Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

NF-κB as a Potential Target for the Treatment and Prevention of Mucositis

Author(s): Prathapan Abeesh and Chandrasekaran Guruvayoorappan*

Volume 24, Issue 13, 2023

Published on: 14 April, 2023

Page: [1613 - 1622] Pages: 10

DOI: 10.2174/1389201024666230331121328

Price: $65

Abstract

Mucositis is a debilitating and severe side effect of chemotherapy and radiotherapy. It is responsible for reducing the patient's quality of life and represents a significant economic burden in oncology. Currently, there is no definitive and definite treatment for this disease. Intracellular signalling pathways have provided excellent drug development resources, particularly cancer therapeutic development. In recent decades, active research has been conducted to describe the pathogenesis of mucositis and the role of nuclear factor-kappa B (NF-κB) signalling pathways in mucositis development. Insights into the mechanisms of mucositis are creating new approaches for effective targeted treatment and their success in clinical use. Several studies have concentrated on elucidating the functional significance of NF-kB activation and its signalling mechanisms in mucositis in recent decades. Also, evidence indicates that NF-κB is the primary node for the development and progression of mucositis. Its altered expression is associated with increased mucosal injury in mucositis. Hence, regulating the activation of NF-κB could be a powerful strategy for the clinical management of mucositis. Thus, this review examines the role of NF-κB as a potential therapeutic target for chemotherapy and radiation-induced mucositis therapy.

Keywords: Mucositis, chemotherapy, radiotherapy, cancer, NF-kB, targets.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Lotfi-Jam, K.; Carey, M.; Jefford, M.; Schofield, P.; Charleson, C.; Aranda, S. Nonpharmacologic strategies for managing common chemotherapy adverse effects: A systematic review. J. Clin. Oncol., 2008, 26(34), 5618-5629.
[4]
Sonis, S.T. Oral mucositis. Anticancer Drugs, 2011, 22(7), 607-612.
[http://dx.doi.org/10.1097/CAD.0b013e3283462086] [PMID: 21709615]
[5]
Pico, J.L.; Avila-Garavito, A.; Naccache, P. Mucositis: Its occurrence, consequences, and treatment in the oncology setting. Oncologist, 1998, 3(6), 446-451.
[http://dx.doi.org/10.1634/theoncologist.3-6-446]
[6]
Avritscher, E.B.; Cooksley, C.D.; Elting, L.S. Scope and epidemiology of cancer therapy-induced oral and gastrointestinal mucositis. Semin. Oncol. Nurs., 2004, 20(1), 3-10.https://doi.org/10.1053/j.soncn.2003.10.002
[7]
Yeoh, A.; Gibson, R.; Yeoh, E.; Bowen, J.; Stringer, A.; Giam, K.; Logan, R.; Keefe, D. Radiation therapy-induced mucositis: Relationships between fractionated radiation, NF-κB, COX-1, and COX-2. Cancer Treat. Rev., 2006, 32(8), 645-651.
[http://dx.doi.org/10.1016/j.ctrv.2006.08.005] [PMID: 17046165]
[8]
Im, K.I.; Nam, Y.S.; Kim, N.; Song, Y.; Lee, E.S.; Lim, J.Y.; Jeon, Y.W.; Cho, S.G. Regulation of HMGB1 release protects chemoradiotherapy-associated mucositis. Mucosal Immunol., 2019, 12(5), 1070-1081.
[http://dx.doi.org/10.1038/s41385-019-0132-x] [PMID: 30647411]
[9]
Cheng, K. Oral mucositis and quality of life of Hong Kong Chinese patients with cancer therapy. Eur. J. Oncol. Nurs., 2007, 11(1), 36-42.
[10]
Bellm, L.; Epstein, J.; Rose-Ped, A.; Martin, P.; Fuchs, H.J. Patient reports of complications of bone marrow transplantation. Support. Care Cancer, 2000, 8(1), 33-39.
[http://dx.doi.org/10.1007/s005209900095]
[11]
MacLeod, R.; Van Den Block, L. Textbook of Palliative Care; Springer: New York City, US, 2019.
[http://dx.doi.org/10.1007/978-3-319-77740-5]
[12]
Van Sebille, Y.Z.; Stansborough, R.; Wardill, H.R.; Bateman, E.; Gibson, R.J.; Keefe, D.M. Management of mucositis during chemotherapy: From pathophysiology to pragmatic therapeutics. Curr. Oncol. Rep., 2015, 17(11), 50.
[http://dx.doi.org/10.1007/s11912-015-0474-9]
[13]
Rubenstein, E.B.; Peterson, D.E.; Schubert, M.; Keefe, D.; McGuire, D.; Epstein, J.; Elting, L.S.; Fox, P.C.; Cooksley, C.; Sonis, S.T. Clinical practice guidelines for the prevention and treatment of cancer therapy–induced oral and gastrointestinal mucositis. Cancer, 2004, 100(Suppl. 9), 2026-2046.
[http://dx.doi.org/10.1002/cncr.20163]
[14]
Scully, C.; Sonis, S.; Diz, P.J. Oral mucositis. Oral Dis., 2006, 12(3), 229-241.
[http://dx.doi.org/10.1111/j.1601-0825.2006.01258.x]
[15]
Wilkes, J.D. Prevention and treatment of oral mucositis following cancer chemotherapy. Semin. Oncol., 1998, 25(5), 538-551.
[PMID: 9783593]
[16]
Kanagalingam, J.; Wahid, M.I.A.; Lin, J-C.; Cupino, N.A.; Liu, E.; Kang, J.-H.; Bazarbashi, S.; Moreira, N.B.; Arumugam, H.; Mueller, S.J. Patient and oncologist perceptions regarding symptoms and impact on quality-of-life of oral mucositis in cancer treatment: Results from the awareness drives oral mucositis perception (ADOPT) study. Support. Care Cancer, 2018, 26(7), 2191-2200.
[17]
Arikapudi, S.; Rashid, S.; Al Almomani, L.A.; Treece, J.; Baumrucker, S.J. Serum bovine immunoglobulin for chemotherapy-induced gastrointestinal mucositis. Am. J. Hosp. Palliat., 2018, 35(5), 814-817.
[18]
Sun, Z.; Andersson, R. NF-kappaB activation and inhibition: A review. Shock, 2002, 18(2), 99-106.
[http://dx.doi.org/10.1097/00024382-200208000-00001] [PMID: 12166787]
[19]
Bours, V.; Franzoso, G.; Brown, K.; Park, S.; Azarenko, V.; Tomita-Yamaguchi, M.; Kelly, K.; Siebenlist, U. Lymphocyte activation and the family of NF-κB transcription factor complexes. Curr. Topics Microbiol. Immunol., 1992, 182, 411-420.
[http://dx.doi.org/10.1007/978-3-642-77633-5_52]
[20]
Brasier, A.R. The NF-kappaB regulatory network. Cardiovasc. Toxicol., 2006, 6(2), 111-130.
[http://dx.doi.org/10.1385/CT:6:2:111] [PMID: 17303919]
[21]
Yamamoto, Y.; Gaynor, R. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr. Mol. Med., 2001, 1(3), 287-296.
[http://dx.doi.org/10.2174/1566524013363816] [PMID: 11899077]
[22]
Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18(18), 2195-2224.
[http://dx.doi.org/10.1101/gad.1228704] [PMID: 15371334]
[23]
Rasmi, R.R. Sakthivel, K.M.; Guruvayoorappan, C. NF-κB inhibitors in treatment and prevention of lung cancer. Biomed. Pharmacother., 2020, 130, 110569.
[http://dx.doi.org/10.1016/j.biopha.2020.110569] [PMID: 32750649]
[24]
Sun, S.C.; Ley, S.C. New insights into NF-κB regulation and function. Trends Immunol., 2008, 29(10), 469-478.
[http://dx.doi.org/10.1016/j.it.2008.07.003] [PMID: 18775672]
[25]
Pomerantz, J.L.; Baltimore, D. Two pathways to NF-κB. Mol. Cell, 2002, 10(4), 693-695.
[http://dx.doi.org/10.1016/S1097-2765(02)00697-4] [PMID: 12419209]
[26]
Schulze-Osthoff, K.; Ferrari, D.; Riehemann, K.; Wesselborg, S. Regulation of NF-κB activation by MAP kinase cascades. Immunobiology, 1997, 198(1-3), 35-49.
[http://dx.doi.org/10.1016/S0171-2985(97)80025-3] [PMID: 9442376]
[27]
Mondragón, L.; Mhaidly, R.; De Donatis, G.M.; Tosolini, M.; Dao, P.; Martin, A.R.; Pons, C.; Chiche, J.; Jacquin, M.; Imbert, V. GAPDH overexpression in the T cell lineage promotes angioimmunoblastic T cell lymphoma through an NF-κB-dependent mechanism. Cancer Cell., 2019, 36(3), 268-287.
[http://dx.doi.org/10.1016/j.ccell.2019.07.008]
[28]
Hoffmann, A.; Natoli, G.; Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene, 2006, 25(51), 6706-6716.
[http://dx.doi.org/10.1038/sj.onc.1209933] [PMID: 17072323]
[29]
Adli, M.; Merkhofer, E.; Cogswell, P.; Baldwin, A.S. IKKalpha and IKKbeta each function to regulate NF-kappaB activation in the TNF-induced/canonical pathway. PLoS One, 2010, 5(2), e9428.
[http://dx.doi.org/10.1371/journal.pone.0009428] [PMID: 20195534]
[30]
Schreck, R.; Albermann, K.; Baeuerle, P.A. Nuclear factor kappa B: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun., 1992, 17(4), 221-237.
[31]
Sun, S.C. Non-canonical NF-κB signaling pathway. Cell Res., 2011, 21(1), 71-85.
[http://dx.doi.org/10.1038/cr.2010.177] [PMID: 21173796]
[32]
Razani, B.; Reichardt, A.D.; Cheng, G. Non-canonical NF-κB signaling activation and regulation: Principles and perspectives. Immunol. Rev., 2011, 244(1), 44-54.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01059.x] [PMID: 22017430]
[33]
Naugler, W.E.; Karin, M. NF-κB and cancer—identifying targets and mechanisms. Curr. Opin. Genet. Dev., 2008, 18(1), 19-26.
[34]
Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer, 2013, 12(1), 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[35]
Keefe, D.M. Gastrointestinal mucositis: A new biological model. Support. Care Cancer, 2004, 12(1), 6-9.
[http://dx.doi.org/10.1007/s00520-003-0550-9]
[36]
Chaveli-López, B.J. Oral toxicity produced by chemotherapy. Syst. Rev., 2014, 6(1), e81.
[37]
Sonis, S.T. The pathobiology of mucositis. Nat. Rev. Cancer, 2004, 4(4), 277-284.
[38]
Chang, C.T.; Ho, T.Y.; Lin, H.; Liang, J.A.; Huang, H.C.; Li, C.C.; Lo, H.Y.; Wu, S.L.; Huang, Y.F.; Hsiang, C.Y. 5-Fluorouracil induced intestinal mucositis via nuclear factor-κB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One, 2012, 7(3), e31808.
[http://dx.doi.org/10.1371/journal.pone.0031808] [PMID: 22412841]
[39]
Sonis, S.T. A biological approach to mucositis. J. Support. Oncol., 2004, 2(1), 21-32.
[PMID: 15330370]
[40]
Lee, S-J.; Dimtchev, A.; Lavin, M.F.; Dritschilo, A.; Jung, M.J.O. A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-κappaB. Oncogene, 1998, 17(14), 1821-1826.
[http://dx.doi.org/10.1038/sj.onc.1202088]
[41]
Logan, R.M.; Gibson, R.J.; Sonis, S.T.; Keefe, D.M. Nuclear factor-kappaB (NF-kappaB) and cyclooxygenase-2 (COX-2) expression in the oral mucosa following cancer chemotherapy. Oral Oncol., 2007, 43(4), 395-401.
[42]
Logan, R.M.; Stringer, A.M.; Bowen, J.M.; Yeoh, A.S-J.; Gibson, R.J.; Sonis, S.T.; Keefe, D.M. The role of proinflammatory cytokines in cancer treatment-induced alimentary tract mucositis: Pathobiology, animal models and cytotoxic drugs. Cancer Treat. Rev., 2007, 33(5), 448-460.
[43]
Criswell, T.; Leskov, K.; Miyamoto, S.; Luo, G.; Boothman, D.A. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene, 2003, 22(37), 5813-5827.
[http://dx.doi.org/10.1038/sj.onc.1206680]
[44]
Brach, M.; Hass, R.; Sherman, M.; Gunji, H.; Weichselbaum, R.; Kufe, D.J. Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J. Clin. Invest., 1991, 88(2), 691-695.
[http://dx.doi.org/10.1172/JCI115354]
[45]
McDonald, J.T.; Kim, K.; Norris, A.J.; Vlashi, E.; Phillips, T.M.; Lagadec, C.; Della Donna, L.; Ratikan, J.; Szelag, H.; Hlatky, L.J. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res., 2010, 70(21), 8886-8895.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0171]
[46]
Braun, S.; Hanselmann, C.; Gassmann, M.G.; auf dem Keller, U.; Born-Berclaz, C.; Chan, K.; Kan, Y.W.; Werner, S.J.M. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol. Cell. Biol., 2002, 22(15), 5492-5505.
[47]
Sonis, S.T. The biologic role for nuclear factor-kappaB in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Crit. Rev. Oral Biol. Med., 2002, 13(5), 380-389.
[48]
Davis, R.J. Signal transduction by the JNK group of MAP kinases. In: Inflammatory Processes; Springer: New York City, US, 2000; pp. 13-21.
[http://dx.doi.org/10.1007/978-3-0348-8468-6_2]
[49]
Bowen, J.M.; Gibson, R.J.; Cummins, A.G.; Keefe, D.M.K. Intestinal mucositis: The role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage. Support. Care Cancer, 2006, 14(7), 713-731.
[http://dx.doi.org/10.1007/s00520-005-0004-7]
[50]
Ariyawardana, A.; Cheng, K.K.F.; Kandwal, A.; Tilly, V.; Al-Azri, A.R.; Galiti, D.; Chiang, K.; Vaddi, A.; Ranna, V.; Nicolatou-Galitis, O.J. Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer, 2019, 27(10), 3985-3995.
[http://dx.doi.org/10.1007/s00520-019-04888-w]
[51]
Ismael, G.F.V.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev., 2008, 34(1), 81-91.
[http://dx.doi.org/10.1016/j.ctrv.2007.08.001] [PMID: 17905518]
[52]
Naidu, M.U.R.; Ramana, G.V.; Rani, P.U.; Mohan, K.; Suman, A.; Roy, P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis-complicating the treatment of cancer. Neoplasia, 2004, 6(5), 423-431.
[http://dx.doi.org/10.1593/neo.04169] [PMID: 15548350]
[53]
Saegusa, Y.; Ichikawa, T.; Iwai, T.; Goso, Y.; Ikezawa, T.; Nakano, M.; Shikama, N.; Saigenji, K.; Ishihara, K. Effects of acid antisecretory drugs on mucus barrier of the rat against 5-fluorouracil-induced gastrointestinal mucositis. Scand. J. Gastroenterol., 2008, 43(5), 531-537.
[http://dx.doi.org/10.1080/00365520701811693] [PMID: 18415744]
[54]
Jebb, S.A.; Osborne, R.J.; Maughan, T.S.; Mohideen, N.; Mack, P.; Mort, D.; Shelley, M.D.; Elia, M. 5-fluorouracil and folinic acid-induced mucositis: No effect of oral glutamine supplementation. Br. J. Cancer, 1994, 70(4), 732-735.
[http://dx.doi.org/10.1038/bjc.1994.385] [PMID: 7917930]
[55]
Kremer, J.M. Toward a better understanding of methotrexate. Arthritis Rheum., 2004, 50(5), 1370-1382.
[http://dx.doi.org/10.1002/art.20278] [PMID: 15146406]
[56]
Lee, H.J.; Kwon, J.S.; Choi, Y.C.; Ahn, H.J. Methotrexate-induced oral mucositis. J. Oral Med. Pain, 2015, 40(2), 82-87.
[http://dx.doi.org/10.14476/jomp.2015.40.2.82]
[57]
Gibson, R.J.; Bowen, J.M.; Alvarez, E.; Finnie, J.; Keefe, D.M.K. Establishment of a single-dose irinotecan model of gastrointestinal mucositis. Chemotherapy, 2007, 53(5), 360-369.
[http://dx.doi.org/10.1159/000107458] [PMID: 17713326]
[58]
de Alencar, N.M.N.; da Silveira Bitencourt, F.; de Figueiredo, I.S.T.; Luz, P.B.; Lima-Júnior, R.C.P.; Aragão, K.S.; Magalhães, P.J.C.; de Castro Brito, G.A.; Ribeiro, R.A.; de Freitas, A.P.F.; Ramos, M.V. Side‐effects of Irinotecan (CPT‐11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother. Res., 2017, 31(2), 312-320.
[http://dx.doi.org/10.1002/ptr.5752] [PMID: 27910140]
[59]
Aota, K.; Azuma, M.; Yamashita, T.; Tamatani, T.; Motegi, K.; Ishimaru, N.; Hayashi, Y.; Sato, M. 5-Fluorouracil induces apoptosis through the suppression of NF-kappaB activity in human salivary gland cancer cells. Biochem. Biophys. Res. Commun., 2000, 273(3), 1168-1174.
[http://dx.doi.org/10.1006/bbrc.2000.3072] [PMID: 10891390]
[60]
Bertolini, M.; Sobue, T.; Thompson, A.; Dongari-Bagtzoglou, A. Chemotherapy induces oral mucositis in mice without additional noxious stimuli. Transl. Oncol., 2017, 10(4), 612-620.
[http://dx.doi.org/10.1016/j.tranon.2017.05.001] [PMID: 28666190]
[61]
Mohamed, H.A.; Said, R.S. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int. Immunopharmacol., 2021, 92, 107347.
[http://dx.doi.org/10.1016/j.intimp.2020.107347] [PMID: 33418245]
[62]
Gandhi, K.A.; Goda, J.S.; Gandhi, V.V.; Sadanpurwala, A.; Jain, V.K.; Joshi, K.; Epari, S.; Rane, S.; Mohanty, B.; Chaudhari, P.; Kembhavi, S.; Kunwar, A.; Gota, V.; Priyadarsini, K.I. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Free Radic. Biol. Med., 2019, 145, 8-19.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.009] [PMID: 31521664]
[63]
Rao, D.; Behzadi, F.; Le, R.T.; Dagan, R.; Fiester, P. Radiation induced mucositis: What the radiologist needs to know. Curr. Probl. Diagn. Radiol., 2021, 50(6), 899-904.
[http://dx.doi.org/10.1067/j.cpradiol.2020.10.006] [PMID: 33279307]
[64]
Maria, O.M.; Eliopoulos, N.; Muanza, T. Radiation-induced oral mucositis. Front. Oncol., 2017, 7, 89.
[http://dx.doi.org/10.3389/fonc.2017.00089] [PMID: 28589080]
[65]
Curra, M.; Pellicioli, A.C.A.; Filho, N.A.K.; Ochs, G.; Matte, Ú.; Filho, M.S.A.; Martins, M.A.T.; Martins, M.D. Photobiomodulation reduces oral mucositis by modulating NF-kB. J. Biomed. Opt., 2015, 20(12), 125008.
[http://dx.doi.org/10.1117/1.JBO.20.12.125008] [PMID: 26720873]
[66]
Sonis, S.T.; O’Donnell, K.E.; Popat, R.; Bragdon, C.; Phelan, S.; Cocks, D.; Epstein, J.B. The relationship between mucosal cyclooxygenase-2 (COX-2) expression and experimental radiation-induced mucositis. Oral Oncol., 2004, 40(2), 170-176.
[http://dx.doi.org/10.1016/S1368-8375(03)00148-9] [PMID: 14693241]
[67]
Elshawi, O.E.; Nabeel, A.I. Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-κB against γ-radiation induced- intestinal inflammation. J. Photochem. Photobiol. B, 2019, 192, 90-96.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.006] [PMID: 30710830]
[68]
Ala, M.; Mohammad Jafari, R.; Ala, M.; Agbele, A.T.; Hejazi, S.M.; Tavangar, S.M.; Mahdavi, S.R.M.; Dehpour, A.R. Sumatriptan alleviates radiation-induced oral mucositis in rats by inhibition of NF-kB and ERK activation, prevention of TNF-α and ROS release. Arch. Oral Biol., 2020, 119, 104919.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104919] [PMID: 32977152]
[69]
Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D.; Olmetto, E.; Terziani, F.; Becherini, C.; Delli Paoli, C.; Trombetta, L.; Loi, M.; Biti, G.; Livi, L. A PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol., 2017, 64, 52-58.
[http://dx.doi.org/10.1016/j.oraloncology.2016.11.018] [PMID: 28024724]
[70]
Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H.J. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther., 2020, 5(1), 1-23.
[PMID: 32296011]
[71]
Wu, J.; Gan, Y.; Li, M.; Chen, L.; Liang, J.; Zhuo, J.; Luo, H.; Xu, N.; Wu, X.; Wu, Q.J.B. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomed. Pharmacother., 2020, 124, 109883.
[72]
Picciolo, G.; Mannino, F.; Irrera, N.; Altavilla, D.; Minutoli, L.; Vaccaro, M.; Arcoraci, V.; Squadrito, V.; Picciolo, G.; Squadrito, F.J.B. PDRN, a natural bioactive compound, blunts inflammation and positively reprograms healing genes in an “in vitro” model of oral mucositis. Biomed. Pharmacother., 2021, 138, 111538.
[73]
Sheibani, M.; Faghir-Ghanesefat, H.; Dehpour, S.; Keshavarz-Bahaghighat, H.; Sepand, M.R.; Ghahremani, M.H.; Azizi, Y.; Rahimi, N.; Dehpour, A.R. Sumatriptan protects against myocardial ischaemia–reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology, 2019, 27(5), 1071-1080.
[74]
Attali, P.; Zakin, L.; Nicole, B.; Trochon-Joseph, V.; Lemarchand, C.; Roulet, V. Effect of clonidine on proinflammatory cytokine levels in ex vivo human oral mucosa. J. Clin. Oncol., 2014, 32(15), e20689.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.e20689]
[75]
Rao, S.; Dinkar, C.; Vaishnav, L.K.; Rao, P.; Rai, M.P.; Fayad, R.; Baliga, M.S. The Indian spice turmeric delays and mitigates radiation-induced oral mucositis in patients undergoing treatment for head and neck cancer: An investigational study. Integr. Cancer Ther., 2014, 13(3), 201-210.
[http://dx.doi.org/10.1177/1534735413503549]
[76]
Han, G.; Bian, L.; Li, F.; Cotrim, A.; Wang, D.; Lu, J.; Deng, Y.; Bird, G.; Sowers, A.; Mitchell, J.B.J.N.m. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat. Med., 2013, 19(4), 421-428.
[http://dx.doi.org/10.1038/nm.3118]
[77]
Ribeiro, S.B.; de Araújo, A.A.; Oliveira, M.M.; Santos Silva, A.M.; da Silva-Júnior, A.A.; Guerra, G.C.B.; Brito, G.A.; Leitão, R.F.; Araújo Júnior, R.F.d.; Garcia, V.B.J.P. Effect of dexamethasone-loaded PLGA nanoparticles on oral mucositis induced by 5-fluorouracil. Pharmaceutics, 2021, 13(1), 53.
[78]
Al-Khrashi, L.A.; Badr, A.M. AL-Amin, M.A.; Mahran, Y.F. Thymol ameliorates 5‐fluorouracil‐induced intestinal mucositis: Evidence of down‐regulatory effect on TGF‐β/MAPK pathways through NF‐κB. J. Biochem. Mol. Toxicol., 2022, 36(1), e22932.
[http://dx.doi.org/10.1002/jbt.22932] [PMID: 34665902]
[79]
Zhang, J.; Hong, Y.; Liuyang, Z.; Li, H.; Jiang, Z.; Tao, J.; Liu, H.; Xie, A.; Feng, Y.; Dong, X. Quercetin prevents radiation-induced oral mucositis by upregulating BMI-1. Oxid. Med. Cell. Longev., 2021, 2021, 2231680.
[http://dx.doi.org/10.1155/2021/2231680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy