Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

N1-Methylnicotinamide: The Mysterious Anti-aging Actor in Renal Transplantation

Author(s): Hamid Reza Nejabati* and Leila Roshangar

Volume 29, Issue 10, 2023

Published on: 05 April, 2023

Page: [723 - 731] Pages: 9

DOI: 10.2174/1381612829666230330083649

Price: $65

Abstract

The fast global aging of people worldwide is a crucial demographic trend. According to evidence, Americans aged 65 and above will compose 21.6% of the population by 2040. During the aging process, the kidney undergoes gradual functional decrease, which turned out to be a forthcoming problem in clinical practice. Age-related decrease in renal function, evaluated by total glomerular filtration rate (GFR), which has been shown to drop by approximately 5-10% per decade after the age of 35. The sustaining extended period renal homeostasis is the main purpose of any therapeutic options intended for delaying or even reversing the aging kidney. The renal transplant has been regarded as the common alternative for kidney replacement therapy for elderly patients with end-stage renal disease (ESRD). In the last few years, considerable progress has been made to find novel therapeutic options for alleviating renal aging, in particular, calorie restriction and pharmacologic therapy. Nicotinamide N-methyltransferase is an enzyme responsible for generating N1-Methylnicotinamide (MNAM), notorious for its anti-diabetic, anti-thrombotic, and anti-inflammatory activity. MNAM is one of the important factors regarded as in vivo probes for evaluating the activity of some renal drug transporters. Furthermore, it has been shown to have therapeutic potential in the pathogenesis of proximal tubular cell damage and tubulointerstitial fibrosis. In this article, in addition to addressing the role of MNAM in renal function, we also explained its anti-aging effects. We conducted an in-depth investigation of the urinary excretion of MNAM and its metabolites, especially N1-methyl-2-pyridone-5- carboxamide (2py) in RTR. The excretion of MNAM and its metabolite, 2py, was inversely correlated with the risk of all-cause mortality in renal transplant recipients (RTR), independent of possible confounders. Therefore, we have shown that the reason for the lower mortality rate in RTR who had higher urinary excretion of MNAM and 2py may be related to the anti- aging effects of MNAM through transiently generating low levels of reactive oxygen species, stress resistance and the activation of antioxidant defense pathways.

Keywords: Renal aging, ROS, MNAM, 2py, RTR, GFR.

Next »
[1]
Grimley Evans J. Ageing and medicine. J Intern Med 2000; 247(2): 159-67.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00621.x] [PMID: 10692078]
[2]
Prakash IJ. Women & ageing. Indian J Med Res 1997; 106: 396-408.
[PMID: 9361474]
[3]
Martin N, Beach D, Gil J. Ageing as developmental decay: Insights from p16INK4a. Trends Mol Med 2014; 20(12): 667-74.
[http://dx.doi.org/10.1016/j.molmed.2014.09.008] [PMID: 25277993]
[4]
Fang EF, Scheibye-Knudsen M, Jahn HJ, et al. A research agenda for aging in China in the 21st century. Ageing Res Rev 2015; 24(Pt B): 197-205.
[http://dx.doi.org/10.1016/j.arr.2015.08.003] [PMID: 26304837]
[5]
Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res Rev 2020; 63: 101151.
[http://dx.doi.org/10.1016/j.arr.2020.101151] [PMID: 32835891]
[6]
Long DA, Mu W, Price KL, Johnson RJ. Blood vessels and the aging kidney. Nephron, Exp Nephrol 2005; 101(3): e95-9.
[http://dx.doi.org/10.1159/000087146] [PMID: 16043968]
[7]
Epstein M. Aging and the kidney. J Am Soc Nephrol 1996; 7(8): 1106-22.
[http://dx.doi.org/10.1681/ASN.V781106] [PMID: 8866401]
[8]
Silva FG. The aging kidney: A review-part II. Int Urol Nephrol 2005; 37(2): 419-32.
[http://dx.doi.org/10.1007/s11255-004-0874-5] [PMID: 16142578]
[9]
Silva FG. The aging kidney: A review - part I. Int Urol Nephrol 2005; 37(1): 185-205.
[http://dx.doi.org/10.1007/s11255-004-0873-6] [PMID: 16132784]
[10]
Bolignano D, Mattace-Raso F, Sijbrands EJG, Zoccali C. The aging kidney revisited: A systematic review. Ageing Res Rev 2014; 14: 65-80.
[http://dx.doi.org/10.1016/j.arr.2014.02.003] [PMID: 24548926]
[11]
Glassock RJ, Rule AD. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int 2012; 82(3): 270-7.
[http://dx.doi.org/10.1038/ki.2012.65] [PMID: 22437416]
[12]
Glassock RJ, Rule AD. Aging and the kidneys: Anatomy, physiology and consequences for defining chronic kidney disease. Nephron J 2016; 134(1): 25-9.
[http://dx.doi.org/10.1159/000445450] [PMID: 27050529]
[13]
Denic A, Lieske JC, Chakkera HA, et al. The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol 2017; 28(1): 313-20.
[http://dx.doi.org/10.1681/ASN.2016020154] [PMID: 27401688]
[14]
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92(3): 569-79.
[http://dx.doi.org/10.1016/j.kint.2017.02.036] [PMID: 28729036]
[15]
Glassock R, Delanaye P, El Nahas M. An age-calibrated classification of chronic kidney disease. JAMA 2015; 314(6): 559-60.
[http://dx.doi.org/10.1001/jama.2015.6731] [PMID: 26023760]
[16]
Hayman JM, Martin J, Miller M. Renal function and the number of glomeruli in the human kidney. Arch Intern Med 1939; 64(1): 69-83.
[http://dx.doi.org/10.1001/archinte.1939.00190010079007]
[17]
James MT, Hemmelgarn BR, Wiebe N, et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: A cohort study. Lancet 2010; 376(9758): 2096-103.
[http://dx.doi.org/10.1016/S0140-6736(10)61271-8] [PMID: 21094997]
[18]
Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. Kidney Blood Press Res 2013; 38(1): 109-20.
[http://dx.doi.org/10.1159/000355760] [PMID: 24642796]
[19]
Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 2016; 23(1): 19-28.
[http://dx.doi.org/10.1053/j.ackd.2015.08.004] [PMID: 26709059]
[20]
Martin J, Sheaff M. Renal ageing. J Pathol 2007; 211: 198-205.
[http://dx.doi.org/10.1002/path.2111]
[21]
Macrae J, Friedman AL, Friedman EA, Eggers P. Live and deceased donor kidney transplantation in patients aged 75 years and older in the United States. Int Urol Nephrol 2005; 37(3): 641-8.
[http://dx.doi.org/10.1007/s11255-004-0010-6] [PMID: 16307355]
[22]
Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341(23): 1725-30.
[http://dx.doi.org/10.1056/NEJM199912023412303] [PMID: 10580071]
[23]
Molnar MZ, Streja E, Kovesdy CP, et al. Age and the associations of living donor and expanded criteria donor kidneys with kidney transplant outcomes. Am J Kidney Dis 2012; 59(6): 841-8.
[http://dx.doi.org/10.1053/j.ajkd.2011.12.014] [PMID: 22305759]
[24]
Tullius SG, Tran H, Guleria I, Malek SK, Tilney NL, Milford E. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann Surg 2010; 252(4): 662-74.
[http://dx.doi.org/10.1097/SLA.0b013e3181f65c7d] [PMID: 20881773]
[25]
Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. Kidney Int 2008; 74(6): 710-20.
[http://dx.doi.org/10.1038/ki.2008.319] [PMID: 18614996]
[26]
Peters-Sengers H, Berger SP, Heemskerk MBA, et al. Stretching the limits of renal transplantation in elderly recipients of grafts from elderly deceased donors. J Am Soc Nephrol 2017; 28(2): 621-31.
[http://dx.doi.org/10.1681/ASN.2015080879] [PMID: 27729570]
[27]
Li Z, Wang Z. Aging kidney and aging-related disease. Adv Exp Med Biol 2018; 169-87.
[http://dx.doi.org/10.1007/978-981-13-1117-8_11]
[28]
Hediger MA. Gateway to a long life. Nature 2002; 417(6887): 393-395, 395.
[http://dx.doi.org/10.1038/417393a] [PMID: 12024201]
[29]
McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size: One figure. J Nutr 1935; 10(1): 63-79.
[http://dx.doi.org/10.1093/jn/10.1.63]
[30]
Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201-4.
[http://dx.doi.org/10.1126/science.1173635] [PMID: 19590001]
[31]
Weindruch R, Sohal RS. Seminars in medicine of the beth israel deaconess medical center. caloric intake and aging. N Engl J Med 1997; 337(14): 986-94.
[http://dx.doi.org/10.1056/NEJM199710023371407] [PMID: 9309105]
[32]
Calvo-Rubio M, Burón MI, López-Lluch G, et al. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 2016; 15(3): 477-87.
[http://dx.doi.org/10.1111/acel.12451] [PMID: 26853994]
[33]
Walford RL, Mock D, Verdery R, MacCallum T. Calorie restriction in biosphere 2: Alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 2002; 57(6): B211-24.
[http://dx.doi.org/10.1093/gerona/57.6.B211] [PMID: 12023257]
[34]
Benigni A, Corna D, Zoja C, et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 2009; 119(3): 524-30.
[http://dx.doi.org/10.1172/JCI36703] [PMID: 19197138]
[35]
De Cavanagh EMV, Piotrkowski B, Basso N, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 2003; 17(9): 1096-8.
[http://dx.doi.org/10.1096/fj.02-0063fje] [PMID: 12709417]
[36]
Westhoff JH, Hilgers KF, Steinbach MP, et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 2008; 52(1): 123-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.099432] [PMID: 18504326]
[37]
Linz W, Heitsch H, Schölkens BA, Wiemer G. Long-term angiotensin II type 1 receptor blockade with fonsartan doubles lifespan of hypertensive rats. Hypertension 2000; 35(4): 908-13.
[http://dx.doi.org/10.1161/01.HYP.35.4.908] [PMID: 10775560]
[38]
Santos EL, de Picoli Souza K, da Silva ED, et al. Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem Pharmacol 2009; 78(8): 951-8.
[http://dx.doi.org/10.1016/j.bcp.2009.06.018] [PMID: 19549507]
[39]
Aksoy S, Szumlanski CL, Weinshilboum RM. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J Biol Chem 1994; 269(20): 14835-40.
[http://dx.doi.org/10.1016/S0021-9258(17)36700-5] [PMID: 8182091]
[40]
Pissios P. Nicotinamide N-methyltransferase: More than a vitamin B3 clearance enzyme. Trends Endocrinol Metab 2017; 28(5): 340-53.
[http://dx.doi.org/10.1016/j.tem.2017.02.004] [PMID: 28291578]
[41]
Watała C, Kaźmierczak P, Dobaczewski M, et al. Anti-diabetic effects of 1-methylnicotinamide (MNA) in streptozocin-induced diabetes in rats. Pharmacol Rep 2009; 61(1): 86-98.
[http://dx.doi.org/10.1016/S1734-1140(09)70010-6] [PMID: 19307696]
[42]
Przyborowski K, Wojewoda M, Sitek B, et al. Effects of 1-methylnicotinamide (MNA) on exercise capacity and endothelial response in diabetic mice. PLoS One 2015; 10(6): e0130908.
[http://dx.doi.org/10.1371/journal.pone.0130908] [PMID: 26115505]
[43]
Nejabati HR, Mihanfar A, Pezeshkian M, et al. N1-methylnicotinamide (MNAM) as a guardian of cardiovascular system. J Cell Physiol 2018; 233(10): 6386-94.
[http://dx.doi.org/10.1002/jcp.26636] [PMID: 29741779]
[44]
Nejabati HR, Samadi N, Roshangar L, Nouri M. N1-methylnicotinamide as a possible modulator of cardiovascular risk markers in polycystic ovary syndrome. Life Sci 2019; 235: 116843.
[http://dx.doi.org/10.1016/j.lfs.2019.116843] [PMID: 31494172]
[45]
Tanaka Y, Kume S, Araki H, et al. 1-Methylnicotinamide ameliorates lipotoxicity-induced oxidative stress and cell death in kidney proximal tubular cells. Free Radic Biol Med 2015; 89: 831-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.414] [PMID: 26482866]
[46]
Fukushima T, Tawara T, Lsobe A, Hojo N, Shiwaku K, Yamane Y. Radical formation site of cerebral complex I and Parkinson’s disease. J Neurosci Res 1995; 42(3): 385-90.
[http://dx.doi.org/10.1002/jnr.490420313] [PMID: 8583507]
[47]
Nejabati HR, Ghaffari-Novin M, Fathi-Maroufi N, et al. N1-Methylnicotinamide: Is it time to consider it as a dietary supplement for athletes. Curr Pharm Des 2022; 28(10): 800-5.
[http://dx.doi.org/10.2174/1381612828666220211151204] [PMID: 35152860]
[48]
Nejabati HR, Schmeisser K, Shahnazi V, et al. N1-methylnicotinamide: An anti-ovarian aging hormetin. Ageing Res Rev 2020; 62: 101131.
[http://dx.doi.org/10.1016/j.arr.2020.101131] [PMID: 32711159]
[49]
Nejabati HR, Samadi N, Shahnazi V, et al. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Polycystic Ovary Syndrome. Chem Biol Interact 2020; 324: 109093.
[http://dx.doi.org/10.1016/j.cbi.2020.109093] [PMID: 32298659]
[50]
Jakubowski A, Sternak M, Jablonski K, Ciszek-Lenda M, Marcinkiewicz J, Chlopicki S. 1-Methylnicotinamide protects against liver injury induced by concanavalin A via a prostacyclin-dependent mechanism: A possible involvement of IL-4 and TNF-α. Int Immunopharmacol 2016; 31: 98-104.
[http://dx.doi.org/10.1016/j.intimp.2015.11.032] [PMID: 26709075]
[51]
Liu M, Chu J, Gu Y, et al. Serum N1-methylnicotinamide is associated with coronary artery disease in chinese patients. J Am Heart Assoc 2017; 6(2): e004328.
[http://dx.doi.org/10.1161/JAHA.116.004328] [PMID: 28174167]
[52]
Mateuszuk L, Jasztal A, Maslak E, et al. Antiatherosclerotic effects of 1-methylnicotinamide in apolipoprotein e/low-density lipoprotein receptor-deficient mice: A comparison with nicotinic acid. J Pharmacol Exp Ther 2016; 356(2): 514-24.
[http://dx.doi.org/10.1124/jpet.115.228643] [PMID: 26631491]
[53]
Mateuszuk Ł, Khomich TI, Słomińska E, et al. Activation of nicotinamide N-methyltrasferase and increased formation of 1-methylnicotinamide (MNA) in atherosclerosis. Pharmacol Rep 2009; 61(1): 76-85.
[http://dx.doi.org/10.1016/S1734-1140(09)70009-X] [PMID: 19307695]
[54]
Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3): 560-9.
[http://dx.doi.org/10.1016/j.cell.2015.10.001] [PMID: 26496603]
[55]
Sternak M, Jakubowski A, Czarnowska E, et al. Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis. Int Immunopharmacol 2015; 28(1): 105-14.
[http://dx.doi.org/10.1016/j.intimp.2015.04.053] [PMID: 25976094]
[56]
Fu L, Liu C, Chen L, et al. Protective effects of 1-Methylnicotinamide on Aβ 1–42-induced cognitive deficits, neuroinflammation and apoptosis in mice. J Neuroimmune Pharmacol 2019; 14(3): 401-12.
[http://dx.doi.org/10.1007/s11481-018-09830-1] [PMID: 30635816]
[57]
Országhová Z, Uličná O, Liptáková A, et al. Effects of N 1 -methylnicotinamide on oxidative and glycooxidative stress markers in rats with streptozotocin-induced diabetes mellitus. Redox Rep 2012; 17(1): 1-7.
[http://dx.doi.org/10.1179/1351000211Y.0000000016] [PMID: 22340509]
[58]
DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 2012; 52(1): 249-73.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134529] [PMID: 21942630]
[59]
Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9(3): 215-36.
[http://dx.doi.org/10.1038/nrd3028] [PMID: 20190787]
[60]
Ishikawa T, Kim RB, König J. Pharmacogenomics of human drug transporters: Clinical impacts. John Wiley & Sons: New York City, 2013.
[http://dx.doi.org/10.1002/9781118353240]
[61]
Lepist EI, Ray AS. Renal drug–drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol 2012; 8(4): 433-48.
[http://dx.doi.org/10.1517/17425255.2012.667401] [PMID: 22372422]
[62]
Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: Prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol 2013; 53(1): 581-612.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140309] [PMID: 23140240]
[63]
Zolk O, Fromm MF. Transporter-mediated drug uptake and efflux: Important determinants of adverse drug reactions. Clin Pharmacol Ther 2011; 89(6): 798-805.
[http://dx.doi.org/10.1038/clpt.2010.354] [PMID: 21471963]
[64]
Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 1999; 99(4): 552-7.
[http://dx.doi.org/10.1161/01.CIR.99.4.552] [PMID: 9927403]
[65]
Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance: An update from the International Transporter Consortium. Clin Pharmacol Ther 2013; 94(1): 52-63.
[http://dx.doi.org/10.1038/clpt.2013.74] [PMID: 23588305]
[66]
Koepsell H. Role of organic cation transporters in drug–drug interaction. Expert Opin Drug Metab Toxicol 2015; 11(10): 1619-33.
[http://dx.doi.org/10.1517/17425255.2015.1069274] [PMID: 26206523]
[67]
Ito S, Kusuhara H, Kumagai Y, et al. N-methylnicotinamide is an endogenous probe for evaluation of drug-drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2-K). Clin Pharmacol Ther 2012; 92(5): 635-41.
[http://dx.doi.org/10.1038/clpt.2012.138] [PMID: 23047651]
[68]
Kato K, Mori H, Kito T, et al. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res 2014; 31(1): 136-47.
[http://dx.doi.org/10.1007/s11095-013-1144-y] [PMID: 23907530]
[69]
Kato K, Moriyama C, Ito N, et al. Involvement of organic cation transporters in the clearance and milk secretion of thiamine in mice. Pharm Res 2015; 32(7): 2192-204.
[http://dx.doi.org/10.1007/s11095-014-1608-8] [PMID: 25701312]
[70]
Müller F, Pontones CA, Renner B, et al. N1-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: Studies on the metformin–trimethoprim interaction. Eur J Clin Pharmacol 2015; 71(1): 85-94.
[http://dx.doi.org/10.1007/s00228-014-1770-2] [PMID: 25552403]
[71]
Türk D, Müller F, Fromm MF, Selzer D, Dallmann R, Lehr T. Renal transporter-mediated drug-biomarker interactions of the endogenous substrates creatinine and N1-methylnicotinamide: A PBPK modeling approach. Clin Pharmacol Ther 2022; 112(3): 687-98.
[http://dx.doi.org/10.1002/cpt.2636] [PMID: 35527512]
[72]
Gorboulev V, Ulzheimer JC, Akhoundova A, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 1997; 16(7): 871-81.
[http://dx.doi.org/10.1089/dna.1997.16.871] [PMID: 9260930]
[73]
Masuda S, Terada T, Yonezawa A, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 2006; 17(8): 2127-35.
[http://dx.doi.org/10.1681/ASN.2006030205] [PMID: 16807400]
[74]
Shim CK, Sawada Y, Iga T, Hanano M. Prediction of renal tubular secretion of tetraethylammonium bromide by use of endogenous N1-methylnicotinamide in the rat. J Pharmacobiodyn 1982; 5(7): 534-7.
[http://dx.doi.org/10.1248/bpb1978.5.534] [PMID: 6215478]
[75]
He YL, Kitada N, Yasuhara M, Hori R. Quantitative estimation of renal clearance of N-acetylprocainamide in rats with various experimental acute renal failure. Eur J Pharm Sci 2001; 13(3): 303-8.
[http://dx.doi.org/10.1016/S0928-0987(01)00117-8] [PMID: 11384853]
[76]
Maiza A, Daley-Yates PT. Estimation of the renal clearance of drugs using endogenous N-1-methylnicotinamide. Toxicol Lett 1990; 53(1-2): 231-5.
[http://dx.doi.org/10.1016/0378-4274(90)90135-9] [PMID: 2145661]
[77]
Maiza A, Daley-Yates PT. Prediction of the renal clearance of cimetidine using endogenousN-1-methylnicotinamide. J Pharmacokinet Biopharm 1991; 19(2): 175-88.
[http://dx.doi.org/10.1007/BF01073868] [PMID: 1826532]
[78]
Maïza A, Daley-Yates PT. Variability in the renal clearance of cephalexin in experimental renal failure. J Pharmacokinet Biopharm 1993; 21(1): 19-30.
[http://dx.doi.org/10.1007/BF01061773] [PMID: 8410681]
[79]
Musfeld C, Biollaz J, Bélaz N, Kesselring UW, Decosterd LA. Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow. J Pharm Biomed Anal 2001; 24(3): 391-404.
[http://dx.doi.org/10.1016/S0731-7085(00)00425-8] [PMID: 11199218]
[80]
Hiratsuka C, Sano M, Fukuwatari T, Shibata K. Time-dependent effects of L-tryptophan administration on urinary excretion of L-tryptophan metabolites. J Nutr Sci Vitaminol 2014; 60(4): 255-60.
[http://dx.doi.org/10.3177/jnsv.60.255] [PMID: 25297614]
[81]
Okamoto H, Ishikawa A, Yoshitake Y, et al. Diurnal variations in human urinary excretion of nicotinamide catabolites: Effects of stress on the metabolism of nicotinamide. Am J Clin Nutr 2003; 77(2): 406-10.
[http://dx.doi.org/10.1093/ajcn/77.2.406] [PMID: 12540401]
[82]
Shibata K, Matsuo H. Correlation between niacin equivalent intake and urinary excretion of its metabolites, N′-methylnicotinamide, N′-methyl-2-pyridone-5-carboxamide, and N′-methyl-4-pyridone-3-carboxamide, in humans consuming a self-selected food. Am J Clin Nutr 1989; 50(1): 114-9.
[http://dx.doi.org/10.1093/ajcn/50.1.114] [PMID: 2526576]
[83]
Bergagnini-Kolev MC, Hebert MF, Easterling TR, Lin YS. Pregnancy increases the renal secretion of N1-methylnicotinamide, an endogenous probe for renal cation transporters, in patients prescribed metformin. Drug Metab Dispos 2017; 45(3): 325-9.
[http://dx.doi.org/10.1124/dmd.116.073841] [PMID: 28069720]
[84]
Zhang SF, Mao XJ, Jiang WM, Fang ZY. Qian Y, Yu Y. Granule protects against hypertension-induced renal injury by epigenetic mechanism linked to Nicotinamide N-Methyltransferase (NNMT) expression. J Ethnopharmacol 2020; 255: 112738.
[http://dx.doi.org/10.1016/j.jep.2020.112738] [PMID: 32147479]
[85]
Zhang W, Rong G, Gu J, et al. Nicotinamide N-methyltransferase ameliorates renal fibrosis by its metabolite 1-methylnicotinamide inhibiting the TGF-β1/Smad3 pathway. FASEB J 2022; 36(3): e22084.
[http://dx.doi.org/10.1096/fj.202100913RRR] [PMID: 35107844]
[86]
Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[87]
Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 2007; 6(4): 280-93.
[http://dx.doi.org/10.1016/j.cmet.2007.08.011] [PMID: 17908557]
[88]
Bardia A, Tleyjeh IM, Cerhan JR, et al. Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality: Systematic review and meta-analysis. Mayo Clinic Proceedings 2008; 22-34.
[http://dx.doi.org/10.4065/83.1.23]
[89]
Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy. J Natl Cancer Inst 2008; 100(11): 773-83.
[http://dx.doi.org/10.1093/jnci/djn148] [PMID: 18505970]
[90]
Myung SK, Kim Y, Ju W, Choi HJ, Bae WK. Effects of antioxidant supplements on cancer prevention: Meta-analysis of randomized controlled trials. Ann Oncol 2010; 21(1): 166-79.
[http://dx.doi.org/10.1093/annonc/mdp286] [PMID: 19622597]
[91]
Lippman SM, Klein EA, Goodman PJ, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009; 301(1): 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[92]
Ward NC, Wu JHY, Clarke MW, et al. The effect of vitamin E on blood pressure in individuals with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. J Hypertens 2007; 25(1): 227-34.
[http://dx.doi.org/10.1097/01.hjh.0000254373.96111.43] [PMID: 17143195]
[93]
Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab 2015; 22(2): 204-6.
[http://dx.doi.org/10.1016/j.cmet.2015.05.013] [PMID: 26073494]
[94]
Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15(6): 411-21.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[95]
Felsted RL, Chaykin S. N1-methylnicotinamide oxidation in a number of mammals. J Biol Chem 1967; 242(6): 1274-9.
[http://dx.doi.org/10.1016/S0021-9258(18)96175-2] [PMID: 4225775]
[96]
Schmeisser K, Mansfeld J, Kuhlow D, et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol 2013; 9(11): 693-700.
[http://dx.doi.org/10.1038/nchembio.1352] [PMID: 24077178]
[97]
Acuña E, Fornes R, Fernandois D, et al. Increases in norepinephrine release and ovarian cyst formation during ageing in the rat. Reprod Biol Endocrinol 2009; 7(1): 64.
[http://dx.doi.org/10.1186/1477-7827-7-64] [PMID: 19531218]
[98]
Bukovskya A, Ayala ME, Dominguez R, et al. Postnatal androgenization induces premature aging of rat ovaries. Steroids 2000; 65(4): 190-205.
[http://dx.doi.org/10.1016/S0039-128X(99)00101-4] [PMID: 10713307]
[99]
Park JH, Choi TS. Polycystic ovary syndrome (PCOS)-like phenotypes in the d-galactose-induced aging mouse model. Biochem Biophys Res Commun 2012; 427(4): 701-4.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.099] [PMID: 23022527]
[100]
Rezvanfar MA, Shojaei Saadi HA, Gooshe M, Abdolghaffari AH, Baeeri M, Abdollahi M. Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary. Oxid Med Cell Longev 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/948951] [PMID: 24693338]
[101]
Kenigsberg S, Bentov Y, Chalifa-Caspi V, Potashnik G, Ofir R, Birk OS. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients. Mol Hum Reprod 2008; 15(2): 89-103.
[http://dx.doi.org/10.1093/molehr/gan082] [PMID: 19141487]
[102]
Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 2008; 28(1): 115-30.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155443] [PMID: 18429699]
[103]
Badawy AAB. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res 2017; 10
[http://dx.doi.org/10.1177/1178646917691938] [PMID: 28469468]
[104]
Agostoni C, Bresson J, Fairweather-Tait S. EFSA Panel on dietetic products, nutrition and allergies (NDA). Scientific opinion on dietary reference values for water. EFSA J 2010; 8: 1459.
[105]
Pellagra and its prevention and control in major emergencies.World Health Organization 2000.
[106]
Deen CPJ, van der Veen A, van Faassen M, et al. Urinary excretion of N1-methylnicotinamide, as a biomarker of niacin status, and mortality in renal transplant recipients. J Clin Med 2019; 8(11): 1948.
[http://dx.doi.org/10.3390/jcm8111948] [PMID: 31726722]
[107]
Ahmed MH. Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: The need for clinical trials. Ren Fail 2010; 32(5): 642-6.
[http://dx.doi.org/10.3109/08860221003753323] [PMID: 20486851]
[108]
Lal SM, Hewett JE, Petroski GF, Van Stone JC, Ross G Jr. Effects of nicotinic acid and lovastatin in renal transplant patients: A prospective, randomized, open-labeled crossover trial. Am J Kidney Dis 1995; 25(4): 616-22.
[http://dx.doi.org/10.1016/0272-6386(95)90133-7] [PMID: 7702060]
[109]
Park CW. Niacin in patients with chronic kidney disease: Is it effective and safe. Kidney Res Clin Pract 2013; 32(1): 1-2.
[http://dx.doi.org/10.1016/j.krcp.2013.02.001] [PMID: 26889431]
[110]
Rennick A, Kalakeche R, Seel L, Shepler B. Nicotinic acid and nicotinamide: A review of their use for hyperphosphatemia in dialysis patients. Pharmacotherapy 2013; 33(6): 683-90.
[http://dx.doi.org/10.1002/phar.1258] [PMID: 23526664]
[111]
Streja E, Kovesdy CP, Streja DA, Moradi H, Kalantar-Zadeh K, Kashyap ML. Niacin and progression of CKD. Am J Kidney Dis 2015; 65(5): 785-98.
[http://dx.doi.org/10.1053/j.ajkd.2014.11.033] [PMID: 25708553]
[112]
Taketani Y, Masuda M, Yamanaka-Okumura H, et al. Niacin and chronic kidney disease. J Nutr Sci Vitaminol 2015; 61 (Suppl.): S173-5.
[http://dx.doi.org/10.3177/jnsv.61.S173] [PMID: 26598845]
[113]
Huang YC, Lee MS, Wahlqvist ML. Prediction of all-cause mortality by B group vitamin status in the elderly. Clin Nutr 2012; 31(2): 191-8.
[http://dx.doi.org/10.1016/j.clnu.2011.10.010] [PMID: 22071291]
[114]
Deen CPJ, van der Veen A, Gomes-Neto AW, et al. Urinary excretion of N1-methyl-2-pyridone-5-carboxamide and N1-methylnicotinamide in renal transplant recipients and donors. J Clin Med 2020; 9(2): 437.
[http://dx.doi.org/10.3390/jcm9020437] [PMID: 32041099]
[115]
Deen CPJ, Veen A, Gomes-Neto AW, et al. Urinary excretion of N1-methylnicotinamide and N1-methyl-2-pyridone-5-carboxamide and mortality in kidney transplant recipients. Nutrients 2020; 12(7): 2059.
[http://dx.doi.org/10.3390/nu12072059] [PMID: 32664445]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy