Research Article

MicroRNA-34c-5p通过调节TBL1XR1/Wnt/β-catenin信号降低癌症细胞恶性特性

卷 24, 期 1, 2024

发表于: 27 April, 2023

页: [114 - 122] 页: 9

弟呕挨: 10.2174/1566524023666230330083819

价格: $65

摘要

引言:肺癌癌症是一种常见的癌症,死亡率高。越来越多的研究集中于研究微小RNA(miRs/miRNAs)在癌症进展过程中的调节作用。然而,miR-34c-5p在癌症中的生物学功能及其潜在机制尚未确定。本研究探讨了miR-34c-5p对癌症细胞恶性行为的影响。方法:在本研究中,我们利用不同的公共数据库来获得差异表达的miRNA。然后,进行qRT-PCR和蛋白质印迹以测定miR-34c-5p和转导蛋白β样1 X连接受体1(TBL1XR1)的表达。接下来,将H1299和H460细胞用miR-34c-5p-mic和pcDNA3.1-TBL1XR1转染。为了检测miR-34c-5p的抗癌作用,分别进行了CCK-8、scratch和Matrigel Transwell测定以测试细胞活力、迁移和侵袭。StarBase数据库和双荧光素酶报告基因测定用于预测和验证miR-34c-5p和TBL1XR1之间的关系。结果:最后用蛋白质印迹法检测Wnt/β-catenin信号传导和上皮-间充质转化(EMT)相关蛋白水平。结果表明,miR-34c-5p在癌症细胞中表达低,而TBL1XR1高表达。研究结果还证实了miR-34c-5p和TBL1XR1之间的直接相互作用。在H1299和H460细胞中,miR-34c-5p过表达抑制细胞增殖、迁移和侵袭、Wnt/β-catenin信号传导活性和EMT,而TBL1XR1上调逆转了miR-34c-5 p过表达的这些作用。结论:miR-34c-5p可能通过TBL1XR1抑制癌症细胞的恶性行为,为基于miR-34c-5的癌症治疗提供了证据。

关键词: 癌症,微小RNA-34c-5p,增殖,迁移,侵袭,TBL1XR1。

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Wang J, Zou K, Feng X, et al. Downregulation of NMI promotes tumor growth and predicts poor prognosis in human lung adenocarcinomas. Mol Cancer 2017; 16(1): 158.
[http://dx.doi.org/10.1186/s12943-017-0705-9] [PMID: 29025423]
[3]
Kim MJ, Cervantes C, Jung YS, et al. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell 2021; 81(8): 1698-714.
[http://dx.doi.org/10.1016/j.molcel.2021.02.001]
[4]
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531): 834-8.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[5]
Park J, Cho M, Cho J, Kim EE, Song EJ. MicroRNA-101-3p suppresses cancer cell growth by inhibiting the USP47-induced deubiquitination of RPL11. Cancers 2022; 14(4): 964.
[http://dx.doi.org/10.3390/cancers14040964] [PMID: 35205710]
[6]
Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010; 11(4): 252-63.
[http://dx.doi.org/10.1038/nrm2868] [PMID: 20216554]
[7]
Pan Q, Shao Z, Zhang Y, Liu H. MicroRNA-1178-3p suppresses the growth of hepatocellular carcinoma by regulating transducin (beta)-like 1 X-linked receptor 1. Hum Cell 2021; 34(5): 1466-77.
[http://dx.doi.org/10.1007/s13577-021-00565-5] [PMID: 34125401]
[8]
Mastrototaro G, Zaghi M, Massimino L, et al. TBL1XR1 ensures balanced neural development through NCOR complex-mediated regulation of the MAPK pathway. Front Cell Dev Biol 2021; 9: 641410.
[http://dx.doi.org/10.3389/fcell.2021.641410]
[9]
Wang L, Zhao H, Zhang L, Luo H, Chen Q, Zuo X. HSP90AA1, ADRB2, TBL1XR1 and HSPB1 are chronic obstructive pulmonary disease related genes that facilitate squamous cell lung cancer progression. Oncol Lett 2020; 19(3): 2115-22.
[http://dx.doi.org/10.3892/ol.2020.11318] [PMID: 32194709]
[10]
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β‐catenin signaling pathway in human malignancies. J Cell Physiol 2022; 237(1): 199-238.
[http://dx.doi.org/10.1002/jcp.30561] [PMID: 34431086]
[11]
Lin JJ, Chin TY, Chen CP, Chan HL, Wu TY. Zika virus: An emerging challenge for obstetrics and gynecology. Taiwan J Obstet Gynecol 2017; 56(5): 585-92.
[http://dx.doi.org/10.1016/j.tjog.2017.08.003] [PMID: 29037541]
[12]
Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β‐catenin signaling pathway. J Cell Physiol 2020; 235(10): 7541-53.
[http://dx.doi.org/10.1002/jcp.29656] [PMID: 32239719]
[13]
Nishi A, Numata S, Tajima A, et al. De novo non-synonymous TBL1XR1 mutation alters Wnt signaling activity. Sci Rep 2017; 7(1): 2887.
[http://dx.doi.org/10.1038/s41598-017-02792-z] [PMID: 28588275]
[14]
Liu H, Xu Y, Zhang Q, et al. Prognostic significance of TBL1XR1 in predicting liver metastasis for early stage colorectal cancer. Surg Oncol 2017; 26(1): 13-20.
[http://dx.doi.org/10.1016/j.suronc.2016.12.003] [PMID: 28317580]
[15]
Lin S, Zhen Y, Guan Y, Yi H. Roles of Wnt/beta-catenin signaling pathway regulatory long non-coding RNAs in the pathogenesis of non-small cell lung cancer. Cancer Manag Res 2020; 12: 4181-91.
[16]
Hermeking H. MicroRNAs in the p53 network: Micromanagement of tumour suppression. Nat Rev Cancer 2012; 12(9): 613-26.
[http://dx.doi.org/10.1038/nrc3318] [PMID: 22898542]
[17]
Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 2012; 72(21): 5576-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2001] [PMID: 22964582]
[18]
Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 2013; 32(3): 341-51.
[http://dx.doi.org/10.1038/onc.2012.51] [PMID: 22370637]
[19]
Shen Z, Sun S. CircPTCH1 promotes migration in lung cancer by regulating MYCN expression through miR-34c-5p. OncoTargets Ther 2021; 14: 4779-89.
[http://dx.doi.org/10.2147/OTT.S324015]
[20]
Kim NH, Kim HS, Li XY, et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J Cell Biol 2011; 195(3): 417-33.
[http://dx.doi.org/10.1083/jcb.201103097] [PMID: 22024162]
[21]
Hahn S, Jackstadt R, Siemens H, Hünten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J 2013; 32(23): 3079-95.
[http://dx.doi.org/10.1038/emboj.2013.236] [PMID: 24185900]
[22]
Xue W, Dahlman JE, Tammela T, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci 2014; 111(34): E3553-61.
[http://dx.doi.org/10.1073/pnas.1412686111] [PMID: 25114235]
[23]
Cao Q, Wang Z, Wang Y, et al. TBL1XR1 promotes migration and invasion in osteosarcoma cells and is negatively regulated by miR-186-5p. Am J Cancer Res 2018; 8(12): 2481-93.
[PMID: 30662805]
[24]
Zhou Q, Wang X, Yu Z, et al. Transducin (β)-like 1 X-linked receptor 1 promotes gastric cancer progression via the ERK1/2 pathway. Oncogene 2017; 36(13): 1873-86.
[http://dx.doi.org/10.1038/onc.2016.352] [PMID: 27694893]
[25]
Zhang T, Liu C, Yu Y, et al. TBL1XR1 is involved in c-Met-mediated tumorigenesis of human nonsmall cell lung cancer. Cancer Gene Ther 2020; 27(3-4): 136-46.
[http://dx.doi.org/10.1038/s41417-019-0111-0] [PMID: 31243347]
[26]
Wang S, Han H, Hu Y, et al. MicroRNA-130a-3p suppresses cell migration and invasion by inhibition of TBL1XR1-mediated EMT in human gastric carcinoma. Mol Carcinog 2018; 57(3): 383-92.
[http://dx.doi.org/10.1002/mc.22762] [PMID: 29091326]
[27]
He X, He L, Hannon GJ. The guardian’s little helper: MicroRNAs in the p53 tumor suppressor network. Cancer Res 2007; 67(23): 11099-101.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2672] [PMID: 18056431]
[28]
Gong L, Song J, Lin X, et al. Serine-arginine protein kinase 1 promotes a cancer stem cell-like phenotype through activation of Wnt/β-catenin signalling in NSCLC. J Pathol 2016; 240(2): 184-96.
[http://dx.doi.org/10.1002/path.4767] [PMID: 27391422]
[29]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[30]
Smith JL, Jeng S, McWeeney SK, Hirsch AJ. A microRNA screen identifies the WNT signaling pathway as a regulator of the interferon response during flavivirus infection. J Virol 2017; 91(8): e02388-16.
[http://dx.doi.org/10.1128/JVI.02388-16] [PMID: 28148804]
[31]
Vu T, Datta P. Regulation of EMT in colorectal cancer: A culprit in metastasis. Cancers 2017; 9(12): 171.
[http://dx.doi.org/10.3390/cancers9120171] [PMID: 29258163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy