Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

Pomegranate and Cognitive Performance: A Systematic Review

Author(s): Roghayeh Molani-Gol, Elaheh Foroumandi, Mohammad Alizadeh and Sorayya Kheirouri*

Volume 29, Issue 12, 2023

Published on: 14 April, 2023

Page: [928 - 939] Pages: 12

DOI: 10.2174/1381612829666230330163645

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cognitive dysfunction, such as dementia, is the most common neurological disorder that affects memory, perception, learning, and problem-solving. Emerging evidence suggests that nutritional factors may prevent or accelerate the incidence of neurodegenerative diseases.

Objective: This systematic review was designed to evaluate the association between pomegranate treatment and cognitive function.

Methods: PubMed, Embase, Google Scholar, and Scopus databases were searched to extract original animal and human studies published until July 2021 without date restrictions. Firstly, 215 studies were retrieved via the search strategy. Irrelevant and duplicated studies were screened out, and critical analysis was used to obtain data. The articles' quality and bias risks were assessed by OHAT and Cochrane Collaboration’s quality assessment tools.

Results: Finally, 24 articles (20 animal and 4 randomized controlled trial studies) were included in this review. All included animal and human studies indicated that pomegranate treatment was positively associated with improving specific domains of cognitive function.

Conclusion: Our findings demonstrated that pomegranate treatment could improve cognitive function. Therefore, including pomegranate intake during daily life may lower the risk of cognitive impairment at the population level.

Keywords: Pomegranate, Punica granatum L., cognitive performance, cognition, Alzheimer’s disease, dementia.

[1]
Ones DS, Dilchert S, Viswesvaran C, Salgado JF. Cognitive abilities 2010.
[2]
Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer’s disease: The amyloid hypothesis and the Inverse Warburg effect. Front Physiol 2015; 5: 522.
[http://dx.doi.org/10.3389/fphys.2014.00522] [PMID: 25642192]
[3]
Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. Alzheimer’s disease international: World Alzheimer’s report 2015: The global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International 2019 https://www.alz.co.uk/research/world-report-2015 (Sept 21, 2015), Accessed 8th Apr 2018.
[4]
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. New York, NY, USA: United Nations 2019.
[5]
Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M. Multidomain interventions to prevent cognitive impairment, Alzheimer’s disease, and dementia: From FINGER to World-Wide FINGERS J Prev Alzheimers Dis 2020; 7(1): 29-36.
[PMID: 32010923]
[6]
Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci 2011; 108(7): 3017-22.
[http://dx.doi.org/10.1073/pnas.1015950108] [PMID: 21282661]
[7]
Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern Med 2015; 175(7): 1094-103.
[http://dx.doi.org/10.1001/jamainternmed.2015.1668] [PMID: 25961184]
[8]
Park DC, Lodi-Smith J, Drew L, et al. The impact of sustained engagement on cognitive function in older adults: The synapse project. Psychol Sci 2014; 25(1): 103-12.
[http://dx.doi.org/10.1177/0956797613499592] [PMID: 24214244]
[9]
Kheirouri S, Alizadeh M. MIND diet and cognitive performance in older adults: A systematic review. Crit Rev Food Sci Nutr 2022; 62(29): 8059-77.
[http://dx.doi.org/10.1080/10408398.2021.1925220] [PMID: 33989093]
[10]
Kheirouri S, Alizadeh M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol Rev 2019; 41(1): 109-20.
[http://dx.doi.org/10.1093/epirev/mxz005] [PMID: 31565731]
[11]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[12]
Miller JW, Harvey DJ, Beckett LA, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol 2015; 72(11): 1295-303.
[http://dx.doi.org/10.1001/jamaneurol.2015.2115] [PMID: 26366714]
[13]
Külzow N, Witte AV, Kerti L, et al. Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis 2016; 51(3): 713-25.
[http://dx.doi.org/10.3233/JAD-150886] [PMID: 26890759]
[14]
Newman RA, Lansky EP, Block ML. Pomegranate: The Most Medicinal Fruit. New Jersey: Basic Health Publications, Inc. 2007.
[15]
Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): A review Altern Med Rev 2008; 13(2): 128-44.
[PMID: 18590349]
[16]
Ko K, Dadmohammadi Y, Abbaspourrad A. Nutritional and bioactive components of pomegranate waste used in food and cosmetic applications: A review. Foods 2021; 10(3): 657.
[http://dx.doi.org/10.3390/foods10030657] [PMID: 33808709]
[17]
Tzulker R, Glazer I, Bar-Ilan I, Holland D, Aviram M, Amir R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J Agric Food Chem 2007; 55(23): 9559-70.
[http://dx.doi.org/10.1021/jf071413n] [PMID: 17914875]
[18]
Almuhayawi MS, Ramadan WS, Harakeh S, et al. The potential role of pomegranate and its nano-formulations on cerebral neurons in aluminum chloride induced Alzheimer rat model. Saudi J Biol Sci 2020; 27(7): 1710-6.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.045] [PMID: 32565686]
[19]
Siddarth P, Li Z, Miller KJ, et al. Randomized placebo-controlled study of the memory effects of pomegranate juice in middle-aged and older adults Am J Clin Nutr 2020; 111(1): 170-7.
[PMID: 31711104]
[20]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol 2009; 62(10): e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[21]
NTP (National Toxicology Program). Handbook for conducting a literature-based health assessment using OHAT approach for systematic review and evidence integration Washington DC: National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Office of Health Assessment and Translation (OHAT) 2015.https://ntpniehsnihgov/ntp/ohat/pubs/handbookjan2015 508pdf 2015
[22]
Tarsilla M. Cochrane handbook for systematic reviews of interventions. J Multidiscip Eval 2010; 6(14): 142-8.
[23]
Suh M, Wikoff D, Lipworth L, et al. Hexavalent chromium and stomach cancer: A systematic review and meta-analysis. Crit Rev Toxicol 2019; 49(2): 140-59.
[http://dx.doi.org/10.1080/10408444.2019.1578730] [PMID: 30896278]
[24]
Higgins JP, Altman DG, Sterne JA. Assessing Risk of Bias in Included Studies. In: Higgins JPT, Green S, Eds. Cochrane handbook for systematic reviews of interventions version 51 0 (updated March 2011). The Cochrane Collaboration: London, UK 2011; pp. 243-96.
[25]
White CM, Pasupuleti V, Roman YM, Li Y, Hernandez AV. Oral turmeric/curcumin effects on inflammatory markers in chronic inflammatory diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2019; 146: 104280.
[http://dx.doi.org/10.1016/j.phrs.2019.104280] [PMID: 31121255]
[26]
Subash S, Braidy N, Essa MM, et al. Long-term (15 mo) dietary supplementation with pomegranates from Oman attenuates cognitive and behavioral deficits in a transgenic mice model of Alzheimer’s disease. Nutrition 2015; 31(1): 223-9.
[http://dx.doi.org/10.1016/j.nut.2014.06.004] [PMID: 25441596]
[27]
Cambay Z, Baydas G, Tuzcu M, Bal R. Pomegranate (Punica granatum L.) flower improves learning and memory performances impaired by diabetes mellitus in rats. Acta Physiol Hung 2011; 98(4): 409-20.
[http://dx.doi.org/10.1556/APhysiol.98.2011.4.4] [PMID: 22173022]
[28]
Dulcich MS, Hartman RE. Pomegranate supplementation improves affective and motor behavior in mice after radiation exposure. Evid Based Complement Alternat Med 2013; 2013: 940830.
[http://dx.doi.org/10.1155/2013/940830]
[29]
Gadouche L, Djebli N, Zerrouki K. Pomegranate juice attenuates neurotoxicity and histopathological changes of the nervous system induced by aluminum in mice. Phytotherapie 2018; 16(3): 133-41.
[http://dx.doi.org/10.3166/phyto-2018-0016]
[30]
Hajipour S, Sarkaki A, Taghi Mans SM, Pilevarian A. RafieiRad M, RafieiRad M. Motor and cognitive deficits due to permanent cerebral hypoperfusion/ischemia improve by pomegranate seed extract in rats. Pak J Biol Sci 2014; 17(8): 991-8.
[http://dx.doi.org/10.3923/pjbs.2014.991.998] [PMID: 26031017]
[31]
Sarkaki A, Farbood Y, Hashemi S, Rafiei Rad M. Pomegranate seed hydroalcoholic extract improves memory deficits in ovariectomized rats with permanent cerebral hypoperfusion /ischemia. Avicenna J Phytomed 2015; 5(1): 43-55.
[PMID: 25767756]
[32]
Rojanathammanee L, Puig KL, Combs CK. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease. J Nutr 2013; 143(5): 597-605.
[http://dx.doi.org/10.3945/jn.112.169516] [PMID: 23468550]
[33]
Hartman RE, Shah A, Fagan AM, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 2006; 24(3): 506-15.
[http://dx.doi.org/10.1016/j.nbd.2006.08.006] [PMID: 17010630]
[34]
Morzelle MC, Salgado JM, Telles M, et al. Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One 2016; 11(11): e0166123.
[http://dx.doi.org/10.1371/journal.pone.0166123] [PMID: 27829013]
[35]
Ahmed AH, Subaiea GM, Eid A, Li L, Seeram NP, Zawia NH. Pomegranate extract modulates processing of amyloid-β precursor protein in an aged Alzheimer’s disease animal model Curr Alzheimer Res 2014; 11(9): 834-43.
[PMID: 25274111]
[36]
Fatima F, Rizvi DA, Abidi A, et al. A study of the neuroprotective role of Punica granatum and rosuvastatin in scopolamine induced cognitive deficit in rats. Int J Basic Clin Pharmacol 1773; 6(7): 1773-7.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20172747]
[37]
Choi SJ, Lee JH, Heo HJ, et al. Punica granatum protects against oxidative stress in PC12 cells and oxidative stress-induced Alzheimer’s symptoms in mice. J Med Food 2011; 14(7-8): 695-701.
[http://dx.doi.org/10.1089/jmf.2010.1452] [PMID: 21631359]
[38]
Adiga S, Trivedi P, Ravichandra V, Deb D, Mehta F. Effect of Punica granatum peel extract on learning and memory in rats. Asian Pac J Trop Med 2010; 3(9): 687-90.
[http://dx.doi.org/10.1016/S1995-7645(10)60166-6]
[39]
Ridzwan N, Jumli MN, Baig AA, Rohin MAK. Pomegranate-derived anthocyanin regulates MORs-cAMP/CREB-BDNF pathways in opioid-dependent models and improves cognitive impairments. J Ayurveda Integr Med 2020; 11(4): 478-88.
[http://dx.doi.org/10.1016/j.jaim.2019.12.001] [PMID: 32430240]
[40]
Kumar S, Maheshwari KK, Singh V. Protective effects of Punica granatum seeds extract against aging and scopolamine induced cognitive impairments in mice Afr J Tradit Complement Altern Med 2008; 6(1): 49-56.
[PMID: 20162041]
[41]
Bellone JA, Murray JR, Jorge P, et al. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial. Nutr Neurosci 2019; 22(10): 738-43.
[http://dx.doi.org/10.1080/1028415X.2018.1436413] [PMID: 29433376]
[42]
Bookheimer SY, Renner BA, Ekstrom A, et al. Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid Based Complement Alternat Med 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/946298] [PMID: 23970941]
[43]
Ropacki SA, Patel SM, Hartman RE. Pomegranate supplementation protects against memory dysfunction after heart surgery: A pilot study. Evid Based Complement Alternat Med 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/932401] [PMID: 24159353]
[44]
Lee JH, Ahn SY, Lee HA, et al. Dietary intake of pantothenic acid is associated with cerebral amyloid burden in patients with cognitive impairment. Food Nutr Res 2018; 62: 62.
[http://dx.doi.org/10.29219/fnr.v62.1415] [PMID: 30574044]
[45]
Ma F, Zhou X, Li Q, et al. Effects of folic acid and vitamin B12, alone and in combination on cognitive function and inflammatory factors in the elderly with mild cognitive impairment: A single-blind experimental design. Curr Alzheimer Res 2019; 16(7): 622-32.
[http://dx.doi.org/10.2174/1567205016666190725144629] [PMID: 31345146]
[46]
Hogg S. A review of the validity and variability of the Elevated Plus-Maze as an animal model of anxiety. Pharmacol Biochem Behav 1996; 54(1): 21-30.
[http://dx.doi.org/10.1016/0091-3057(95)02126-4] [PMID: 8728535]
[47]
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[48]
Yuan T, Ma H, Liu W, et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 2016; 7(1): 26-33.
[http://dx.doi.org/10.1021/acschemneuro.5b00260] [PMID: 26559394]
[49]
Christaki E, Bonos E, Paneri D, Foskolos D, Sarikaki E, Paneri PF. Dietary pomegranate juice on brain oxidative stress. Curr Opin Biotechnol 2011; 22(22): S91.
[http://dx.doi.org/10.1016/j.copbio.2011.05.278]
[50]
Mehdi A, Lamiae B, Samira B, et al. Pomegranate (Punica granatum L.) attenuates neuroinflammation involved in neurodegenerative diseases. Foods 2022; 11(17): 2570.
[http://dx.doi.org/10.3390/foods11172570] [PMID: 36076756]
[51]
Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008; 33(12): 2416-26.
[http://dx.doi.org/10.1007/s11064-008-9697-6] [PMID: 18415676]
[52]
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice rescues developmental, neurobehavioral and biochemical disorders in aluminum chloride-treated male mice. J Trace Elem Med Biol 2021; 63: 126655.
[http://dx.doi.org/10.1016/j.jtemb.2020.126655] [PMID: 33045674]
[53]
Hakeem KR, Harakeh S, Ramadan WS, Al Muhayawi MS, Al Jaouni S, Mousa S. Pomegranate peel extract lessens histopathologic changes and restores antioxidant homeostasis in the hippocampus of rats with aluminium chloride-induced Alzheimer’s disease. Asian Pac J Trop Med 2020; 13(10): 456.
[http://dx.doi.org/10.4103/1995-7645.291039]
[54]
Abdulmalek S, Suliman M, Omer O. Possible neuroprotective role of pomegranate juice in aluminum chloride induced Alzheimer’s like disease in mice. J Alzheimers Dis Parkinsonism 2015; 5(188): 2161-0460.
[http://dx.doi.org/10.4172/2161-0460.1000188]
[55]
Rutten BPF, Steinbusch HWM, Korr H, Schmitz C. Antioxidants and Alzheimerʼs disease: From bench to bedside (and back again). Curr Opin Clin Nutr Metab Care 2002; 5(6): 645-51.
[http://dx.doi.org/10.1097/00075197-200211000-00006] [PMID: 12394639]
[56]
Song P, Zou MH. Roles of Reactive Oxygen Species in Physiology and Pathology. Atherosclerosis: risks, mechanisms, and therapies. Wiley Online Library 2015; pp. 379-92.
[http://dx.doi.org/10.1002/9781118828533.ch30]
[57]
Zhang C. Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer’s disease Discov Med 2012; 14(76): 189-97.
[PMID: 23021373]
[58]
Deacon RMJ, Rawlins JNP. Hippocampal lesions, species-typical behaviours and anxiety in mice. Behav Brain Res 2005; 156(2): 241-9.
[http://dx.doi.org/10.1016/j.bbr.2004.05.027] [PMID: 15582110]
[59]
Gottlieb M, Leal-Campanario R, Campos-Esparza MR, et al. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 2006; 23(2): 374-86.
[http://dx.doi.org/10.1016/j.nbd.2006.03.017] [PMID: 16806951]
[60]
Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J Nutr 2014; 144(S4): S561-6.
[http://dx.doi.org/10.3945/jn.113.184838] [PMID: 24500933]
[61]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[62]
Eskenazi B, Marks AR, Bradman A, et al. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 2007; 115(5): 792-8.
[http://dx.doi.org/10.1289/ehp.9828] [PMID: 17520070]
[63]
Levin ED, Addy N, Baruah A, et al. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 2002; 24(6): 733-41.
[http://dx.doi.org/10.1016/S0892-0362(02)00272-6] [PMID: 12460655]
[64]
Derakhshan Z, Ferrante M, Tadi M, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem Toxicol 2018; 114: 108-11.
[http://dx.doi.org/10.1016/j.fct.2018.02.023] [PMID: 29448088]
[65]
Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 2000; 48(10): 4581-9.
[http://dx.doi.org/10.1021/jf000404a] [PMID: 11052704]
[66]
Larrosa M, Tomás-Barberán FA, Espín JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J Nutr Biochem 2006; 17(9): 611-25.
[http://dx.doi.org/10.1016/j.jnutbio.2005.09.004] [PMID: 16426830]
[67]
Braidy N, Essa MM, Poljak A, et al. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer’s disease. Oncotarget 2016; 7(40): 64589-604.
[http://dx.doi.org/10.18632/oncotarget.10905] [PMID: 27486879]
[68]
Sartori AC, Vance DE, Slater LZ, Crowe M. The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J Neurosci Nurs 2012; 44(4): 206-17.
[http://dx.doi.org/10.1097/JNN.0b013e3182527690] [PMID: 22743812]
[69]
Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother Res 2014; 28(4): 517-25.
[http://dx.doi.org/10.1002/ptr.5030] [PMID: 23873854]
[70]
Yarilina A, Xu K, Chen J, Ivashkiv LB. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc Natl Acad Sci 2011; 108(4): 1573-8.
[http://dx.doi.org/10.1073/pnas.1010030108] [PMID: 21220349]
[71]
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[72]
Chatterjee P, Pedrini S, Stoops E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 2021; 11(1): 27.
[http://dx.doi.org/10.1038/s41398-020-01137-1] [PMID: 33431793]
[73]
Zhang H, Liu J, Sun S, Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2015; 45(2): 561-80.
[http://dx.doi.org/10.3233/JAD-142427] [PMID: 25589721]
[74]
Selkoe DJ, Schenk D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43(1): 545-84.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140248] [PMID: 12415125]
[75]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[76]
Savioz A, Leuba G, Vallet PG. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res Rev 2014; 18: 86-94.
[http://dx.doi.org/10.1016/j.arr.2014.09.004] [PMID: 25264360]
[77]
Nyffeler M, Zhang WN, Feldon J, Knuesel I. Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol Aging 2007; 28(1): 143-55.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.11.003] [PMID: 16386336]
[78]
Müller M, Cárdenas C, Mei L, Cheung KH, Foskett JK. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP3R)Ca2+ signaling. Proc Natl Acad Sci 2011; 108(32): 13293-8.
[http://dx.doi.org/10.1073/pnas.1109297108] [PMID: 21784978]
[79]
Scott BR. Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol 2012; 83(6): 705-14.
[http://dx.doi.org/10.1016/j.bcp.2011.11.009] [PMID: 22119240]
[80]
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders 2011; 22(2)
[http://dx.doi.org/10.1515/rns.2011.018]
[81]
Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 2010; 5(6): e11102.
[http://dx.doi.org/10.1371/journal.pone.0011102] [PMID: 20559548]
[82]
Lucin KM, O’Brien CE, Bieri G, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 2013; 79(5): 873-86.
[http://dx.doi.org/10.1016/j.neuron.2013.06.046] [PMID: 24012002]
[83]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[84]
Lee CC, Huang CC, Hsu KS. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 2011; 61(4): 867-79.
[http://dx.doi.org/10.1016/j.neuropharm.2011.06.003] [PMID: 21683721]
[85]
Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329(5994): 959-64.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[86]
Wei X, Luo L, Chen J. Roles of mTOR signaling in tissue regeneration. Cells 2019; 8(9): 1075.
[http://dx.doi.org/10.3390/cells8091075] [PMID: 31547370]
[87]
Garelick MG, Kennedy BK. TOR on the brain. Exp Gerontol 2011; 46(2-3): 155-63.
[http://dx.doi.org/10.1016/j.exger.2010.08.030] [PMID: 20849946]
[88]
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119: 18-33.
[http://dx.doi.org/10.1016/j.nlm.2014.12.014] [PMID: 25595880]
[89]
Su ZW, Liao J, Zhang H, et al. Postnatal high-protein diet improves learning and memory in premature rats via activation of mTOR signaling. Brain Res 2015; 1611: 1-7.
[http://dx.doi.org/10.1016/j.brainres.2015.01.052] [PMID: 25796434]
[90]
Xiong H, Cassé F, Zhou Y, et al. mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory. Learn Mem 2015; 22(12): 577-83.
[http://dx.doi.org/10.1101/lm.039420.115] [PMID: 26572647]
[91]
Bathina S, Das UN. Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats. Lipids Health Dis 2018; 17(1): 168.
[http://dx.doi.org/10.1186/s12944-018-0809-2] [PMID: 30041644]
[92]
Caccamo A, Magrì A, Medina DX, et al. mTOR regulates tau phosphorylation and degradation: Implications for Alzheimer’s disease and other tauopathies. Aging Cell 2013; 12(3): 370-80.
[http://dx.doi.org/10.1111/acel.12057] [PMID: 23425014]
[93]
Galvan V, Hart MJ. Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862(5): 992-1007.
[http://dx.doi.org/10.1016/j.bbadis.2015.11.010] [PMID: 26639036]
[94]
Lazarevic-Pasti T, Leskovac A, Momic T, Petrovic S, Vasic V. Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs Curr Med Chem 2017; 24(30): 3283-309.
[PMID: 28685687]
[95]
Ambigaipalan P, de Camargo AC, Shahidi F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agric Food Chem 2016; 64(34): 6584-604.
[http://dx.doi.org/10.1021/acs.jafc.6b02950] [PMID: 27509218]
[96]
Riaz A, Khan RA, Algahtani HA. Memory boosting effect of Citrus limon, Pomegranate and their combinations Pak J Pharm Sci 2014; 27(6): 1837-40.
[PMID: 25362607]
[97]
Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr Top Med Chem 2020; 20(7): 524-39.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[98]
Liang X, Fu Y, Cao W, et al. Gut microbiome, cognitive function and brain structure: A multi-omics integration analysis. Transl Neurodegener 2022; 11(1): 49.
[http://dx.doi.org/10.1186/s40035-022-00323-z] [PMID: 36376937]
[99]
Meyer K, Lulla A, Debroy K, et al. Association of the gut microbiota with cognitive function in midlife. JAMA Netw Open 2022; 5(2): e2143941.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.43941] [PMID: 35133436]
[100]
Ettinger S. Diet, gut microbiome, and cognitive decline. Curr Nutr Rep 2022; 11(4): 643-52.
[http://dx.doi.org/10.1007/s13668-022-00435-y] [PMID: 36018501]
[101]
Cho YE, Song BJ. Pomegranate prevents binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Redox Biol 2018; 18: 266-78.
[http://dx.doi.org/10.1016/j.redox.2018.07.012] [PMID: 30071471]
[102]
Shi H, Yang J, Li J. Pomegranate peel polyphenols interaction with intestinal flora and its metabolic transformation. Xenobiotica 2022; 52(5): 442-52.
[http://dx.doi.org/10.1080/00498254.2022.2073291]
[103]
Zhao R, Long X, Yang J, et al. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct 2019; 10(12): 8273-85.
[http://dx.doi.org/10.1039/C9FO02077B] [PMID: 31720661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy