Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Insight of Engineered Nano-based Biologics Approaches used to Combat Autoimmune Disease using TNF-α & IL Inhibitors

Author(s): Darshani Patil, Ajazuddin and Sankha Bhattacharya*

Volume 23, Issue 19, 2023

Published on: 19 May, 2023

Page: [1793 - 1806] Pages: 14

DOI: 10.2174/1568026623666230331083241

Price: $65

Open Access Journals Promotions 2
Abstract

Autoimmune disease is increasing widely, and the biologicals in autoimmune disease play a vital role in the cure. Biologicals have an affinity to bind the specific target molecule and suppress inflammation. The different biologicals are used to treat various autoimmune diseases by preventing the cytokines from unlocking cells and causing inflammation. Each biologic targets a different cytokine. The common classes of biologic that are used to treat autoimmune disease are i) Tumor Necrosis Factor-alpha (TNFα) inhibitors and ii) Interleukin Inhibitors (IL). Along with biologics, nanomedicine has shown to be a successful method for creating customized nanomaterials with the potential to deliver medicinal agents to particular organs or tissues drugs without causing immunosuppressive or immunostimulatory adverse effects. This article reviews biologics used in treating Autoimmune Disease (AD) and the mechanism involved. The examination of current developments that have been made to create innovative nanoparticle-based therapies for autoimmune illnesses and their inclusion in vaccines. Also, recent clinical trials display nanosystem strategies for treating AD.

Keywords: Autoimmune disease, Biologics, Engineered nanoparticles, Nanosystem biologics, TNF-α, IL Inhibitors.

Next »
Graphical Abstract
[1]
Wang, L.; Wang, F.S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med., 2015, 278(4), 369-395.
[http://dx.doi.org/10.1111/joim.12395] [PMID: 26212387]
[2]
Wahren-Herlenius, M.; Dörner, T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet, 2013, 382(9894), 819-831.
[http://dx.doi.org/10.1016/S0140-6736(13)60954-X] [PMID: 23993191]
[3]
Xie, W.; Yang, X.; Huang, H.; Gao, D.; Ji, L.; Zhang, Z. Risk of malignancy with non-TNFi biologic or tofacitinib therapy in rheumatoid arthritis: A meta-analysis of observational studies. Semin. Arthritis Rheum., 2020, 50(5), 930-937.
[http://dx.doi.org/10.1016/j.semarthrit.2020.08.007] [PMID: 32906027]
[4]
Park, E.H.; Shin, A.; Ha, Y.J.; Lee, Y.J.; Lee, E.B.; Song, Y.W.; Kang, E.H. Risk factors associated with initiation of a biologic disease modifying anti-rheumatic drug in patients with rheumatoid arthritis: A nested case-control study on 34,925 patients. Joint Bone Spine, 2021, 88(1), 105057.
[http://dx.doi.org/10.1016/j.jbspin.2020.07.006] [PMID: 32711117]
[5]
Meier, F.M.P.; Frerix, M.; Hermann, W.; Müller-Ladner, U. Current immunotherapy in rheumatoid arthritis. Immunotherapy, 2013, 5(9), 955-974.
[http://dx.doi.org/10.2217/imt.13.94] [PMID: 23998731]
[6]
Wolfe, R.M.; Ang, D.C. Biologic therapies for autoimmune and connective tissue diseases. Immunol. Allergy Clin. North Am., 2017, 37(2), 283-299.
[http://dx.doi.org/10.1016/j.iac.2017.01.005] [PMID: 28366477]
[7]
Mitarotonda, R.; Giorgi, E.; Eufrasio-da-Silva, T.; Dolatshahi-Pirouz, A.; Mishra, Y.K.; Khademhosseini, A.; Desimone, M.F.; De Marzi, M.; Orive, G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. Biomaterials Advances, 2022, 135, 212726.
[http://dx.doi.org/10.1016/j.bioadv.2022.212726] [PMID: 35475005]
[8]
Dömling, A.; Li, X. TNF-α The shape of small molecules to come? Drug Discov. Today, 2022, 27(1), 3-7.
[http://dx.doi.org/10.1016/j.drudis.2021.06.018] [PMID: 34229081]
[9]
Pelechas, E.; Voulgari, P.V.; Drosos, A.A. Preclinical discovery and development of adalimumab for the treatment of rheumatoid arthritis. Expert Opin. Drug Discov., 2021, 16(3), 227-234.
[http://dx.doi.org/10.1080/17460441.2021.1846516] [PMID: 33183071]
[10]
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[11]
Behl, T.; Mehta, K.; Sehgal, A.; Singh, S.; Sharma, N.; Ahmadi, A.; Arora, S.; Bungau, S. Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr., 2022, 62(19), 5372-5393.
[http://dx.doi.org/10.1080/10408398.2021.1924613] [PMID: 33998910]
[12]
Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation-Nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the Epidemic” of chronic diseases. Front. Med., 2018, 5, 316.
[http://dx.doi.org/10.3389/fmed.2018.00316] [PMID: 30538987]
[13]
Hawiger, J.; Zienkiewicz, J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand. J. Immunol., 2019, 90(6), e12812.
[http://dx.doi.org/10.1111/sji.12812] [PMID: 31378956]
[14]
Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9(4), 880.
[http://dx.doi.org/10.3390/cells9040880] [PMID: 32260219]
[15]
Li, R.J.; Ma, L.; Kim, H.; Kim, I.; Hanes, L.; Altepeter, T.; Lee, J.; Liu, J.; Zhu, H.; Wang, Y. Model-informed approach supporting approval of adalimumab (humira) in pediatric patients with ulcerative Colitis from a regulatory perspective. AAPS J., 2022, 24(4), 79.
[http://dx.doi.org/10.1208/s12248-022-00730-0] [PMID: 35790574]
[16]
Campanati, A.; Diotallevi, F.; Martina, E.; Paolinelli, M.; Radi, G.; Offidani, A. Safety update of etanercept treatment for moderate to severe plaque psoriasis. Expert Opin. Drug Saf., 2020, 19(4), 439-448.
[http://dx.doi.org/10.1080/14740338.2020.1740204] [PMID: 32178543]
[17]
Romanowska-Próchnicka, K.; Felis-Giemza, A. Olesińska, M.; Wojdasiewicz, P.; Paradowska-Gorycka, A.; Szukiewicz, D. The Role of TNF-α and Anti-TNF-α Agents during Preconception, Pregnancy, and Breastfeeding. Int. J. Mol. Sci., 2021, 22(6), 2922.
[http://dx.doi.org/10.3390/ijms22062922] [PMID: 33805757]
[18]
Takita, M.; Matsumoto, S.; Shimoda, M.; Chujo, D.; Itoh, T.; Sorelle, J.A.; Purcell, K.; Onaca, N.; Naziruddin, B.; Levy, M.F. Safety and tolerabil-ity of the T-cell depletion protocol coupled with anakinra and etanercept for clinical islet cell transplantation. Clin. Transplant, 2012, 26(5), E471-84.
[http://dx.doi.org/10.1111/ctr.12011] [PMID: 23061757] [PMCID: PMC4082563];
Iafusco D, Mellos A, Zanfardino A, Mauro A,Granato C, Gicchino MF, Prisco F, Perrone L. Refractoryrheumatoid factor positive polyarthritis in a female adolescentalready suffering from type 1 diabetes mellitus and Hashimoto'sthyroiditis successfully treated with etanercept. Ital J Pediatr, 2013. Oct 14; 39: 64.
[http://dx.doi.org/10.1186/1824-7288-39-64] [PMID: 24124913] [PMCID: PMC3853088]
[19]
Timis, T.L.; Florian, I.A.; Vesa, S.C.; Mitrea, D.R.; Orasan, R.I. An updated guide in the management of psoriasis for every practitioner. Int. J. Clin. Pract., 2021, 75(8), e14290.
[http://dx.doi.org/10.1111/ijcp.14290] [PMID: 33928703]
[20]
Alkhayyat, M.; Abureesh, M.; Almomani, A.; Abou Saleh, M.; Zmaili, M.; El Ouali, S.; Mansoor, E.; Rubio-Tapia, A.; Regueiro, M. Patients with inflammatory bowel disease on treatment have lower rates of celiac disease. Inflamm. Bowel Dis., 2022, 28(3), 385-392.
[http://dx.doi.org/10.1093/ibd/izab084] [PMID: 34002219]
[21]
Salvador-Martín, S.; López-Cauce, B.; Nuñez, O.; Laserna-Mendieta, E.J.; García, M.I.; Lobato, E.; Abarca-Zabalía, J.; Sanjurjo-Saez, M.; Lucendo, A.J.; Marín-Jiménez, I.; Menchén, L.A.; López-Fernández, L.A. Genetic predictors of long-term response and trough levels of infliximab in crohn’s disease. Pharmacol. Res., 2019, 149, 104478.
[http://dx.doi.org/10.1016/j.phrs.2019.104478] [PMID: 31605784]
[22]
Iannone, F.; Favalli, E.G.; Caporali, R.; D’Angelo, S.; Cantatore, F.P.; Sarzi-Puttini, P.; Foti, R.; Conti, F.; Carletto, A.; Gremese, E.; Cauli, A.; Ramonda, R.; Palermo, A.; Epis, O.; Priora, M.; Bergossi, F.; Frediani, B.; Salaffi, F.; Lopalco, G.; Cacciapaglia, F.; Marchesoni, A.; Biggioggiero, M.; Bugatti, S.; Balduzzi, S.; Carriero, A.; Corrado, A.; Bongiovanni, S.; Benenati, A.; Miranda, F.; Fracassi, E.; Perra, D.; Ferraccioli, G.; Lapadula, G. Golimumab effectiveness in biologic inadequate responding patients with rheumatoid arthritis, psoriatic arthritis and spondyloarthritis in real-life from the Italian registry GISEA. Joint Bone Spine, 2021, 88(1), 105062.
[http://dx.doi.org/10.1016/j.jbspin.2020.07.011] [PMID: 32755721]
[23]
Alam, M.; Costales, M.; Cavanaugh, C.; Williams, K. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules, 2015, 5(2), 775-792.
[http://dx.doi.org/10.3390/biom5020775] [PMID: 25950510]
[24]
Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 291.
[http://dx.doi.org/10.1038/s41392-021-00687-0] [PMID: 34344870]
[25]
Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol., 2018, 18(12), 773-789.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[26]
Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol., 2020, 16(6), 335-345.
[http://dx.doi.org/10.1038/s41584-020-0419-z] [PMID: 32327746]
[27]
Wang, R.X.; Zhou, M.; Ma, H.L.; Qiao, Y.B.; Li, Q.S. The role of chronic inflammation in various diseases and anti‐inflammatory therapies containing natural products. ChemMedChem, 2021, 16(10), 1576-1592.
[http://dx.doi.org/10.1002/cmdc.202000996] [PMID: 33528076]
[28]
Galozzi, P.; Bindoli, S.; Doria, A.; Sfriso, P. The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun. Rev., 2021, 20(4), 102785.
[http://dx.doi.org/10.1016/j.autrev.2021.102785] [PMID: 33621698]
[29]
Conti, P.; Pregliasco, F.E.; Bellomo, R.G.; Gallenga, C.E.; Caraffa, A.; Kritas, S.K.; Lauritano, D.; Ronconi, G. Mast cell cytokines IL-1, IL-33, and IL-36 mediate skin inflammation in psoriasis: A novel therapeutic approach with the anti-inflammatory cytokines IL-37, IL-38, and IL-1Ra. Int. J. Mol. Sci., 2021, 22(15), 8076.
[http://dx.doi.org/10.3390/ijms22158076] [PMID: 34360845]
[30]
Akiyama, S.; Sakuraba, A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J. Transl. Autoimmun., 2021, 4, 100104.
[http://dx.doi.org/10.1016/j.jtauto.2021.100104] [PMID: 34179741]
[31]
Xu, J.; Jia, H.; Chen, S.; Xu, J.; Zhan, Y.; Yu, H.; Wang, W.; Kang, X.; Cui, X.; Feng, Y.; Chen, X.; Xu, W.; Pan, X.; Wei, X.; Li, H.; Wang, Y.; Xia, S.; Liu, X.; Yang, L.; He, Y.; Zhu, X. Structural and functional insights into a novel pre-clinical-stage antibody targeting IL-17A for treatment of autoimmune diseases. Int. J. Biol. Macromol., 2022, 202, 529-538.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.119] [PMID: 35066019]
[32]
Eksin, M.A.; Erden, A.; Güven, S.C.; Armagan, B.; Ozdemir, B.; Karakas, O.; Omma, A.; Kucuksahin, O. Secukinumab in the treatment of psoriatic arthritis or ankylosing spondyloarthritis with multiple sclerosis: A case series with literature review. Immunotherapy, 2022, 14(6), 401-408.
[http://dx.doi.org/10.2217/imt-2021-0128] [PMID: 35152720]
[33]
Lespessailles, E.; Toumi, H. Ixekizumab in the treatment of psoriatic arthritis. Immunotherapy, 2021, 13(1), 19-33.
[http://dx.doi.org/10.2217/imt-2020-0225] [PMID: 33167745]
[34]
Zhao, M.; Xing, J.; Tang, X.; Sheng, X.; Chi, H.; Zhan, W. Expression of Interleukin-2 receptor subunit gamma (IL-2Rγ) and its binding with IL-2 induced activation of CD4 T lymphocytes in flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 2022, 122, 426-436.
[http://dx.doi.org/10.1016/j.fsi.2022.02.033] [PMID: 35183740]
[35]
Arenas-Ramirez, N.; Woytschak, J.; Boyman, O. Interleukin-2: Biology, Design and Application. Trends Immunol., 2015, 36(12), 763-777.
[http://dx.doi.org/10.1016/j.it.2015.10.003] [PMID: 26572555]
[36]
Muhammad Yusoff, F.; Wong, K.K.; Mohd Redzwan, N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity, 2020, 53(1), 8-20.
[http://dx.doi.org/10.1080/08916934.2019.1693545] [PMID: 31771364]
[37]
Valencia, A.O.; Knirsch, M.C.; Ferro, E.S.; Stephano, M.A.J.I.I. Interleukin-2 as immunotherapeutic in the autoimmune diseases. Int. Immunopharmacol., 2020, 81, 106296.
[http://dx.doi.org/10.1016/j.intimp.2020.106296]
[38]
Yuan, Y.; Kolios, A.G.A.; Liu, Y.; Zhang, B.; Li, H.; Tsokos, G.C.; Zhang, X. Therapeutic potential of interleukin-2 in autoimmune diseases. Trends Mol. Med., 2022, 28(7), 596-612.
[http://dx.doi.org/10.1016/j.molmed.2022.04.010] [PMID: 35624009]
[39]
Deaner, J.D.; Jaffe, G.J.; Keenan, R.T.; Carnago, L.; Grewal, D.S. Anti-interleukin-6 antibodies for autoimmune retinopathy with macular edema. Ophthalmol. Retina, 2022, 6(1), 91-93.
[http://dx.doi.org/10.1016/j.oret.2021.08.008] [PMID: 34454124]
[40]
Dutta Majumder, P.; Marchese, A.; Pichi, F.; Garg, I.; Agarwal, A. An update on autoimmune retinopathy. Indian J. Ophthalmol., 2020, 68(9), 1829-1837.
[http://dx.doi.org/10.4103/ijo.IJO_786_20] [PMID: 32823399]
[41]
Arnold, D.D.; Yalamanoglu, A.; Boyman, O. Systematic review of safety and efficacy of IL-1-targeted biologics in treating immunemediated disorders. Front Immunol., 2022 Jul 6;13, 888392.
[http://dx.doi.org/10.3389/fimmu.2022.888392] [PMID: 35874710] [PMCID: PMC9296857]
[42]
Seegräber, M.; Srour, J.; Walter, A.; Knop, M.; Wollenberg, A. Dupilumab for treatment of atopic dermatitis. Expert Rev. Clin. Pharmacol., 2018, 11(5), 467-474.
[http://dx.doi.org/10.1080/17512433.2018.1449642] [PMID: 29557246]
[43]
Tillery, E.E.; Clements, J.N.; Howard, Z. What’s new in multiple sclerosis? Ment. Health Clin., 2018 Mar 23;7(5), 213-220.
[http://dx.doi.org/10.9740/mhc.2017.09.213] [PMID: 29955526] [PMCID: PMC6007716]
[44]
Feng, X.; Xu, W.; Li, Z.; Song, W.; Ding, J.; Chen, X. Immunomodulatory Nanosystems. Adv. Sci., 2019, 6(17), 1900101.
[http://dx.doi.org/10.1002/advs.201900101] [PMID: 31508270]
[45]
Serra, P.; Santamaria, P. Nanoparticle-based autoimmune disease therapy. Clin. Immunol., 2015, 160(1), 3-13.
[http://dx.doi.org/10.1016/j.clim.2015.02.003] [PMID: 25704658]
[46]
Koushki, K.; Keshavarz Shahbaz, S.; Keshavarz, M.; Bezsonov, E.E.; Sathyapalan, T.; Sahebkar, A. Gold nanoparticles: Multifaceted roles in the management of autoimmune disorders. Biomolecules, 2021, 11(9), 1289.
[http://dx.doi.org/10.3390/biom11091289] [PMID: 34572503]
[47]
Jayaraman, A.; Arianas, M. Jayaraman, SJBA Epigenetic modulation of selected immune response genes and altered functions of T lymphocytes and macrophages collectively contribute to autoimmune diabetes protection. BBA Advances, 2021, 1, 100031.
[http://dx.doi.org/10.1016/j.bbadva.2021.100031]
[48]
Lee, K.H.; Ahn, B.S.; Cha, D.; Jang, W.W.; Choi, E.; Park, S.; Park, J.H.; Oh, J.; Jung, D.E.; Park, H.; Park, J.H.; Suh, Y.; Jin, D.; Lee, S.; Jang, Y.H.; Yoon, T.; Park, M.K.; Seong, Y.; Pyo, J.; Yang, S.; Kwon, Y.; Jung, H.; Lim, C.K.; Hong, J.B.; Park, Y.; Choi, E.; Shin, J.I.; Kronbichler, A. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun. Rev., 2020, 19(3), 102469.
[http://dx.doi.org/10.1016/j.autrev.2020.102469] [PMID: 31918027]
[49]
Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother., 2016, 80, 30-41.
[http://dx.doi.org/10.1016/j.biopha.2016.03.004] [PMID: 27133037]
[50]
Zhang, B.; Su, Y.; Zhou, J.; Zheng, Y.; Zhu, D. Toward a better regeneration through implant‐mediated immunomodulation: Harnessing the immune responses. Adv. Sci., 2021, 8(16), 2100446.
[http://dx.doi.org/10.1002/advs.202100446] [PMID: 34117732]
[51]
Deng, F.; He, S.; Cui, S.; Shi, Y.; Tan, Y.; Li, Z.; Huang, C.; Liu, D.; Zhi, F.; Peng, L. A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. J. Crohn’s Colitis, 2019, 13(4), 482-494.
[http://dx.doi.org/10.1093/ecco-jcc/jjy181] [PMID: 30445446]
[52]
Rajendiran, A.; Tenbrock, K. Regulatory T cell function in autoimmune disease. J. Transl. Autoimmun., 2021, 4, 100130.
[http://dx.doi.org/10.1016/j.jtauto.2021.100130] [PMID: 35005594]
[53]
Romano, M.; Tung, S.L.; Smyth, L.A.; Lombardi, G. Treg therapy in transplantation: A general overview. Transpl. Int., 2017, 30(8), 745-753.
[http://dx.doi.org/10.1111/tri.12909] [PMID: 28012226]
[54]
Kuhn, C.; Weiner, H.L. Therapeutic anti-CD3 monoclonal antibodies: From bench to bedside. Immunotherapy, 2016, 8(8), 889-906.
[http://dx.doi.org/10.2217/imt-2016-0049] [PMID: 27161438]
[55]
Anfray, C. Mainini, F Chapter 11 - Nanoparticles for immunotherapy. In: Frontiers of Nanoscience, 2020, 16, 265-306.
[http://dx.doi.org/10.1016/B978-0-08-102828-5.00011-5]
[56]
Prasad, S.; Neef, T.; Xu, D.; Podojil, J.R.; Getts, D.R.; Shea, L.D.; Miller, S.D. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun., 2018, 89, 112-124.
[http://dx.doi.org/10.1016/j.jaut.2017.12.010] [PMID: 29258717]
[57]
Brusko, M.A.; Stewart, J.M.; Posgai, A.L.; Wasserfall, C.H.; Atkinson, M.A.; Brusko, T.M.; Keselowsky, B.G. Immunomodulatory dual-sized microparticle system conditions human antigen presenting cells into a tolerogenic phenotype in vitro and inhibits type 1 diabetes-specific autoreactive T cell responses. Front. Immunol., 2020, 11, 574447.
[http://dx.doi.org/10.3389/fimmu.2020.574447] [PMID: 33193362]
[58]
Ngobili, T.A.; Daniele, M.A. Nanoparticles and direct immunosuppression. Exp. Biol. Med. (Maywood), 2016, 241(10), 1064-1073.
[http://dx.doi.org/10.1177/1535370216650053] [PMID: 27229901]
[59]
Dong, J. Signaling pathways implicated in carbon nanotube-induced lung inflammation. Front. Immunol., 2020, 11, 552613.
[http://dx.doi.org/10.3389/fimmu.2020.552613] [PMID: 33391253]
[60]
Mitarotonda, R.; Giorgi, E.; Desimone, M.F.; De Marzi, M.C. Nanoparticles and immune cells. Curr. Pharm. Des., 2019, 25(37), 3960-3982.
[http://dx.doi.org/10.2174/1381612825666190926161209] [PMID: 31556850]
[61]
Yudoh, K.; Karasawa, R.; Masuko, K.; Kato, T. Water-soluble fullerene (c60) inhibits the development of arthritis in the rat model of arthritis. Int. J. Nanomedicine, 2009, 4, 217-225.
[http://dx.doi.org/10.2147/IJN.S7653] [PMID: 19918368]
[62]
Tosic, J.; Stanojevic, Z.; Vidicevic, S.; Isakovic, A.; Ciric, D.; Martinovic, T.; Kravic-Stevovic, T.; Bumbasirevic, V.; Paunovic, V.; Jovanovic, S.; Todorovic-Markovic, B.; Markovic, Z.; Danko, M.; Micusik, M.; Spitalsky, Z.; Trajkovic, V. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology, 2019, 146, 95-108.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.030] [PMID: 30471296]
[63]
Lee, S.W.; Park, H.J.; Van Kaer, L.; Hong, S.; Hong, S. Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model. Sci. Rep., 2018, 8(1), 10081.
[http://dx.doi.org/10.1038/s41598-018-28396-9] [PMID: 29973666]
[64]
Rive, C.; Reina, G.; Wagle, P.; Treossi, E.; Palermo, V.; Bianco, A.; Delogu, L.G.; Rieckher, M.; Schumacher, B. Improved biocompatibility of amino‐functionalized graphene oxide in Caenorhabditis elegans. Small, 2019, 15(45), 1902699.
[http://dx.doi.org/10.1002/smll.201902699] [PMID: 31576668]
[65]
Cao, W.; He, L.; Cao, W.; Huang, X.; Jia, K.; Dai, J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater., 2020, 112, 14-28.
[http://dx.doi.org/10.1016/j.actbio.2020.06.009] [PMID: 32531395]
[66]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[67]
Tarakanchikova, Y.; Alzubi, J.; Pennucci, V.; Follo, M.; Kochergin, B.; Muslimov, A.; Skovorodkin, I.; Vainio, S.; Antipina, M.N.; Atkin, V.; Popov, A.; Meglinski, I.; Cathomen, T.; Cornu, T.I.; Gorin, D.A.; Sukhorukov, G.B.; Nazarenko, I. Biodegradable nanocarriers resembling extracellular vesicles deliver genetic material with the highest efficiency to various cell types. Small, 2020, 16(3), 1904880.
[http://dx.doi.org/10.1002/smll.201904880] [PMID: 31840408]
[68]
Qu, Y.; Ju, Y.; Cortez-Jugo, C.; Lin, Z.; Li, S.; Zhou, J.; Ma, Y.; Glab, A.; Kent, S.J.; Cavalieri, F.; Caruso, F. Template‐mediated assembly of DNA into microcapsules for immunological modulation. Small, 2020, 16(37), 2002750.
[http://dx.doi.org/10.1002/smll.202002750] [PMID: 32762023]
[69]
Ghorbani, M.M.; Farazmandfar, T.; Abediankenari, S.; Hassannia, H.; Maleki, Z.; Shahbazi, M. Treatment of EAE mice with Treg, G-MDSC and IL-2: a new insight into cell therapy for multiple sclerosis. Immunotherapy, 2022, 14(10), 789-798.
[http://dx.doi.org/10.2217/imt-2021-0045] [PMID: 35678041]
[70]
Swartzwelter, B.J.; Barbero, F.; Verde, A.; Mangini, M.; Pirozzi, M.; De Luca, A.C.; Puntes, V.F.; Leite, L.C.C.; Italiani, P.; Boraschi, D. Gold nanoparticles modulate bcg-induced innate immune memory in human monocytes by shifting the memory response towards tolerance. Cells, 2020, 9(2), 284.
[http://dx.doi.org/10.3390/cells9020284] [PMID: 31979412]
[71]
Latha, T.S.; Lomada, D.; Dharani, P.K.; Muthukonda, S.V. Ti-O based nanomaterials ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. RSC Advances, 2016, 6(11), 8870-8880.
[72]
Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm., 2019, 14(5), 480-496.
[http://dx.doi.org/10.1016/j.ajps.2018.09.005] [PMID: 32104476]
[73]
Chountoulesi, M.; Demetzos, C. Promising nanotechnology approaches in treatment of autoimmune diseases of central nervous system. Brain Sci., 2016, 10(6), 338.
[http://dx.doi.org/10.3390/brainsci10060338]
[74]
A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine, 2016, 34(1), 110-119.
[75]
Sharma, B.; McLeland, C.B.; Potter, T.M.; Stern, S.T.; Adiseshaiah, P.P. Assessing NLRP3 inflammasome activation by nanoparticles. Methods Mol. Biol., 2018, 1682, 135-147.
[http://dx.doi.org/10.1007/978-1-4939-7352-1_12] [PMID: 29039099]
[76]
Cibulski, S.P.; Rivera-Patron, M.; Mourglia-Ettlin, G.; Casaravilla, C.; Yendo, A.C.A.; Fett-Neto, A.G.; Chabalgoity, J.A.; Moreno, M.; Roehe, P.M.; Silveira, F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci. Rep., 2018, 8(1), 13582.
[http://dx.doi.org/10.1038/s41598-018-31995-1] [PMID: 30206376]
[77]
Hsieh, J.Y.; Smith, T.D.; Meli, V.S.; Tran, T.N.; Botvinick, E.L.; Liu, W.F. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater., 2017, 47, 14-24.
[http://dx.doi.org/10.1016/j.actbio.2016.09.024] [PMID: 27662809]
[78]
Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol., 2017, 34, 25-32.
[http://dx.doi.org/10.1016/j.smim.2017.09.011] [PMID: 28985993]
[79]
Biologics in Refractory Vasculitis (BIOVAS). ClinicalTrials.gov Identifier: NCT05168475. Available from: https://clinicaltrials.gov/ct2/show/NCT05168475?cond=NCT05168475&draw=2&rank=1
[80]
Immunological Response to COVID-19 Vaccine in Patients with Autoimmune and Inflammatory Diseases Treated with Immunosuppressants and/or Biologics (COVADIS). ClinicalTrials.gov Identifier: NCT04870411. Available from: https://clinicaltrials.gov/ct2/show/record/NCT04870411?cond=NCT04870411&draw=1&rank=
[81]
Nivolumab in the Treatment of Patients with Advanced, Metastatic, or Unresectable Cancer. ClinicalTrials.gov Identifier: NCT038163 45. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03816345?cond=NCT03816345&draw=2&rank=
[82]
University, S. Examination of Efficacy and Safety of Baricitinib in RA Patients., Available from: https://clinicaltrials.gov/ct2/show/record/NCT03755466?cond=NCT03755466&draw=2&rank=
[83]
Personalized Therapies in Inflammatory Complex Disease (PIMOC)., Available from: https://clinicaltrials.gov/ct2/show/record/NCT03651518?cond=NCT03651518&draw=2&rank=
[84]
A Study Comparing Biologics + Methotrexate With Biologics + Tacrolimus in Patients With Rheumatoid Arthritis (RA). Clinical-Trials.gov Identifier: NCT03737708. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03737708?cond=NCT03737708&draw=2&rank=
[85]
Clarification of Abatacept Effects in SLE With Integrated Biologic and Clinical Approaches (ABC). ClinicalTrials.gov Identifier: NCT02270957. Available from: https://clinicaltrials.gov/ct2/show/record/NCT02270957?cond=NCT02270957&draw=2&rank=
[86]
Active Conventional Therapy Compared to Three Different Biologic Treatments in Early Rheumatoid Arthritis With Subsequent Dose Reduction. ClinicalTrials.gov Identifier: NCT01491815. Available from: https://clinicaltrials.gov/ct2/show/record/NCT01491815?cond=NCT01491815&draw=2&rank=
[87]
The RITAI Cohort: An Observational Study on Rituximab Offlabel Use for Auto-immune Disorders (RITAI). ClinicalTrials.gov Identifier: NCT00960713. Available from: https://clinicaltrials.gov/ct2/show/record/NCT00960713?cond=NCT00960713&draw=2&rank=
[88]
Measurement of the Structural Efficacy in Active RA Patients Treated With Sarilumab in Combination With MTX and Naive to Biologics. ClinicalTrials.gov Identifier: NCT03535402. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03535402?cond=NCT03535402&draw=2&rank=

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy