; Kuan, S.; Edsall, L.; Wu, Y.C.; Rasmussen, M.D.; Bansal, M.S.; Kellis, M.; Keller, C.A.; Morrissey, C.S.; Mishra, T.; Jain, D.; Dogan, N.; Harris, R.S.; Cayting, P.; Kawli, T.; Boyle, A.P.; Euskirchen, G.; Kundaje, A.; Lin, S.; Lin, Y.; Jansen, C.; Malladi, V.S.; Cline, M.S.; Erickson, D.T.; Kirkup, V.M.; Learned, K.; Sloan, C.A.; Rosenbloom, K.R.; Lacerda de Sousa, B.; Beal, K.; Pignatelli, M.; Flicek, P.; Lian, J.; Kahveci, T.; Lee, D.; James Kent, W.; Ramalho, S.M.; Herrero, J.; Notredame, C.; Johnson, A.; Vong, S.; Lee, K.; Bates, D.; Neri, F.; Diegel, M.; Canfield, T.; Sabo, P.J.; Wilken, M.S.; Reh, T.A.; Giste, E.; Shafer, A.; Kutyavin, T.; Haugen, E.; Dunn, D.; Reynolds, A.P.; Neph, S.; Humbert, R.; Scott Hansen, R.; De Bruijn, M.; Selleri, L.; Rudensky, A.; Josefowicz, S.; Samstein, R.; Eichler, E.E.; Orkin, S.H.; Levasseur, D.; Papayannopoulou, T.; Chang, K.H.; Skoultchi, A.; Gosh, S.; Disteche, C.; Treuting, P.; Wang, Y.; Weiss, M.J.; Blobel, G.A.; Cao, X.; Zhong, S.; Wang, T.; Good, P.J.; Lowdon, R.F.; Adams, L.B.; Zhou, X.Q.; Pazin, M.J.; Feingold, E.A.; Wold, B.; Taylor, J.; Mortazavi, A.; Weissman, S.M.; Stamatoyannopoulos, J.A.; Snyder, M.P.; Guigo, R.; Gingeras, T.R.; Gilbert, D.M.; Hardison, R.C.; Beer, M.A.; Ren, B. A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515(7527), 355-364.
[http://dx.doi.org/10.1038/nature13992] [PMID: 25409824]
[16]
Christianson, C.A.; Corr, M.; Firestein, G.S.; Mobargha, A.; Yaksh, T.L.; Svensson, C.I. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain, 2010, 151(2), 394-403.
[http://dx.doi.org/10.1016/j.pain.2010.07.030] [PMID: 20739123]
[17]
Wu, X.; Lv, Y.G.; Du, Y.F.; Chen, F.; Reed, M.N.; Hu, M.; Suppiramaniam, V.; Tang, S.S.; Hong, H. Neuroprotective effects of INT-777 against Aβ1–42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Brain Behav. Immun., 2018, 73, 533-545.
[http://dx.doi.org/10.1016/j.bbi.2018.06.018] [PMID: 29935310]
[18]
Liu, B.; Ho, H.T.; Brunello, L.; Unudurthi, S.D.; Lou, Q.; Belevych, A.E.; Qian, L.; Kim, D.H.; Cho, C.; Janssen, P.M.L.; Hund, T.J.; Knollmann, B.C.; Kranias, E.G.; Györke, S. Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc. Res., 2015, 108(2), 299-311.
[http://dx.doi.org/10.1093/cvr/cvv222] [PMID: 26410369]
[19]
Mukherjee, C.; Kling, T.; Russo, B.; Miebach, K.; Kess, E.; Schifferer, M.; Pedro, L.D.; Weikert, U.; Fard, M.K.; Kannaiyan, N.; Rossner, M.; Aicher, M.L.; Goebbels, S.; Nave, K.A.; Krämer-Albers, E.M.; Schneider, A.; Simons, M. Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain. Cell Metab., 2020, 32(2), 259-272.e10.
[http://dx.doi.org/10.1016/j.cmet.2020.05.019] [PMID: 32531201]
[20]
Yuning, F.; Liang, C.; Tenghuan, W.; Zhenhua, N.; Shengkai, G. Knockdown of lincRNA PADNA promotes bupivacaine-induced neurotoxicity by miR-194/FBXW7 axis. Mol. Med., 2020, 26(1), 79.
[http://dx.doi.org/10.1186/s10020-020-00209-8] [PMID: 32791990]
[21]
Yang, Z.; Huang, Y.; Zhu, L.; Yang, K.; Liang, K.; Tan, J.; Yu, B. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species. Cell Death Dis., 2021, 12(1), 77.
[http://dx.doi.org/10.1038/s41419-020-03372-2] [PMID: 33436551]
[22]
Jager, M.; Blokzijl, F.; Kuijk, E.; Bertl, J.; Vougioukalaki, M.; Janssen, R.; Besselink, N.; Boymans, S.; de Ligt, J.; Pedersen, J.S.; Hoeijmakers, J.; Pothof, J.; van Boxtel, R.; Cuppen, E. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res., 2019, 29(7), 1067-1077.
[http://dx.doi.org/10.1101/gr.246223.118] [PMID: 31221724]
[23]
Zhao, W.; Liu, Z.; Luo, J.; Ma, C.; Lai, L.; Xia, Z.; Xu, S. The roles of PARP-1 and XPD and their potential interplay in repairing bupivacaine-induced neuron oxidative DNA damage. Aging (Albany NY), 2021, 13(3), 4274-4290.
[http://dx.doi.org/10.18632/aging.202390] [PMID: 33495403]
[24]
Tarayrah-Ibraheim, L.; Maurice, E.C.; Hadary, G.; Ben-Hur, S.; Kolpakova, A.; Braun, T.; Peleg, Y.; Yacobi-Sharon, K.; Arama, E. DNase II mediates a parthanatos-like developmental cell death pathway in Drosophila primordial germ cells. Nat. Commun., 2021, 12(1), 2285.
[http://dx.doi.org/10.1038/s41467-021-22622-1] [PMID: 33863891]
[25]
Jose, C.; Hebert-Chatelain, E.; Dias Amoedo, N.; Roche, E.; Obre, E.; Lacombe, D.; Rezvani, H.R.; Pourquier, P.; Nouette-Gaulain, K.; Rossignol, R. Redox mechanism of levobupivacaine cytostatic effect on human prostate cancer cells. Redox Biol., 2018, 18, 33-42.
[http://dx.doi.org/10.1016/j.redox.2018.05.014] [PMID: 29935387]
[26]
Xiong, J.; Kong, Q.; Dai, L.; Ma, H.; Cao, X.; Liu, L.; Ding, Z. Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity. J. Cell. Mol. Med., 2017, 21(3), 579-587.
[http://dx.doi.org/10.1111/jcmm.13003] [PMID: 27860187]
[27]
Wang, X.; Wu, R.; Liu, Y.; Zhao, Y.; Bi, Z.; Yao, Y.; Liu, Q.; Shi, H.; Wang, F.; Wang, Y. 6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy, 2020, 16(7), 1221-1235.
[http://dx.doi.org/10.1080/15548627.2019.1659617] [PMID: 31451060]
[28]
Koo, C.H.; Shin, H.J.; Han, S.H.; Ryu, J.H. Lidocaine vs. other local anesthetics in the development of Transient Neurologic Symptoms (TNS) following spinal anesthesia: A meta-analysis of randomized controlled trials. J. Clin. Med., 2020, 9(2), 493.
[http://dx.doi.org/10.3390/jcm9020493] [PMID: 32054114]
[29]
Mao, S.; Zhu, C.; Chang, Y. Effects of different anesthesia methods on postoperative transient neurological syndrome in patients with lumbar disc herniation. Exp. Ther. Med., 2017, 14(4), 3112-3116.
[http://dx.doi.org/10.3892/etm.2017.4900] [PMID: 28966685]
[30]
Liu, Z.J.; Zhao, W.; Lei, H.Y.; Xu, H.L.; Lai, L.Y.; Xu, R.; Xu, S.Y. High glucose enhances bupivacaine-induced neurotoxicity via mcu-mediated oxidative stress in SH-SY5Y cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/7192798] [PMID: 30911349]
[31]
Jiang, X.; Bar, H.Y.; Yan, J.; West, A.A.; Perry, C.A.; Malysheva, O.V.; Devapatla, S.; Pressman, E.; Vermeylen, F.M.; Wells, M.T.; Caudill, M.A. Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women. PLoS One, 2012, 7(11), e46736.
[http://dx.doi.org/10.1371/journal.pone.0046736] [PMID: 23133592]
[32]
Wang, H.; Zheng, Z.; Han, W.; Yuan, Y.; Li, Y.; Zhou, K.; Wang, Q.; Xie, L.; Xu, K.; Zhang, H.; Xu, H.; Wu, Y.; Xiao, J. Metformin promotes axon regeneration after spinal cord injury through inhibiting oxidative stress and stabilizing microtubule. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/9741369] [PMID: 31998447]
[33]
Li, M.; Yu, X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell, 2013, 23(5), 693-704.
[http://dx.doi.org/10.1016/j.ccr.2013.03.025] [PMID: 23680151]
[34]
Pratz, K.W.; Rudek, M.A.; Gojo, I.; Litzow, M.R.; McDevitt, M.A.; Ji, J.; Karnitz, L.M.; Herman, J.G.; Kinders, R.J.; Smith, B.D.; Gore, S.D.; Carraway, H.E.; Showel, M.M.; Gladstone, D.E.; Levis, M.J.; Tsai, H.L.; Rosner, G.; Chen, A.; Kaufmann, S.H.; Karp, J.E. A phase I study of topotecan, carboplatin and the parp inhibitor veliparib in acute leukemias, aggressive myeloproliferative neoplasms, and chronic myelomonocytic leukemia. Clin. Cancer Res., 2017, 23(4), 899-907.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1274] [PMID: 27551000]
[35]
Joshi, A.; Iyengar, R.; Joo, J.H.; Li-Harms, X.J.; Wright, C.; Marino, R.; Winborn, B.J.; Phillips, A.; Temirov, J.; Sciarretta, S.; Kriwacki, R.; Peng, J.; Shelat, A.; Kundu, M. Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ., 2016, 23(2), 216-230.
[http://dx.doi.org/10.1038/cdd.2015.88] [PMID: 26138443]
[36]
Xu-Monette, Z.Y.; Young, K.H. The TP53 tumor suppressor and autophagy in malignant lymphoma. Autophagy, 2012, 8(5), 842-845.
[http://dx.doi.org/10.4161/auto.19703] [PMID: 22498492]
[37]
Pan, X.; Song, X.; Wang, C.; Cheng, T.; Luan, D.; Xu, K.; Tang, B.H. 2 Se induces reductive stress in HepG2 cells and activates cell autophagy by regulating the redox of HMGB1 protein under hypoxia. Theranostics, 2019, 9(6), 1794-1808.
[http://dx.doi.org/10.7150/thno.31841] [PMID: 31037139]
[38]
Ren, Z.; Xie, P.; Lv, J.; Hu, Y.; Guan, Z.; Chen, L.; Yu, W. miR 187 3p inhibitor attenuates cerebral ischemia/reperfusion injury by regulating Seipin mediated autophagic flux. Int. J. Mol. Med., 2020, 46(3), 1051-1062.
[http://dx.doi.org/10.3892/ijmm.2020.4642] [PMID: 32705147]
[39]
Rodríguez-Vargas, J.M.; Oliver-Pozo, F.J.; Dantzer, F. PARP1 and Poly(ADP-ribosyl)ation signaling during autophagy in response to nutrient deprivation. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/2641712] [PMID: 31281570]
[40]
Altmeyer, M.; Messner, S.; Hassa, P.O.; Fey, M.; Hottiger, M.O. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res., 2009, 37(11), 3723-3738.
[http://dx.doi.org/10.1093/nar/gkp229] [PMID: 19372272]
[41]
Singh, M.P.; Cho, H.J.; Kim, J.T.; Baek, K.E.; Lee, H.G.; Kang, S.C. Morin hydrate reverses cisplatin resistance by impairing PARP1/HMGB1-dependent autophagy in hepatocellular carcinoma. Cancers (Basel), 2019, 11(7), 986.
[http://dx.doi.org/10.3390/cancers11070986] [PMID: 31311167]
[42]
Sarajari, S.; Oblinger, M.M. Estrogen effects on pain sensitivity and neuropeptide expression in rat sensory neurons. Exp. Neurol., 2010, 224(1), 163-169.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.006] [PMID: 20303952]
[43]
Buniello, A.; Ingham, N.J.; Lewis, M.A.; Huma, A.C.; Martinez-Vega, R.; Varela-Nieto, I.; Vizcay-Barrena, G.; Fleck, R.A.; Houston, O.; Bardhan, T.; Johnson, S.L.; White, J.K.; Yuan, H.; Marcotti, W.; Steel, K.P. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol. Med., 2016, 8(3), 191-207.
[http://dx.doi.org/10.15252/emmm.201505523] [PMID: 26881968]
[44]
Kane, A.E.; Sinclair, D.A. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ. Res., 2018, 123(7), 868-885.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312498] [PMID: 30355082]
[45]
Banasik, M.; Stedeford, T.; Strosznajder, R.P.; Takehashi, M.; Tanaka, S.; Ueda, K. Inhibition of poly(ADP-ribose) polymerase-1 attenuates the toxicity of carbon tetrachloride. J. Enzyme Inhib. Med. Chem., 2011, 26(6), 883-889.
[http://dx.doi.org/10.3109/14756366.2011.557315] [PMID: 21395487]
[46]
Qun, S.; Wang, Y.; Chen, J.; Huang, X.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Ma, Y.; Zhu, Y.; Xia, D.; Wang, Y.; He, H.; Wang, Y.; Fei, M.; Yin, Y.; Zheng, M.; Xu, Y.; Ge, W.; Hu, F.; Zhou, J. Neutrophil-to-lymphocyte ratios are closely associated with the severity and course of non-mild COVID-19. Front. Immunol., 2020, 11, 2160.
[http://dx.doi.org/10.3389/fimmu.2020.02160] [PMID: 32983180]
[47]
Schumann, S.; Kaiser, A.; Nicoletti, F.; Mangano, K.; Fagone, P.; van Wijk, E.; Yan, Y.; Schulz, P.; Ludescher, B.; Niedermaier, M.; von Wegerer, J.; Rauch, P.; Setz, C.; Schubert, U.; Brysch, W. Immune-modulating drug MP1032 with SARS-CoV-2 antiviral activity in vitro: A potential multi-target approach for prevention and early intervention treatment of COVID-19. Int. J. Mol. Sci., 2020, 21(22), 8803.
[http://dx.doi.org/10.3390/ijms21228803] [PMID: 33233817]
[48]
Elkis, Y.; Cohen, M.; Yaffe, E.; Satmary-Tusk, S.; Feldman, T.; Hikri, E.; Nyska, A.; Feiglin, A.; Ofran, Y.; Shpungin, S.; Nir, U. A novel Fer/FerT targeting compound selectively evokes metabolic stress and necrotic death in malignant cells. Nat. Commun., 2017, 8(1), 940.
[http://dx.doi.org/10.1038/s41467-017-00832-w] [PMID: 29038547]
[49]
Liu, C.; Mo, L.; Niu, Y.; Li, X.; Zhou, X.; Xu, X. The role of reactive oxygen species and autophagy in periodontitis and their potential linkage. Front. Physiol., 2017, 8, 439.
[http://dx.doi.org/10.3389/fphys.2017.00439] [PMID: 28690552]
[50]
Loos, B.; Toit, A.; Hofmeyr, J.H.S. Defining and measuring autophagosome flux—concept and reality. Autophagy, 2014, 10(11), 2087-2096.
[http://dx.doi.org/10.4161/15548627.2014.973338] [PMID: 25484088]
[51]
Takagawa, T.; Kitani, A.; Fuss, I.; Levine, B.; Brant, S.R.; Peter, I.; Tajima, M.; Nakamura, S.; Strober, W. An increase in LRRK2 suppresses autophagy and enhances Dectin-1-induced immunity in a mouse model of colitis. Sci. Transl. Med., 2018, 10(444), eaan8162.
[http://dx.doi.org/10.1126/scitranslmed.aan8162] [PMID: 29875204]
[52]
Jacquin, E.; Leclerc-Mercier, S.; Judon, C.; Blanchard, E.; Fraitag, S.; Florey, O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy, 2017, 13(5), 854-867.
[http://dx.doi.org/10.1080/15548627.2017.1287653] [PMID: 28296541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy