Review Article

SARS-CoV-2感染、炎症、免疫营养与COVID-19的发病机制

卷 30, 期 39, 2023

发表于: 16 May, 2023

页: [4390 - 4408] 页: 19

弟呕挨: 10.2174/0929867330666230330092725

价格: $65

摘要

由冠状病毒SARS-CoV-2引起的COVID-19大流行在过去两年中夺去了全球数百万人的生命。患有潜在心血管疾病、肺病和糖尿病的老年人死亡率尤其高。对作者的关键词进行文献计量学分析,搜索过去50年来各种冠状病毒研究之间可能存在的联系,并进行整合。我们发现免疫系统、免疫力、营养、营养不良、微量营养素、运动、炎症和过度炎症等关键词彼此高度相关。基于这些发现,我们假设人类免疫系统是一个多层次的超复杂系统,它采用多种策略来控制微生物感染和恢复体内平衡。研究还发现,免疫系统的行为不能用单一的免疫学理论来描述。然而,一种主要的策略是“自我毁灭和重建”,它由一系列炎症反应组成:1)受损/功能失调的体细胞主动自我毁灭;2)清除碎片和细胞;3)组织重建。因此,入侵微生物的清除可能只是对这一破坏-重建过程的被动旁观者反应。微生物感染可能是自我限制的,并作为微生物中存在的大量基因不可缺少的必需营养而促进。自毁细胞碎片降解导致的短暂性营养激增,再加上患者现有的营养状态,可能在COVID-19的发病机制中发挥重要作用。最后,讨论了几种可能缓解COVID-19的应对策略,包括疫苗接种。

关键词: COVID-19、细胞因子风暴、免疫、炎症反应、营养不良、吞噬、限制性饮食、自限性感染。

[1]
https://www.science.org/content/article/cancer-survivor-had-longest-documented-covid-19-infection-here-s-what-scientists-learned
[http://dx.doi.org/10.1126/science.acx9383]
[2]
Nussenblatt, V.; Roder, A.E.; Das, S.; de Wit, E.; Youn, J.H.; Banakis, S.; Mushegian, A.; Mederos, C.; Wang, W.; Chung, M.; Pérez-Pérez, L.; Palmore, T.; Brudno, J.N.; Kochenderfer, J.N.; Ghedin, E. yearlong COVID-19 infection reveals within-host evolution of sars-cov-2 in a patient with B-cell pepletion. J. Infect. Dis., 2022, 225(7), 1118-1123.
[http://dx.doi.org/10.1093/infdis/jiab622] [PMID: 34940844]
[3]
Zhu, C.C.; Zhu, J. The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous. BMC Infect. Dis., 2021, 21(1), 1145.
[http://dx.doi.org/10.1186/s12879-021-06670-y] [PMID: 34753451]
[4]
Narain, J.P.; Dawa, N.; Bhatia, R. Health system response to COVID-19 and future pandemics. J. Health Manag., 2020, 22(2), 138-145.
[http://dx.doi.org/10.1177/0972063420935538]
[5]
Pieniawska-Śmiech, K.; Kuraszewicz, A.; Sado, J.; Śmiech, K.; Lewandowicz-Uszyńska, A. Assessment of COVID-19 incidence and the ability to synthesise anti-sars-cov-2 antibodies of paediatric patients with primary immunodeficiency. J. Clin. Med., 2021, 10(21), 5111.
[http://dx.doi.org/10.3390/jcm10215111] [PMID: 34768630]
[6]
Bansal, N.; Ovchinsky, N.; Foca, M.; Lamour, J.M.; Kogan-Liberman, D.; Hsu, D.T.; Beddows, K.; Abraham, L.; Coburn, M.; Cunningham, R.; Nguyen, T.; Hayde, N. COVID-19 infection in pediatric solid organ transplant patients. Pediatr. Transplant., 2022, 26(2), 14156.
[http://dx.doi.org/10.1111/petr.14156] [PMID: 34633125]
[7]
Levin, B.R.; Baquero, F.; Ankomah, P.P.; McCall, I.C. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol., 2017, 25(11), 878-892.
[http://dx.doi.org/10.1016/j.tim.2017.07.005] [PMID: 28843668]
[8]
Levin, B.R.; Antia, R. Why we don’t get sick: The within-host population dynamics of bacterial infections. Science, 2001, 292(5519), 1112-1115.
[http://dx.doi.org/10.1126/science.1058879] [PMID: 11352067]
[9]
Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.H.; Boucau, J.; Bowman, K.; Adhikari, U.D.; Winkler, M.L.; Mueller, A.A.; Hsu, T.Y.T.; Desjardins, M.; Baden, L.R.; Chan, B.T.; Walker, B.D.; Lichterfeld, M.; Brigl, M.; Kwon, D.S.; Kanjilal, S.; Richardson, E.T.; Jonsson, A.H.; Alter, G.; Barczak, A.K.; Hanage, W.P.; Yu, X.G.; Gaiha, G.D.; Seaman, M.S.; Cernadas, M.; Li, J.Z. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med., 2020, 383(23), 2291-2293.
[http://dx.doi.org/10.1056/NEJMc2031364] [PMID: 33176080]
[10]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[11]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[12]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[13]
Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; Voort, P.H.J.; Olde Rikkert, M.G.M.; Hoeven, J.G.; Dunnen, W.F.A.; Hillebrands, J.L.; Goor, H. COVID -19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol., 2021, 254(4), 307-331.
[http://dx.doi.org/10.1002/path.5642] [PMID: 33586189]
[14]
Fox, S.E.; Akmatbekov, A.; Harbert, J.L.; Li, G.; Quincy Brown, J.; Vander Heide, R.S. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. Lancet Respir. Med., 2020, 8(7), 681-686.
[http://dx.doi.org/10.1016/S2213-2600(20)30243-5] [PMID: 32473124]
[15]
Prasad, A.; Prasad, M. Single virus targeting multiple organs: What we know and where we are heading? Front. Med., 2020, 7, 370.
[http://dx.doi.org/10.3389/fmed.2020.00370] [PMID: 32850890]
[16]
Raza, A.; Estepa, A.; Chan, V.; Jafar, M.S. Acute renal failure in critically Ill COVID-19 Patients with a focus on the role of renal replacement therapy: A Review of what we know so far. Cureus, 2020, 12(6), e8429.
[http://dx.doi.org/10.7759/cureus.8429] [PMID: 32642345]
[17]
Su, H.; Yang, M.; Wan, C.; Yi, L.X.; Tang, F.; Zhu, H.Y.; Yi, F.; Yang, H.C.; Fogo, A.B.; Nie, X.; Zhang, C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 2020, 98(1), 219-227.
[http://dx.doi.org/10.1016/j.kint.2020.04.003] [PMID: 32327202]
[18]
Ritter, A.; Kreis, N.N.; Louwen, F.; Yuan, J. Obesity and COVID-19: Molecular mechanisms linking both pandemics. Int. J. Mol. Sci., 2020, 21(16), 5793.
[http://dx.doi.org/10.3390/ijms21165793] [PMID: 32806722]
[19]
Mauvais-Jarvis, F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes, 2020, 69(9), 1857-1863.
[http://dx.doi.org/10.2337/dbi19-0023] [PMID: 32669390]
[20]
Petrakis, D.; Margină, D.; Tsarouhas, K.; Tekos, F.; Stan, M.; Nikitovic, D.; Kouretas, D.; Spandidos, D.; Tsatsakis, A. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol. Med. Rep., 2020, 22(1), 9-19.
[http://dx.doi.org/10.3892/mmr.2020.11127] [PMID: 32377709]
[21]
Flaherty, G.T.; Hession, P.; Liew, C.H.; Lim, B.C.W.; Leong, T.K.; Lim, V.; Sulaiman, L.H. COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations. Trop. Dis. Travel Med. Vaccines, 2020, 6(1), 16.
[http://dx.doi.org/10.1186/s40794-020-00118-y] [PMID: 32868984]
[22]
Yoshikawa, N.; Yoshikawa, T.; Hill, T.; Huang, C.; Watts, D.M.; Makino, S.; Milligan, G.; Chan, T.; Peters, C.J.; Tseng, C.T.K. Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2. J. Virol., 2009, 83(11), 5451-5465.
[http://dx.doi.org/10.1128/JVI.02272-08] [PMID: 19297479]
[23]
Tseng, C.T.K.; Perrone, L.A.; Zhu, H.; Makino, S.; Peters, C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol., 2005, 174(12), 7977-7985.
[http://dx.doi.org/10.4049/jimmunol.174.12.7977] [PMID: 15944304]
[24]
Chivukula, R.R.; Maley, J.H.; Dudzinski, D.M.; Hibbert, K.; Hardin, C.C. Evidence-based management of the critically Ill adult with SARS-CoV-2 infection. J. Intensive Care Med., 2021, 36(1), 18-41.
[http://dx.doi.org/10.1177/0885066620969132] [PMID: 33111601]
[25]
Wilson, J.G.; Simpson, L.J.; Ferreira, A.M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rosenberg-Hasson, Y.; Maecker, H.T.; Holmes, S.P.; Levitt, J.E.; Blish, C.A.; Rogers, A.J. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight, 2020, 5(17), e140289.
[http://dx.doi.org/10.1172/jci.insight.140289] [PMID: 32706339]
[26]
El Zowalaty, M.E.; Järhult, J.D. From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach. One Health, 2020, 9, 100124.
[http://dx.doi.org/10.1016/j.onehlt.2020.100124] [PMID: 32195311]
[27]
Jorwal, P.; Jorwal, P.; Bharadwaj, S. One health approach and COVID-19: A perspective. J. Family Med. Prim. Care, 2020, 9(12), 5888-5891.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1058_20] [PMID: 33681013]
[28]
Li, Q.; Bergquist, R.; Grant, L.; Song, J.X.; Feng, X.Y.; Zhou, X.N. Consideration of COVID-19 beyond the human-centred approach of prevention and control: The ONE-HEALTH perspective. Emerg. Microbes Infect., 2022, 11(1), 2520-2528.
[http://dx.doi.org/10.1080/22221751.2022.2125343] [PMID: 36102336]
[29]
van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2), 523-538.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[30]
Gupta, A.; Gupta, R.; Singh, R.L. Microbes and Environment.Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future; Singh, R., Ed.; Springer: Singapore, 2017, pp. 43-84.
[http://dx.doi.org/10.1007/978-981-10-1866-4_3]
[31]
Millen, D.D.; De Beni, A.M.; Lauritano , P.R.D. Rumenology; Springer International Publishing: Cham, Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-30533-2]
[32]
Cammack, K.M.; Austin, K.J.; Lamberson, W.R.; Conant, G.C.; Cunningham, H.C. Ruminant nutrition symposium: Tiny but mighty: The role of the rumen microbes in livestock production. J. Anim. Sci., 2018, 96(10), 4481.
[http://dx.doi.org/10.1093/jas/sky331] [PMID: 29385535]
[33]
Storm, E.; Ørskov, E.R.; Smart, R. The nutritive value of rumen micro-organisms in ruminants. Br. J. Nutr., 1983, 50(2), 471-478.
[http://dx.doi.org/10.1079/BJN19830115] [PMID: 6615775]
[34]
Hackmann, T.J.; Firkins, J.L. Maximizing efficiency of rumen microbial protein production. Front. Microbiol., 2015, 6, 465.
[http://dx.doi.org/10.3389/fmicb.2015.00465] [PMID: 26029197]
[35]
Gilbert, S.F.; Sapp, J.; Tauber, A.I. A symbiotic view of life: We have never been individuals. Q. Rev. Biol., 2012, 87(4), 325-341.
[http://dx.doi.org/10.1086/668166] [PMID: 23397797]
[36]
Alexander, K.L.; Targan, S.R.; Elson, C.O., III Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev., 2014, 260(1), 206-220.
[http://dx.doi.org/10.1111/imr.12180] [PMID: 24942691]
[37]
Georgountzou, A.; Papadopoulos, N.G. Postnatal innate immune development: From birth to adulthood. Front. Immunol., 2017, 8, 957.
[http://dx.doi.org/10.3389/fimmu.2017.00957] [PMID: 28848557]
[38]
Kloc, M.; Ghobrial, R.M.; Kuchar, E.; Lewicki, S.; Kubiak, J.Z. Development of child immunity in the context of COVID-19 pandemic. Clin. Immunol., 2020, 217, 108510.
[http://dx.doi.org/10.1016/j.clim.2020.108510] [PMID: 32544611]
[39]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[40]
McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; Hentschel, U.; King, N.; Kjelleberg, S.; Knoll, A.H.; Kremer, N.; Mazmanian, S.K.; Metcalf, J.L.; Nealson, K.; Pierce, N.E.; Rawls, J.F.; Reid, A.; Ruby, E.G.; Rumpho, M.; Sanders, J.G.; Tautz, D.; Wernegreen, J.J. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3229-3236.
[http://dx.doi.org/10.1073/pnas.1218525110] [PMID: 23391737]
[41]
Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 2012, 13(4), 260-270.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[42]
Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; Padmanabhan, P.; Moret, C.; Gulyás, B.; Blaser, M.J.; Auwerx, J.; Holmes, E.; Nicholson, J.; Wahli, W.; Pettersson, S. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med., 2019, 11(502), eaan5662.
[http://dx.doi.org/10.1126/scitranslmed.aan5662] [PMID: 31341063]
[43]
Reza, M.M.; Finlay, B.B.; Pettersson, S. Gut microbes, ageing & organ function: A chameleon in modern biology? EMBO Mol. Med., 2019, 11(9), e9872.
[http://dx.doi.org/10.15252/emmm.201809872] [PMID: 31410991]
[44]
Gupta, V.; Kumar, R.; Sood, U.; Singhvi, N. Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J. Microbiol., 2020, 60(1), 37-44.
[http://dx.doi.org/10.1007/s12088-019-00839-5] [PMID: 32089572]
[45]
Singhvi, N.; Gupta, V.; Gaur, M.; Sharma, V.; Puri, A.; Singh, Y.; Dubey, G.P.; Lal, R. Interplay of human gut microbiome in health and wellness. Indian J. Microbiol., 2020, 60(1), 26-36.
[http://dx.doi.org/10.1007/s12088-019-00825-x] [PMID: 32089571]
[46]
Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; Yu, L.; Xu, C.; Ren, Z.; Xu, Y.; Xu, S.; Shen, H.; Zhu, X.; Shi, Y.; Shen, Q.; Dong, W.; Liu, R.; Ling, Y.; Zeng, Y.; Wang, X.; Zhang, Q.; Wang, J.; Wang, L.; Wu, Y.; Zeng, B.; Wei, H.; Zhang, M.; Peng, Y.; Zhang, C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359(6380), 1151-1156.
[http://dx.doi.org/10.1126/science.aao5774] [PMID: 29590046]
[47]
Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.T.H.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; de Vos, W.M.; van der Poll, T.; Wiersinga, W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65(4), 575-583.
[http://dx.doi.org/10.1136/gutjnl-2015-309728] [PMID: 26511795]
[48]
Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; Capri, M.; Brigidi, P.; Candela, M. Gut microbiota and extreme longevity. Curr. Biol., 2016, 26(11), 1480-1485.
[http://dx.doi.org/10.1016/j.cub.2016.04.016] [PMID: 27185560]
[49]
Candela, M.; Biagi, E.; Brigidi, P.; O'Toole, P.W.; De Vos, W.M. Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mech. Ageing Dev., 2016, 136, 70-75.
[http://dx.doi.org/10.1016/j.mad.2013.12.004]
[50]
Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O'Connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O'Sullivan, O.; Fitzgerald, G.F.; Deane, J.; O'Connor, M.; Harnedy, N.; O'Connor, K.; O'Mahony, D.; van Sinderen, D.; Wallace, M.; Brennan, L.; Stanton, C.; Marchesi, J.R.; Fitzgerald, A.P.; Shanahan, F.; Hill, C.; Ross, R.P.; O'Toole, P.W. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, ‏178-184.
[http://dx.doi.org/10.1038/nature11319]
[51]
Yu, B.; Yu, B.; Yu, L. Commentary: Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J. Microbiol., 2020, 60(2), 259-261.
[http://dx.doi.org/10.1007/s12088-020-00863-w] [PMID: 32255860]
[52]
Yu, L. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19. Indian J. Microbiol., 2021, 61(1), 104-107.
[http://dx.doi.org/10.1007/s12088-020-00913-3] [PMID: 33424043]
[53]
Kumar, R.; Sood, U.; Gupta, V.; Singh, M.; Scaria, J.; Lal, R. Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J. Microbiol., 2020, 60(1), 12-25.
[http://dx.doi.org/10.1007/s12088-019-00808-y] [PMID: 32089570]
[54]
Rath, S.; Rud, T.; Karch, A.; Pieper, D.H.; Vital, M. Pathogenic functions of host microbiota. Microbiome, 2018, 6(1), 174.
[http://dx.doi.org/10.1186/s40168-018-0542-0] [PMID: 30266099]
[55]
Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol., 2018, 16(8), 457-470.
[http://dx.doi.org/10.1038/s41579-018-0036-x] [PMID: 29904082]
[56]
Hornef, M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the Host. ILAR J., 2015, 56(2), 159-162.
[http://dx.doi.org/10.1093/ilar/ilv007] [PMID: 26323625]
[57]
Proença, J.T.; Barral, D.C.; Gordo, I. Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction. Sci. Rep., 2017, 7(1), 4504.
[http://dx.doi.org/10.1038/s41598-017-04081-1] [PMID: 28674418]
[58]
Yu, B.; Yu, L.; Klionsky, D.J. Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med. Hypotheses, 2021, 155, 110668.
[http://dx.doi.org/10.1016/j.mehy.2021.110668] [PMID: 34467856]
[59]
Dickson, R.P.; Martinez, F.J.; Huffnagle, G.B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet, 2014, 384, 691-702.
[http://dx.doi.org/10.1016/S0140-6736(14)61136-3]
[60]
Sokol, H.; Seksik, P. The intestinal microbiota in inflammatory bowel diseases: Time to connect with the host. Curr. Opin. Gastroenterol., 2010, 26, 327-331.
[http://dx.doi.org/10.1097/MOG.0b013e328339536b]
[61]
Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; Lai, C.K.C.; Chen, Z.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in gut microbiota of patients with covid-19 during time of hospitalization. Gastroenterology, 2020, 159(3), 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]
[62]
Dhar, D.; Mohanty, A. Gut microbiota and Covid-19- possible link and implications. Virus Res., 2020, 285, 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[63]
van der Lelie, D.; Taghavi, S. COVID-19 and the gut microbiome: More than a gut feeling. mSystems, 2020, 5(4), e00453-20.
[http://dx.doi.org/10.1128/mSystems.00453-20] [PMID: 32694127]
[64]
Kalantar-Zadeh, K.; Ward, S.A.; Kalantar-Zadeh, K.; El-Omar, E.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. ACS Nano, 2020, 14, ‏5179-5182.
[http://dx.doi.org/10.1021/acsnano.0c03402]
[65]
Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; Haarmann, D.; Humphrey, G.C.; Ackermann, G.; Thompson, L.R.; Lauber, C.; Bibat, A.; Nicholas, C.; Gebert, M.J.; Petrosino, J.F.; Reed, S.C.; Gilbert, J.A.; Lynne, A.M.; Bucheli, S.R.; Carter, D.O.; Knight, R. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science, 2016, 351(6269), 158-162.
[http://dx.doi.org/10.1126/science.aad2646] [PMID: 26657285]
[66]
Eberl, G. A new vision of immunity: Homeostasis of the superorganism. Mucosal Immunol., 2010, 3(5), 450-460.
[http://dx.doi.org/10.1038/mi.2010.20] [PMID: 20445502]
[67]
Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol., 2010, 11(9), 785-797.
[http://dx.doi.org/10.1038/ni.1923] [PMID: 20720586]
[68]
Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol., 2013, 14(10), 986-995.
[http://dx.doi.org/10.1038/ni.2705] [PMID: 24048120]
[69]
Desgeorges, T.; Caratti, G.; Mounier, R.; Tuckermann, J.; Chazaud, B. Glucocorticoids shape macrophage phenotype for tissue repair. Front. Immunol., 2019, 10, 1591.
[http://dx.doi.org/10.3389/fimmu.2019.01591] [PMID: 31354730]
[70]
Davis, L.E.; Oyer, R.; Beckham, J.D.; Tyler, K.L. Elevated CSF cytokines in the Jarisch-Herxheimer reaction of general paresis. JAMA Neurol., 2013, 70(8), 1060-1064.
[http://dx.doi.org/10.1001/jamaneurol.2013.2120] [PMID: 23732875]
[71]
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol., 1994, 12(1), 991-1045.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.005015] [PMID: 8011301]
[72]
Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol., 2008, 68(2), 120-128.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02130.x] [PMID: 18544150]
[73]
Cunliffe, J. Intentional pathogen killing--or denial of substrate? Scand. J. Immunol., 2007, 66(6), 604-609.
[http://dx.doi.org/10.1111/j.1365-3083.2007.02017.x] [PMID: 17949408]
[74]
Cunliffe, J. Tissue homeostasis and immunity--more on models. Scand. J. Immunol., 2006, 64(3), 172-176.
[http://dx.doi.org/10.1111/j.1365-3083.2006.01814.x] [PMID: 16918683]
[75]
Cunliffe, J. From terra firma to terra plana – danger is shaking the foundations: deconstructing the ‘immune system’. Med. Hypotheses, 1999, 52(3), 213-219.
[http://dx.doi.org/10.1054/mehy.1997.0645] [PMID: 10362280]
[76]
Cunliffe, J. Morphostasis: An evolving perspective. Med. Hypotheses, 1997, 49(6), 449-459.
[http://dx.doi.org/10.1016/S0306-9877(97)90062-1] [PMID: 9466367]
[77]
Cunliffe, J. Morphostasis and immunity. Med. Hypotheses, 1995, 44(2), 89-96.
[http://dx.doi.org/10.1016/0306-9877(95)90076-4] [PMID: 7596312]
[78]
Pradeu, T.; Jaeger, S.; Vivier, E. The speed of change: Towards a discontinuity theory of immunity? Nat. Rev. Immunol., 2013, 13(10), 764-769.
[http://dx.doi.org/10.1038/nri3521] [PMID: 23995627]
[79]
Pradeu, T.; Vivier, E. The discontinuity theory of immunity. Sci. Immunol., 2016, 1(1), aag0479.
[http://dx.doi.org/10.1126/sciimmunol.aag0479] [PMID: 28239677]
[80]
Eberl, G.; Pradeu, T. Towards a General Theory of Immunity? Trends Immunol., 2018, 39(4), 261-263.
[http://dx.doi.org/10.1016/j.it.2017.11.004] [PMID: 29229264]
[81]
Oltz, E.M. Regulation of antigen receptor gene assembly in lymphocytes. Immunol. Res., 2001, 23(2-3), 121-134.
[http://dx.doi.org/10.1385/IR:23:2-3:121] [PMID: 11444378]
[82]
Thomas, L.R.; Cobb, R.M.; Oltz, E.M. Dynamic regulation of antigen receptor gene assembly. Adv. Exp. Med. Biol., 2009, 650, 103-115.
[http://dx.doi.org/10.1007/978-1-4419-0296-2_9] [PMID: 19731805]
[83]
Calder, P.C.; Kew, S. The immune system: A target for functional foods? Br. J. Nutr., 2002, 88(S2), S165-S176.
[http://dx.doi.org/10.1079/BJN2002682] [PMID: 12495459]
[84]
Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci., 2008, 13(13), 453-461.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[85]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[86]
Shi, F.D.; Ljunggren, H.G.; Sarvetnick, N. Innate immunity and autoimmunity: From self-protection to self-destruction. Trends Immunol., 2001, 22(2), 97-101.
[http://dx.doi.org/10.1016/S1471-4906(00)01821-4] [PMID: 11286711]
[87]
Viorritto, I.C.B.; Nikolov, N.P.; Siegel, R.M. Autoimmunity versus tolerance: Can dying cells tip the balance? Clin. Immunol., 2007, 122(2), 125-134.
[http://dx.doi.org/10.1016/j.clim.2006.07.012] [PMID: 17029966]
[88]
Hartl, W.H. Metabolic self-destruction in critically ill patients (part i): Origins, mechanisms and biologic sense. Aktuel. Ernahrungsmed., 2016, 41(1), 40-44.
[http://dx.doi.org/10.1055/s-0041-111343]
[89]
Hartl, W.H. Metabolic self-destruction in critically ill patients (part ii): The importance of modern medical care and therapeutic consequences. Aktuel. Ernahrungsmed., 2016, 41(2), 113-117.
[http://dx.doi.org/10.1055/s-0042-102160]
[90]
Wildbaum, G.; Nahir, M.A.; Karin, N. Beneficial autoimmunity to proinflammatory mediators restrains the consequences of self-destructive immunity. Immunity, 2003, 19(5), 679-688.
[http://dx.doi.org/10.1016/S1074-7613(03)00291-7] [PMID: 14614855]
[91]
Sender, R.; Milo, R. The distribution of cellular turnover in the human body. Nat. Med., 2021, 27(1), 45-48.
[http://dx.doi.org/10.1038/s41591-020-01182-9] [PMID: 33432173]
[92]
Han, C.Z.; Ravichandran, K.S. Metabolic connections during apoptotic cell engulfment. Cell, 2011, 147(7), 1442-1445.
[http://dx.doi.org/10.1016/j.cell.2011.12.006] [PMID: 22196723]
[93]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[94]
Ravichandran, K.S.; Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol., 2007, 7(12), 964-974.
[http://dx.doi.org/10.1038/nri2214] [PMID: 18037898]
[95]
Henson, P.M.; Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol., 2006, 27(5), 244-250.
[http://dx.doi.org/10.1016/j.it.2006.03.005] [PMID: 16584921]
[96]
Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol., 2017, 17(3), 151-164.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[97]
Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A.; Natale, C.; Santacroce, R.; Di Corcia, M.; Lucchese, A.; Dini, L.; Pani, P.; Santacroce, S.; Simone, S.; Bucci, R.; Farber, E.; Simone, S.; Bucci, R.; Farber, E. Cell death: Apoptosis versus necrosis (Review). Int. J. Oncol., 2002, 21(1), 165-170.
[http://dx.doi.org/10.3892/ijo.21.1.165] [PMID: 12063564]
[98]
Broderick, N.A. A common origin for immunity and digestion. Front. Immunol., 2015, 6, 72.
[http://dx.doi.org/10.3389/fimmu.2015.00072] [PMID: 25745424]
[99]
Seeberg, J.C.; Loibl, M.; Moser, F.; Schwegler, M.; Büttner-Herold, M.; Daniel, C.; Engel, F.B.; Hartmann, A.; Schlötzer-Schrehardt, U.; Goppelt-Struebe, M.; Schellerer, V.; Naschberger, E.; Ganzleben, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. Non-professional phagocytosis: A general feature of normal tissue cells. Sci. Rep., 2019, 9(1), 11875.
[http://dx.doi.org/10.1038/s41598-019-48370-3] [PMID: 31417141]
[100]
Schwegler, M.; Wirsing, A.M.; Dollinger, A.J.; Abendroth, B.; Putz, F.; Fietkau, R.; Distel, L.V. Clearance of primary necrotic cells by non-professional phagocytes. Biol. Cell, 2015, 107(10), 372-387.
[http://dx.doi.org/10.1111/boc.201400090] [PMID: 26032600]
[101]
Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol., 2015, 16(9), 907-917.
[http://dx.doi.org/10.1038/ni.3253] [PMID: 26287597]
[102]
Green, D.R.; Oguin, T.H.; Martinez, J. The clearance of dying cells: Table for two. Cell Death Differ., 2016, 23(6), 915-926.
[http://dx.doi.org/10.1038/cdd.2015.172] [PMID: 26990661]
[103]
Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; Adamopoulos, I.E.; Adeli, K.; Adolph, T.E.; Adornetto, A.; Aflaki, E.; Agam, G.; Agarwal, A.; Aggarwal, B.B.; Agnello, M. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2021, 17(1), 1-382.
[http://dx.doi.org/10.1080/15548627.2020.1797280]
[104]
van Niekerk, G.; Loos, B.; Nell, T.; Engelbrecht, A.M. Autophagy—A free meal in sickness-associated anorexia. Autophagy, 2016, 12(4), 727-734.
[http://dx.doi.org/10.1080/15548627.2016.1147672] [PMID: 27050464]
[105]
Haq, S.; Grondin, J.; Banskota, S.; Khan, W.I. Autophagy: Roles in intestinal mucosal homeostasis and inflammation. J. Biomed. Sci., 2019, 26(1), 19.
[http://dx.doi.org/10.1186/s12929-019-0512-2] [PMID: 30764829]
[106]
Deretic, V.; Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe, 2009, 5(6), 527-549.
[http://dx.doi.org/10.1016/j.chom.2009.05.016] [PMID: 19527881]
[107]
Benjamin, J.L.; Sumpter, R., Jr; Levine, B.; Hooper, LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe, 2013, 13, 723-734.
[http://dx.doi.org/10.1016/j.chom.2013.05.004]
[108]
Cuervo, A.M.; Macian, F. Autophagy, nutrition and immunology. Mol. Aspects Med., 2012, 33, ‏2-13.
[http://dx.doi.org/10.1016/j.mam.2011.09.001]
[109]
Singh, R.; Cuervo, A.M. Autophagy in the cellular energetic balance. Cell Metab., 2011, 13(5), 495-504.
[http://dx.doi.org/10.1016/j.cmet.2011.04.004] [PMID: 21531332]
[110]
Huett, A.; Goel, G.; Xavier, R.J. A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol., 2010, 26, 302-309.
[http://dx.doi.org/10.1097/MOG.0b013e32833ae2ed]
[111]
Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A.; Nakaya, H.; Yoshimori, T.; Ohsumi, Y.; Tokuhisa, T.; Mizushima, N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020), 1032-1036.
[http://dx.doi.org/10.1038/nature03029] [PMID: 15525940]
[112]
Kheloufi, M.; Boulanger, C.M.; Durand, F.; Rautou, P.E. Liver autophagy in anorexia nervosa and acute liver injury. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/701064] [PMID: 25250330]
[113]
Zhi, X.; Feng, W.; Rong, Y.; Liu, R. Anatomy of autophagy: From the beginning to the end. Cell. Mol. Life Sci., 2018, 75(5), 815-831.
[http://dx.doi.org/10.1007/s00018-017-2657-z] [PMID: 28939950]
[114]
Eskelinen, E.L.; Saftig, P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2009, 1793(4), 664-673.
[http://dx.doi.org/10.1016/j.bbamcr.2008.07.014] [PMID: 18706940]
[115]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[116]
Kuballa, P.; Nolte, W.M.; Castoreno, A.B.; Xavier, R.J. Autophagy and the immune system. Annu. Rev. Immunol., 2012, 30(1), 611-646.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074948] [PMID: 22449030]
[117]
Jo, E.K.; Yuk, J.M.; Shin, D.M.; Sasakawa, C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol., 2013, 4, 97.
[http://dx.doi.org/10.3389/fimmu.2013.00097] [PMID: 23653625]
[118]
Gomes, L.C.; Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell, 2014, 54(2), 224-233.
[http://dx.doi.org/10.1016/j.molcel.2014.03.009] [PMID: 24766886]
[119]
Randall-Demllo, S.; Chieppa, M.; Eri, R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front. Immunol., 2013, 4, 301.
[http://dx.doi.org/10.3389/fimmu.2013.00301] [PMID: 24137160]
[120]
Kabat, A.M.; Pott, J.; Maloy, K.J. The mucosal immune system and its regulation by autophagy. Front. Immunol., 2016, 7, 240.
[http://dx.doi.org/10.3389/fimmu.2016.00240] [PMID: 27446072]
[121]
Ghartey-Kwansah, G.; Adu-Nti, F.; Aboagye, B.; Ankobil, A.; Essuman, E.E.; Opoku, Y.K.; Abokyi, S.; Abu, E.K.; Boampong, J.N. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci., 2020, 10(1), 101.
[http://dx.doi.org/10.1186/s13578-020-00464-6] [PMID: 32944216]
[122]
Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[123]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[124]
Wimmer, K.; Sachet, M.; Oehler, R. Circulating biomarkers of cell death. Clin. Chim. Acta, 2020, 500, 87-97.
[http://dx.doi.org/10.1016/j.cca.2019.10.003] [PMID: 31655053]
[125]
Mitteldorf, J. How evolutionary thinking affects people’s ideas about aging interventions. Rejuvenation Res., 2006, 9(2), 346-350.
[http://dx.doi.org/10.1089/rej.2006.9.346] [PMID: 16706667]
[126]
Exton, M.S. Infection-induced anorexia: Active host defence strategy. Appetite, 1997, 29(3), 369-383.
[http://dx.doi.org/10.1006/appe.1997.0116] [PMID: 9468766]
[127]
van Niekerk, G.; Isaacs, A.W.; Nell, T.; Engelbrecht, A.M. Sickness-associated anorexia: Mother nature’s idea of immunonutrition? Mediators Inflamm., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/8071539] [PMID: 27445441]
[128]
Nilsson, A. Mechanisms Behind Illness-Induced Anorexia. 2016,
[http://dx.doi.org/10.3384/diss.diva-132640]
[129]
Garbarino, J.; Sturley, S.L. Saturated with fat: New perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(2), 110-116.
[http://dx.doi.org/10.1097/MCO.0b013e32832182ee] [PMID: 19202381]
[130]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[131]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[132]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[133]
Costantini, S.; Sharma, A.; Colonna, G. The value of the cytokinome profile.Inflammatory diseases - A modern perspective; Nagal, A., Ed.; IntechOpen, 2011.
[http://dx.doi.org/10.5772/25707]
[134]
Virtue, S.; Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — An allostatic perspective. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(3), 338-349.
[http://dx.doi.org/10.1016/j.bbalip.2009.12.006] [PMID: 20056169]
[135]
Posey, K.A.; Clegg, D.J.; Printz, R.L.; Byun, J.; Morton, G.J.; Vivekanandan-Giri, A.; Pennathur, S.; Baskin, D.G.; Heinecke, J.W.; Woods, S.C.; Schwartz, M.W.; Niswender, K.D. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab., 2009, 296(5), E1003-E1012.
[http://dx.doi.org/10.1152/ajpendo.90377.2008] [PMID: 19116375]
[136]
Stahlschmidt, Z.R.; Acker, M.; Kovalko, I.; Adamo, S.A. The double-edged sword of immune defence and damage control: do food availability and immune challenge alter the balance? Funct. Ecol., 2015, 29(11), 1445-1452.
[http://dx.doi.org/10.1111/1365-2435.12454]
[137]
van Niekerk, G.; du Toit, A.; Loos, B.; Engelbrecht, A.M. Nutrient excess and autophagic deficiency: explaining metabolic diseases in obesity. Metabolism, 2018, 82, 14-21.
[http://dx.doi.org/10.1016/j.metabol.2017.12.007] [PMID: 29289514]
[138]
Chang, H.R.; Bistrian, B. The role of cytokines in the catabolic consequences of infection and injury. JPEN J. Parenter. Enteral Nutr., 1998, 22(3), 156-166.
[http://dx.doi.org/10.1177/0148607198022003156] [PMID: 9586794]
[139]
Demling, R.H.; De Santi, L. Effect of a Catabolic State with Involuntary Weight Loss on Acute and Chronic Respiratory Disease. Medscape, 2002. Available from: https://www.medscape.org/viewarticle/432384
[140]
Romijn, J.A. Part 1 Substrate metabolism in the metabolic response to injury. Proc. Nutr. Soc., 2000, 59(3), 447-449.
[http://dx.doi.org/10.1017/S0029665100000616] [PMID: 10997672]
[141]
Akner, G.; Cederholm, T. Treatment of protein-energy malnutrition in chronic nonmalignant disorders. Am. J. Clin. Nutr., 2001, 74(1), 6-24.
[http://dx.doi.org/10.1093/ajcn/74.1.6] [PMID: 11451713]
[142]
Brunelli, S.; Roverequerini, P. The immune system and the repair of skeletal muscle. Pharmacol. Res., 2008, 58(2), 117-121.
[http://dx.doi.org/10.1016/j.phrs.2008.06.008] [PMID: 18639637]
[143]
Berardi, E.; Madaro, L.; Lozanoska-Ochser, B.; Adamo, S.; Thorrez, L.; Bouche, M.; Coletti, D. A pound of flesh: What cachexia is and what it is not. Diagnostics, 2021, 11(1), 116.
[http://dx.doi.org/10.3390/diagnostics11010116] [PMID: 33445790]
[144]
Arabi, Y.M.; Reintam Blaser, A.; Preiser, J.C. Less is more in nutrition: Critically ill patients are starving but not hungry. Intensive Care Med., 2019, 45(11), 1629-1631.
[http://dx.doi.org/10.1007/s00134-019-05765-0] [PMID: 31531714]
[145]
Omodei, D.; Pucino, V.; Labruna, G.; Procaccini, C.; Galgani, M.; Perna, F.; Pirozzi, D.; De Caprio, C.; Marone, G.; Fontana, L.; Contaldo, F.; Pasanisi, F.; Matarese, G.; Sacchetti, L. Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism, 2015, 64(3), 396-405.
[http://dx.doi.org/10.1016/j.metabol.2014.10.025] [PMID: 25500208]
[146]
Nova, E.; Samartín, S.; Gómez, S.; Morandé, G.; Marcos, A. The adaptive response of the immune system to the particular malnutrition of eating disorders. Eur. J. Clin. Nutr., 2002, 56(S3), S34-S37.
[http://dx.doi.org/10.1038/sj.ejcn.1601482] [PMID: 12142959]
[147]
Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3066-3090.
[http://dx.doi.org/10.1080/10408398.2020.1792826] [PMID: 32691606]
[148]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[149]
Allen, A.; Snary, D. The structure and function of gastric mucus. Gut, 1972, 13(8), 666-672.
[http://dx.doi.org/10.1136/gut.13.8.666] [PMID: 4562023]
[150]
Forstner, JF Intestinal mucins in health and disease. Digestion, 1978, 17, 234-263.
[http://dx.doi.org/10.1159/000198115]
[151]
Higashizono, K.; Fukatsu, K.; Watkins, A.; Watanabe, T.; Noguchi, M.; Tominaga, E.; Ri, M.; Murakoshi, S.; Yasuhara, H.; Seto, Y. Effects of short-term fasting on gut-associated lymphoid tissue and intestinal morphology in mice. Clin. Nutr. Exp., 2018, 18, 6-14.
[http://dx.doi.org/10.1016/j.yclnex.2017.12.002]
[152]
Papavramidis, T.S.; Kaidoglou, K.; Grosomanidis, V.; Kazamias, P.; Anagnostopoulos, T.H.; Paramythiotis, D.; Kotzampassi, K. Short-term fasting-induced jejunal mucosa atrophy in rats –the role of probiotics during refeeding. Ann. Gastroenterol., 2009, 22, 268-274.
[153]
Grundy, S.M. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur. J. Clin. Invest., 2015, 45(11), 1209-1217.
[http://dx.doi.org/10.1111/eci.12519] [PMID: 26291691]
[154]
Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep., 2018, 20(2), 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[155]
Humphries, D.L.; Scott, M.E.; Vermund, S.H. Pathways Linking Nutritional Status and Infectious Disease: Causal and Conceptual Frameworks. Nutrition and Infectious Diseases. Nutrition and Health; Humphries, D.L.; Scott, M.E.; Vermund, S.H., Eds.; Humana: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-56913-6_1]
[156]
Poon, I.K.H.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[157]
Fazeli, G.; Wehman, A.M. Safely removing cell debris with LC3-associated phagocytosis. Biol. Cell, 2017, 109(10), 355-363.
[http://dx.doi.org/10.1111/boc.201700028] [PMID: 28755428]
[158]
Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 2016, 16(1), 20-33.
[http://dx.doi.org/10.1038/nrc.2015.2] [PMID: 26678314]
[159]
Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol., 2016, 7, 578.
[http://dx.doi.org/10.3389/fmicb.2016.00578] [PMID: 27199913]
[160]
Nair, M.R.B.; Chouhan, D.; Sen Gupta, S.; Chattopadhyay, S. Fermented foods: Are they tasty medicines for helicobacter pylori associated peptic ulcer and gastric cancer? Front. Microbiol., 2016, 7, 1148.
[http://dx.doi.org/10.3389/fmicb.2016.01148] [PMID: 27504109]
[161]
Carvalho, N.M.; Costa, E.M.; Silva, S.; Pimentel, L.; Fernandes, T.H.; Pintado, M.E. Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation, 2018, 4(4), 90.
[http://dx.doi.org/10.3390/fermentation4040090]
[162]
Yu, B.W.; Yu, B.X.; Yu, L.G. Restore gut homeostasis and healthy weight for an anorexia nervosa Patient by the Luigi Cornaro diet – a case report; Institute of Materials: Singapore, 2018. Available from: https://personal.ntu.edu.sg/mlgyu/Book%20on%20Luigi%20Cornaro%20Diet%20for%20An%20Anorexia%20Nervosa%20Patient%20-%20Simplified%20Version.pdf
[163]
van Ommen, B.; Wopereis, S.; van Empelen, P.; van Keulen, H.M.; Otten, W.; Kasteleyn, M.; Molema, J.J.W.; de Hoogh, I.M.; Chavannes, N.H.; Numans, M.E.; Evers, A.W.M.; Pijl, H. From diabetes care to diabetes cure—the integration of systems biology, ehealth, and behavioral change. Front. Endocrinol., 2018, 8, 381.
[http://dx.doi.org/10.3389/fendo.2017.00381] [PMID: 29403436]
[164]
Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The clinical applications of a systems approach. PLoS Med., 2006, 3(7), e209.
[http://dx.doi.org/10.1371/journal.pmed.0030209] [PMID: 16683861]
[165]
Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Med., 2006, 3(6), e208.
[http://dx.doi.org/10.1371/journal.pmed.0030208] [PMID: 16681415]
[166]
Baxter, A.J.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome--a review of epidemiologic evidence. Asia Pac. J. Clin. Nutr., 2006, 15(2), 134-142.
[PMID: 16672196]
[167]
Hayden, M.R. An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: The central role of beta-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells, 2020, 9(11), 2475.
[http://dx.doi.org/10.3390/cells9112475] [PMID: 33202960]
[168]
Rocca, E.; Anjum, R.L. Complexity, Reductionism and the Biomedical Model.Rethinking Causality, Complexity and Evidence for the Unique Patient; Anjum, R.; Copeland, S.; Rocca, E., Eds.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-41239-5_5]
[169]
DeFronzo, R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010, 53(7), 1270-1287.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[170]
Tomita, T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn. J. Basic Med. Sci., 2016, 16(3), 162-179.
[http://dx.doi.org/10.17305/bjbms.2016.919] [PMID: 27209071]
[171]
Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab., 2018, 27(6), 1212-1221.e3.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[172]
Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-Restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr., 2019, 39, 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320]
[173]
Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity, 2019, 27(5), oby.22449.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[174]
Yang, J.S.; Lu, C.C.; Kuo, S.C.; Hsu, Y.M.; Tsai, S.C.; Chen, S.Y.; Chen, Y.T.; Lin, Y.J.; Huang, Y.C.; Chen, C.J.; Lin, W.D.; Liao, W.L.; Lin, W.Y.; Liu, Y.H.; Sheu, J.C.; Tsai, F.J. Autophagy and its link to type II diabetes mellitus. Biomedicines, 2017, 7(2), 8.
[http://dx.doi.org/10.1051/bmdcn/2017070201] [PMID: 28612706]
[175]
Dhurandhar, N.V. Infectobesity: Obesity of infectious origin. J. Nutr., 2001, 131(10), 2794S-2797S.
[http://dx.doi.org/10.1093/jn/131.10.2794S] [PMID: 11584109]
[176]
van Ginneken, V.; Sitnyakowsky, L.; Jeffery, J.E. “Infectobesity: Viral infections (especially with human adenovirus-36: Ad-36) may be a cause of obesity. Med. Hypotheses, 2009, 72(4), 383-388.
[http://dx.doi.org/10.1016/j.mehy.2008.11.034] [PMID: 19138827]
[177]
Na, H.N.; Nam, J.H. Infectobesity: A new area for microbiological and virological research. J. Bacteriol. Virol., 2011, 41(2), 65.
[http://dx.doi.org/10.4167/jbv.2011.41.2.65]
[178]
Valiquette, L.; Sirard, S.; Laupland, K. A microbiological explanation for the obesity pandemic? Can. J. Infect. Dis. Med. Microbiol., 2014, 25(6), 294-295.
[http://dx.doi.org/10.1155/2014/464162] [PMID: 25587289]
[179]
Patterson, S. The Perils of Germaphobia. Smithsonian, 2013, 44, 8-8.
[180]
Vandegrift, R.; Bateman, A.C.; Siemens, K.N.; Nguyen, M.; Wilson, H.E.; Green, J.L.; Van Den Wymelenberg, K.G.; Hickey, R.J. Cleanliness in context: Reconciling hygiene with a modern microbial perspective. Microbiome, 2017, 5(1), 76.
[http://dx.doi.org/10.1186/s40168-017-0294-2] [PMID: 28705228]
[181]
Han, J.H.; Sullivan, N.; Leas, B.F.; Pegues, D.A.; Kaczmarek, J.L.; Umscheid, C.A. Cleaning hospital room surfaces to prevent health care–associated infections. Ann. Intern. Med., 2015, 163(8), 598-607.
[http://dx.doi.org/10.7326/M15-1192] [PMID: 26258903]
[182]
Sherlock, O.; O’Connell, N.; Creamer, E.; Humphreys, H. Is it really clean? An evaluation of the efficacy of four methods for determining hospital cleanliness. J. Hosp. Infect., 2009, 72(2), 140-146.
[http://dx.doi.org/10.1016/j.jhin.2009.02.013] [PMID: 19321226]
[183]
Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing, 2021, 18(1), 2.
[http://dx.doi.org/10.1186/s12979-020-00213-w] [PMID: 33397404]
[184]
Lu, M.; Zhang, Z.; Xue, M.; Zhao, B.S.; Harder, O.; Li, A.; Liang, X.; Gao, T.Z.; Xu, Y.; Zhou, J.; Feng, Z.; Niewiesk, S.; Peeples, M.E.; He, C.; Li, J. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol., 2020, 5(4), 584-598.
[http://dx.doi.org/10.1038/s41564-019-0653-9] [PMID: 32015498]
[185]
COVIDSurg Collaborative, GlobalSurg Collaborative. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br. J. Surg., 2021, 108(9), 1056-1063.
[http://dx.doi.org/10.1093/bjs/znab101] [PMID: 33761533]
[186]
Bianco, F.; Ranieri, A.J.; Paterniti, G.; Pata, F.; Gallo, G. Acute intestinal ischemia in a patient with COVID-19. Tech. Coloproctol., 2020, 24(11), 1217-1218.
[http://dx.doi.org/10.1007/s10151-020-02255-0] [PMID: 32506344]
[187]
Bhangu, A.; Lawani, I.; Ng-Kamstra, J.S.; Wang, Y.; Chan, A.; Futaba, K.; Ng, S.; Ebele, E.; Lederhuber, H.; Tabiri, S.; Ghosh, D.; Gallo, G.; Pata, F.; Di Saverio, S.; Spinelli, A.; Medina, A.R-D.; Ademuyiwa, A.O.; Akinbode, G.; Ingabire, J.C.A.; Ntirenganya, F.; Kamara, T.B.; Goh, M.; Moore, R.; Kim, H.J.; Lee, S-H.; Minaya-Bravo, A.; Abbott, T.; Chakrabortee, S.; Denning, M.; Fitzgerald, J.E.; Glasbey, J.; Griffiths, E.; Halkias, C.; Harrison, E.M.; Jones, C.S.; Kinross, J.; Lawday, S.; Li, E.; Markar, S.; Morton, D.G.; Nepogodiev, D.; Pinkney, T.D.; Simoes, J.; Warren, O.; Wong, D.J.N.; Bankhead-Kendall, B.; Breen, K.A.; Davidson, G.H.; Kaafarani, H.; Keller, D.S.; Mazingi, D.; Kamarajah, S.K.; Blackwell, S.; Dames, N. Global guidance for surgical care during the COVID-19 pandemic. Br. J. Surg., 2020, 107(9), 1097-1103.
[http://dx.doi.org/10.1002/bjs.11646] [PMID: 32293715]
[188]
Havervall, S.; Rosell, A.; Phillipson, M.; Mangsbo, S.M.; Nilsson, P.; Hober, S.; Thålin, C. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA, 2021, 325(19), 2015-2016.
[http://dx.doi.org/10.1001/jama.2021.5612] [PMID: 33825846]
[189]
Hayden, M.R. Hypothesis: Neuroglia activation due to increased peripheral and cns proinflammatory cytokines/chemokines with neuroinflammation may result in long COVID. Neuroglia, 2021, 2(1), 7-35.
[http://dx.doi.org/10.3390/neuroglia2010004]
[190]
Chang, L.; Wei, Y.; Hashimoto, K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull., 2022, 182, 44-56.
[http://dx.doi.org/10.1016/j.brainresbull.2022.02.004] [PMID: 35151796]
[191]
Liu, Q.; Mak, J.W.Y.; Su, Q.; Yeoh, Y.K.; Lui, G.C.Y.; Ng, S.S.S.; Zhang, F.; Li, A.Y.L.; Lu, W.; Hui, D.S.C.; Chan, P.K.S.; Chan, F.K.L.; Ng, S.C. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut, 2022, 71(3), 544-552.
[http://dx.doi.org/10.1136/gutjnl-2021-325989] [PMID: 35082169]
[192]
Wang, B.; Zhang, L.; Wang, Y.; Dai, T.; Qin, Z.; Zhou, F.; Zhang, L. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2022, 7(1), 143.
[http://dx.doi.org/10.1038/s41392-022-00986-0] [PMID: 35487886]
[193]
Panelli, S.; Calcaterra, V.; Verduci, E.; Comandatore, F.; Pelizzo, G.; Borghi, E.; Bandi, C.; Zuccotti, G. Dysbiosis in children with neurological impairment and long-term enteral nutrition. Front. Nutr., 2022, 9, 895046.
[http://dx.doi.org/10.3389/fnut.2022.895046] [PMID: 35811980]
[194]
Jansen van Vuren, E.; Steyn, S.F.; Brink, C.B.; Möller, M.; Viljoen, F.P.; Harvey, B.H. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed. Pharmacother., 2021, 135, 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[195]
Hayden, M.R.; Tyagi, S.C. Impaired folate-mediated one-carbon metabolism in type 2 diabetes, late-onset alzheimer’s disease and long COVID. Medicina, 2021, 58(1), 16.
[http://dx.doi.org/10.3390/medicina58010016] [PMID: 35056324]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy