Research Article

表达白细胞介素-13受体α2抗原的新型重组修饰安卡拉牛痘病毒用于潜在的癌症免疫治疗

卷 24, 期 6, 2024

发表于: 17 July, 2023

页: [758 - 770] 页: 13

弟呕挨: 10.2174/1566524023666230331085007

价格: $65

摘要

背景:基因改造重组痘病毒在癌症动物模型中具有很大的治疗前景。痘病毒可诱导针对肿瘤相关抗原的有效细胞介导免疫应答。用表达IL-13Rα2的DNA疫苗进行预防和治疗性接种,可以介导体内已建立肿瘤的部分消退,这表明宿主对IL-13Rα2的免疫应答需要进一步增强。 目的:本研究旨在构建表达IL-13Rα2 (rMVA-IL13Rα2)病毒的重组修饰安卡拉牛痘(MVA),并研究其对IL-13Rα2阳性细胞系的体外感染能力和效果。 方法:构建了表达IL-13Rα2和绿色荧光蛋白(GFP)报告基因的重组MVA。通过感染靶细胞和使用抗牛痘抗体和抗il - 13r α2抗体进行免疫染色的纯化病毒滴定来确认rMVA-IL13Rα2的身份和纯度。 结果:Western Blot分析证实存在IL-13Rα2蛋白(~52 kDa)。流式细胞术分析IL-13Rα2阴性的T98G胶质瘤细胞感染rMVA-IL13Rα2病毒后,细胞表面表达IL-13Rα2,表明重组病毒具有传染性。不同浓度(0.1 ~ 100 ng/ml)的白细胞介素-13与截断的假单胞菌外毒素(IL13-PE)融合孵育T98G-IL13Rα2细胞,导致T98G-IL13Rα2细胞GFP+荧光缺失。与对照pLW44-MVA病毒感染的细胞相比,较高浓度的IL13-PE (10-1000 ng/ml)也抑制了T98G-IL13Rα2细胞的蛋白质合成。与未处理的细胞相比,IL13- PE处理rMVA-IL13Rα2感染的鸡胚成纤维细胞和DF-1细胞系的病毒滴度降低。 结论:rMVA-IL13Rα2病毒能够成功感染哺乳动物细胞,在被感染细胞表面以生物活性形式表达IL-13Rα2。为了评估rMVA-IL13Rα2的有效性,我们计划在小鼠肿瘤模型中进行免疫研究。

关键词: MVA,修饰的安卡拉牛痘,IL-13Rα2,白细胞介素-13受体α2,绿色荧光蛋白,IL13-PE,白细胞介素-13融合到假单胞菌外毒素突变形式。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Shahid K, Khalife M, Dabney R, Phan AT. Immunotherapy and targeted therapy—the new roadmap in cancer treatment. Ann Transl Med 2019; 7(20): 595-01.
[http://dx.doi.org/10.21037/atm.2019.05.58] [PMID: 31807576]
[3]
Bellati F, Napoletano C, Ruscito I, et al. Past, present and future strategies of immunotherapy in gynecological malignancies. Curr Mol Med 2013; 13(4): 648-69.
[http://dx.doi.org/10.2174/1566524011313040014] [PMID: 22934850]
[4]
Banchereau J, Palucka K. Cancer vaccines on the move. Nat Rev Clin Oncol 2018; 15(1): 9-10.
[http://dx.doi.org/10.1038/nrclinonc.2017.149] [PMID: 28895570]
[5]
Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J 2011; 17(5): 359-71.
[http://dx.doi.org/10.1097/PPO.0b013e3182325e63] [PMID: 21952287]
[6]
Henderson DA, Moss B. Recombinant vaccinia virus vaccines in vaccines. In: Plotkin SA, Orenstein WA, Eds. Philadelphia: Saunders 1999.
[7]
Mackett M, Smith GL, Moss B. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci 1982; 79(23): 7415-9.
[http://dx.doi.org/10.1073/pnas.79.23.7415] [PMID: 6296831]
[8]
Panicali D, Paoletti E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci 1982; 79(16): 4927-31.
[http://dx.doi.org/10.1073/pnas.79.16.4927] [PMID: 6289324]
[9]
Blanchard TJ, Andrea P, Alcami A, Smith GL. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: Implications for use as a human vaccine. J Gen Virol 1998; 79(5): 1159-67.
[http://dx.doi.org/10.1099/0022-1317-79-5-1159] [PMID: 9603331]
[10]
Ramírez JC, Gherardi MM, Esteban M. Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 2000; 74(2): 923-33.
[http://dx.doi.org/10.1128/JVI.74.2.923-933.2000] [PMID: 10623755]
[11]
Stittelaar KJ, Kuiken T, de Swart RL, et al. Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 2001; 19(27): 3700-9.
[http://dx.doi.org/10.1016/S0264-410X(01)00075-5] [PMID: 11395204]
[12]
Thompson M, Heath SL, Sweeton B, et al. DNA/MVA vaccination of HIV-1 infected participants with viral suppression on antiretroviral therapy, followed by treatment interruption: Elicitation of immune responses without control of re-emergent virus. PLoS One 2016; 11(10): e0163164.
[http://dx.doi.org/10.1371/journal.pone.0163164] [PMID: 27711228]
[13]
Moorthy VS, Imoukhuede EB, Milligan P, et al. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med 2004; 1(2): e33.
[http://dx.doi.org/10.1371/journal.pmed.0010033] [PMID: 15526058]
[14]
Gilbert SC. Clinical development of modified vaccinia virus ankara vaccines. Vaccine 2013; 31(39): 4241-6.
[http://dx.doi.org/10.1016/j.vaccine.2013.03.020] [PMID: 23523410]
[15]
Cottingham MG, Carroll MW. Recombinant MVA vaccines: Dispelling the myths. Vaccine 2013; 31(39): 4247-51.
[http://dx.doi.org/10.1016/j.vaccine.2013.03.021] [PMID: 23523407]
[16]
Song GY, Gibson G, Haq W, et al. An MVA vaccine overcomes tolerance to human p53 in mice and humans. Cancer Immunol Immunother 2007; 56(8): 1193-205.
[http://dx.doi.org/10.1007/s00262-006-0270-3] [PMID: 17219151]
[17]
Acres B, Bonnefoy JY. Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev Vaccines 2008; 7(7): 889-93.
[http://dx.doi.org/10.1586/14760584.7.7.889] [PMID: 18767940]
[18]
Schaedler E, Remy-Ziller C, Hortelano J, et al. Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand Litenimod (Li28) improves local immune defense against tumors. Vaccine 2017; 35(4): 577-85.
[http://dx.doi.org/10.1016/j.vaccine.2016.12.020] [PMID: 28012777]
[19]
Hanwell DG, McNeil B, Visan L, et al. Murine responses to recombinant MVA versus ALVAC vaccines against tumor-associated antigens, gp100 and 5T4. J Immunother 2013; 36(4): 238-47.
[http://dx.doi.org/10.1097/CJI.0b013e3182941813] [PMID: 23603858]
[20]
Hodge JW, Higgins J, Schlom J. Harnessing the unique local immunostimulatory properties of modified vaccinia Ankara (MVA) virus to generate superior tumor-specific immune responses and antitumor activity in a diversified prime and boost vaccine regimen. Vaccine 2009; 27(33): 4475-82.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.017] [PMID: 19450631]
[21]
Ishizaki H, Manuel ER, Song GY, et al. Modified vaccinia Ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model. Cancer Immunol Immunother 2011; 60(1): 99-109.
[http://dx.doi.org/10.1007/s00262-010-0923-0] [PMID: 20960189]
[22]
Amato RJ. 5T4-modified vaccinia Ankara: Progress in tumor-associated antigen-based immunotherapy. Expert Opin Biol Ther 2010; 10(2): 281-7.
[http://dx.doi.org/10.1517/14712590903586213] [PMID: 20088718]
[23]
Rosales R, López-Contreras M, Rosales C, et al. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther 2014; 25(12): 1035-49.
[http://dx.doi.org/10.1089/hum.2014.024] [PMID: 25275724]
[24]
Puri RK, Leland P, Obiri NI, et al. Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood 1996; 87(10): 4333-9.
[http://dx.doi.org/10.1182/blood.V87.10.4333.bloodjournal87104333] [PMID: 8639793]
[25]
Husain SR, Joshi BH, Puri RK. Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer 2001; 92(2): 168-75.
[http://dx.doi.org/10.1002/1097-0215(200102)9999:9999<:AID-IJC1182>3.0.CO;2-N] [PMID: 11291041]
[26]
Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: From bench to bedside. J Neurooncol 2003; 65(1): 37-48.
[http://dx.doi.org/10.1023/A:1026242432647] [PMID: 14649884]
[27]
Husain SR, Obiri NI, Gill P, et al. Receptor for interleukin 13 on AIDS-associated Kaposi’s sarcoma cells serves as a new target for a potent Pseudomonas exotoxin-based chimeric toxin protein. Clin Cancer Res 1997; 3(2): 151-6.
[PMID: 9815666]
[28]
Kawakami K, Terabe M, Kawakami M, Berzofsky JA, Puri RK. Characterization of a novel human tumor antigen interleukin-13 receptor alpha2 chain. Cancer Res 2006; 66(8): 4434-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1265] [PMID: 16618770]
[29]
Knudson KM, Hwang S, McCann MS, Joshi BH, Husain SR, Puri RK. Recent advances in IL13-Rα2-directed cancer immunotherapy. Front Immunol 2022; 13(8): 878365.
[http://dx.doi.org/10.3389/fimmu.2022.878365] [PMID: 35464460]
[30]
Nakashima H, Fujisawa T, Husain SR, Puri RK. Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models. J Transl Med 2010; 8(1): 116-28.
[http://dx.doi.org/10.1186/1479-5876-8-116] [PMID: 21067607]
[31]
Sato Y, Vatsan R, Joshi BH, Husain SR, Puri RK. Generation of interleukin-13 receptor alpha2 antigen expressing modified vaccinia ankara recombinant virus for potential cancer immunotherapy. J Immunother Cancer 2014; 2 (Suppl. 3): P58.
[http://dx.doi.org/10.1186/2051-1426-2-S3-P58]
[32]
Joshi BH, Puri RK. Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif 2005; 39(2): 189-98.
[http://dx.doi.org/10.1016/j.pep.2004.10.012] [PMID: 15642470]
[33]
Wyatt LS, Earl PL, Xiao W, et al. Elucidating and minimizing the loss by recombinant vaccinia virus of human immunodeficiency virus gene expression resulting from spontaneous mutations and positive selection. J Virol 2009; 83(14): 7176-84.
[http://dx.doi.org/10.1128/JVI.00687-09] [PMID: 19420086]
[34]
Wyatt LS, Earl PL, Moss B. Generation of recombinant vaccinia viruses. Curr Protoc Protein Sci 2017; 89(5): 13-8.
[http://dx.doi.org/10.1002/cpps.33]
[35]
Puri RK, Leland P, Obiri NI, et al. An improved circularly permuted interleukin 4-toxin is highly cytotoxic to human renal cell carcinoma cells. Introduction of gamma c chain in RCC cells does not improve sensitivity. Cell Immunol 1996; 171(1): 80-6.
[http://dx.doi.org/10.1006/cimm.1996.0176] [PMID: 8660841]
[36]
Obiri NI, Husain SR, Debinski W, Puri RK. Interleukin 13 inhibits growth of human renal cell carcinoma cells independently of the p140 interleukin 4 receptor chain. Clin Cancer Res 1996; 2(10): 1743-9.
[PMID: 9816125]
[37]
Kawakami K, Husain SR, Bright RK, Puri RK. Gene transfer of interleukin 13 receptor α2 chain dramatically enhances the antitumor effect of IL-13 receptor–targeted cytotoxin in human prostate cancer xenografts. Cancer Gene Ther 2001; 8: 861-8.
[http://dx.doi.org/10.1038/sj.cgt.7700373]
[38]
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of antigen structure and composition for improved protein-based vaccine efficacy. Front Immunol 2020; 11: 283.
[http://dx.doi.org/10.3389/fimmu.2020.00283] [PMID: 32153587]
[39]
Sashihara J, Hoshino Y, Bowman JJ, et al. Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog 2011; 7(10): e1002308.
[http://dx.doi.org/10.1371/journal.ppat.1002308] [PMID: 22028652]
[40]
Ansari AM, Ahmed AK, Matsangos AE, et al. Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Rev 2016; 12(5): 553-9.
[http://dx.doi.org/10.1007/s12015-016-9670-8] [PMID: 27435468]
[41]
Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 2009; 23(1): 1-13.
[http://dx.doi.org/10.2165/00063030-200923010-00001] [PMID: 19344187]
[42]
Iyer S, Amara R. DNA/MVA vaccines for HIV/AIDS. Vaccines 2014; 2(1): 160-78.
[http://dx.doi.org/10.3390/vaccines2010160] [PMID: 26344473]
[43]
Saikali S, Avril T, Collet B, et al. Expression of nine tumour antigens in a series of human glioblastoma multiforme: Interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy. J Neurooncol 2006; 81(2): 139-48.
[http://dx.doi.org/10.1007/s11060-006-9220-3] [PMID: 17004103]
[44]
Shen X, Basu R, Sawant S, et al. HIV-1 gp120 and modified vaccinia virus ankara (MVA) gp140 boost immunogens increase immunogenicity of a DNA/MVA HIV-1 vaccine. J Virol 2017; 91(24): e01077-17.
[http://dx.doi.org/10.1128/JVI.01077-17]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy