Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

A Detailed Review of Molecular Pathways and Mechanisms Responsible for the Development and Aggravation of Neuropathy and Nephropathy in Diabetes

Author(s): Phool Chandra, Neetu Sachan, Nikita Saraswat* and Niraj Vyawahare

Volume 17, 2024

Published on: 12 May, 2023

Article ID: e280323215026 Pages: 18

DOI: 10.2174/1874467217666230328084215

open_access

Open Access Journals Promotions 2
Abstract

Background: Diabetic mellitus is responsible for triggering many conditions, such as neuropathy, nephropathy, and retinopathy. Hyperglycemia leads to the development of oxidative stress conditions, activation of pathways, and generation of metabolites, leading to complications like neuropathy and nephropathy.

Objective: This paper aims to discuss the mechanism of actions, pathways, and metabolites triggered due to the development of neuropathy and nephropathy post-long-haul diabetes in patients. The therapeutic targets are also highlighted, proving to be a potential cure for such conditions.

Methods: Research works were searched from international and national databases with keywords like “diabetes,” “diabetic nephropathy,” “NADPH,” “oxidative stress,” “PKC,” “Molecular mechanisms,” “ cellular mechanisms,” “complications of diabetes,” and “factors.” The databases searched were PubMed, Scopus, Directory of open access journals, Semantic Scholar, Core, Europe PMC, EMBASE, Nutrition, FSTA- Food Science and Technology, Merck Index, Google Scholar, PubMed, Science Open, MedlinePlus, Indian citation index, World Wide Science, and Shodhganga.

Results: Pathways causing protein kinase C (PKC) activation, free radical injury, oxidative stress, and aggravating the conditions of neuropathy and nephropathy were discussed. In diabetic neuropathy and nephropathy, neurons and nephrons are affected to the extent that their normal physiology is disturbed, thus leading to further complications and conditions of loss of nerve sensation in diabetic neuropathy and kidney failure in diabetic nephropathy.

Current treatment options available for the management of diabetic neuropathy are anticonvulsants, antidepressants, and topical medications, including capsaicin. According to AAN guidelines, pregabalin is recommended as the first line of therapy, whereas other drugs currently used for treatment are gabapentin, venlafaxine, opioids, amitriptyline, and valproate.

Drug targets for treating diabetic neuropathy must suppress the activated polyol pathways, kinase C, hexosamine, and other pathways, which amplify neuroinflammation. Targeted therapy must focus on the reduction of oxidative stress and proinflammatory cytokines and suppression of neuroinflammation, NF-κB, AP-1, etc.

Conclusion: Potential drug targets must be considered for new research on the treatment of neuropathy and nephropathy conditions.

Keywords: Diabetes mellitus, Diabetic nephropathy, Nephropathy, NADPH, Oxidative stress, PKC, Neuroinflammation.

[1]
Tang, H.; Jiang, A.; Ma, J.; Wang, F.; Shen, G. Understanding the signaling pathways related to the mechanism and treatment of diabetic peripheral neuropathy. Endocrinology, 2019, 160(9), 2119-2127.
[http://dx.doi.org/10.1210/en.2019-00311] [PMID: 31318414]
[2]
Perkins, B.A.; Lovblom, L.E.; Lanctôt, S.O.; Lamb, K.; Cherney, D.Z.I. Discoveries from the study of longstanding type 1 diabetes. Diabetologia, 2021, 64(6), 1189-1200.
[http://dx.doi.org/10.1007/s00125-021-05403-9] [PMID: 33661335]
[3]
Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tankova, T.; Tsapas, A.; Buse, J.B. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2022, 65(12), 1925-1966.
[http://dx.doi.org/10.1007/s00125-022-05787-2] [PMID: 36151309]
[4]
Nathan, D.M.; Lachin, J.M.; Balasubramanyam, A.; Burch, H.B.; Buse, J.B.; Butera, N.M.; Cohen, R.M.; Crandall, J.P.; Kahn, S.E.; Krause-Steinrauf, H.; Larkin, M.E.; Rasouli, N.; Tiktin, M.; Wexler, D.J.; Younes, N. Glycemia Reduction in Type 2 Diabetes — Glycemic Outcomes. N. Engl. J. Med., 2022, 387(12), 1063-1074.
[http://dx.doi.org/10.1056/NEJMoa2200433] [PMID: 36129996]
[5]
American Diabetes Association Professional Practice Committee. 3. Prevention or delay of type 2 diabetes and associated comorbidities: Standards of Medical Care in Diabetes—2022. Diabetes Care, 2022, 45(Suppl. 1), S39-S45.
[http://dx.doi.org/10.2337/dc22-S003] [PMID: 34964876]
[6]
Nichols, G.A.; Hillier, T.A.; Brown, J.B. Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care, 2007, 30(2), 228-233.
[http://dx.doi.org/10.2337/dc06-1392] [PMID: 17259486]
[7]
Sloan, G.; Alam, U.; Selvarajah, D.; Tesfaye, S. The treatment of painful diabetic neuropathy. Curr. Diabetes Rev., 2022, 18(5), e070721194556.
[http://dx.doi.org/10.2174/1573399817666210707112413] [PMID: 34238163]
[8]
Smith, S.; Normahani, P.; Lane, T.; Hohenschurz-Schmidt, D.; Oliver, N.; Davies, A.H. Prevention and management strategies for diabetic neuropathy. Life, 2022, 12(8), 1185.
[http://dx.doi.org/10.3390/life12081185] [PMID: 36013364]
[9]
American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for primary care providers. Clin. Diabetes, 2022, 40(1), 10-38.
[http://dx.doi.org/10.2337/cd22-as01] [PMID: 35221470]
[10]
Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S.; Viswanathan, V. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-18.
[http://dx.doi.org/10.1038/s41572-018-0051-2] [PMID: 30617281]
[11]
Pop-Busui, R.; Ang, L.; Boulton, A.; Feldman, E.; Marcus, R.; Mizokami-Stout, K.; Singleton, J.R.; Ziegler, D. Diagnosis and treatment of painful diabetic peripheral neuropathy. ADA Clinical Compendia, 2022, 2022(1), 1-32.
[http://dx.doi.org/10.2337/db2022-01] [PMID: 35544662]
[12]
Baron, R. Capsaicin and nociception: From basic mechanisms to novel drugs. Lancet, 2000, 356(9232), 785-787.
[http://dx.doi.org/10.1016/S0140-6736(00)02649-0] [PMID: 11022922]
[13]
Smith, S.; Normahani, P.; Lane, T.; Hohenschurz-Schmidt, D.; Oliver, N.; Davies, A.H. Pathogenesis of distal symmetrical polyneuropathy in diabetes. Life, 2022, 12(7), 1074.
[http://dx.doi.org/10.3390/life12071074] [PMID: 35888162]
[14]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[http://dx.doi.org/10.1016/S0074-7742(02)50082-9] [PMID: 12198816]
[15]
Thornalley, P.J. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol., 2002, 50, 37-57.
[http://dx.doi.org/10.1016/S0074-7742(02)50072-6] [PMID: 12198817]
[16]
Sugimoto, K.; Yasujima, M.; Yagihashi, S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des., 2008, 14(10), 953-961.
[http://dx.doi.org/10.2174/138161208784139774] [PMID: 18473845]
[17]
Yagihashi, S. The pathogenesis of diabetic neuropathy. Diabetes Metab. Res. Rev., 1995, 11, 193-225.
[http://dx.doi.org/10.1002/dmr.5610110304]
[18]
Sugimoto, K.; Yagihashi, S. Effects of aminoguanidine on structural alterations of microvessels in peripheral nerve of streptozotocin diabetic rats. Microvasc. Res., 1997, 53(2), 105-112.
[http://dx.doi.org/10.1006/mvre.1996.2002] [PMID: 9143541]
[19]
Purwata, T. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J. Pain Res., 2011, 4, 169-175.
[http://dx.doi.org/10.2147/JPR.S21751] [PMID: 21811392]
[20]
Navarro, J.F.; Mora, C.; Muros, M.; García, J. Urinary tumour necrosis factor- excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients. Nephrol. Dial. Transplant., 2006, 21(12), 3428-3434.
[http://dx.doi.org/10.1093/ndt/gfl469] [PMID: 16935891]
[21]
Apfel, S.C.; Kessler, J.A. Neurotrophic factors in the therapy of peripheral neuropathy. Baillieres Clin. Neurol., 1995, 4(3), 593-606.
[PMID: 8599726]
[22]
Quan, Y.; Jiang, C.; Xue, B.; Zhu, S.; Wang, X. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways. Acta Pharmacol. Sin., 2011, 32(2), 188-193.
[http://dx.doi.org/10.1038/aps.2010.174] [PMID: 21293471]
[23]
Khanra, R.; Bhattacharjee, N.; Dua, T.K.; Nandy, A.; Saha, A.; Kalita, J.; Manna, P.; Dewanjee, S. Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomed. Pharmacother., 2017, 94, 726-741.
[http://dx.doi.org/10.1016/j.biopha.2017.07.112] [PMID: 28802226]
[24]
Schiekofer, S.; Andrassy, M.; Chen, J.; Rudofsky, G.; Schneider, J.; Wendt, T.; Stefan, N.; Humpert, P.; Fritsche, A.; Stumvoll, M.; Schleicher, E.; Häring, H.U.; Nawroth, P.P.; Bierhaus, A. Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappaB in PBMCs. Diabetes, 2003, 52(3), 621-633.
[http://dx.doi.org/10.2337/diabetes.52.3.621] [PMID: 12606501]
[25]
Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; Liliensiek, B.; Dehmer, T.; Morcos, M.; Sayed, A.A.R.; Andrassy, M.; Schiekofer, S.; Schneider, J.G.; Schulz, J.B.; Heuss, D.; Neundörfer, B.; Dierl, S.; Huber, J.; Tritschler, H.; Schmidt, A.M.; Schwaninger, M.; Haering, H.U.; Schleicher, E.; Kasper, M.; Stern, D.M.; Arnold, B.; Nawroth, P.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest., 2004, 114(12), 1741-1751.
[http://dx.doi.org/10.1172/JCI18058] [PMID: 15599399]
[26]
Haslbeck, K.M.; Schleicher, E.; Bierhaus, A.; Nawroth, P.; Haslbeck, M.; Neundörfer, B.; Heuss, D. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp. Clin. Endocrinol. Diabetes, 2005, 113(5), 288-291.
[http://dx.doi.org/10.1055/s-2005-865600] [PMID: 15926115]
[27]
Sekido, H.; Suzuki, T.; Jomori, T.; Takeuchi, M.; Yabe-Nishimura, C.; Yagihashi, S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem. Biophys. Res. Commun., 2004, 320(1), 241-248.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.159] [PMID: 15207727]
[28]
Ha, H.C.; Hester, L.D.; Snyder, S.H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3270-3275.
[http://dx.doi.org/10.1073/pnas.052712399] [PMID: 11854472]
[29]
Yang, S.H.; Sharrocks, A.D.; Whitmarsh, A.J. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, 320, 3-21.
[http://dx.doi.org/10.1016/S0378-1119(03)00816-3] [PMID: 14597384]
[30]
Andorfer, B.; Kieseier, B.C.; Mathey, E.; Armati, P.; Pollard, J.; Oka, N.; Hartung, H.P. Expression and distribution of transcription factor NF-κB and inhibitor IκB in the inflamed peripheral nervous system. J. Neuroimmunol., 2001, 116(2), 226-232.
[http://dx.doi.org/10.1016/S0165-5728(01)00306-X] [PMID: 11438178]
[31]
Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev., 2008, 22(18), 2454-2472.
[http://dx.doi.org/10.1101/gad.1693608] [PMID: 18794343]
[32]
Parmantier, E.; Lynn, B.; Lawson, D.; Turmaine, M.; Namini, S.S.; Chakrabarti, L.; McMahon, A.P.; Jessen, K.R.; Mirsky, R. Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron, 1999, 23(4), 713-724.
[http://dx.doi.org/10.1016/S0896-6273(01)80030-1] [PMID: 10482238]
[33]
Calcutt, N.A.; Allendoerfer, K.L.; Mizisin, A.P.; Middlemas, A.; Freshwater, J.D.; Burgers, M.; Ranciato, R.; Delcroix, J.D.; Taylor, F.R.; Shapiro, R.; Strauch, K.; Dudek, H.; Engber, T.M.; Galdes, A.; Rubin, L.L.; Tomlinson, D.R. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J. Clin. Invest., 2003, 111(4), 507-514.
[http://dx.doi.org/10.1172/JCI200315792] [PMID: 12588889]
[34]
Chapouly, C.; Yao, Q.; Vandierdonck, S.; Larrieu-Lahargue, F.; Mariani, J.N.; Gadeau, A.P.; Renault, M.A. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: Implication in diabetes. Cardiovasc. Res., 2016, 109(2), 217-227.
[http://dx.doi.org/10.1093/cvr/cvv263] [PMID: 26645982]
[35]
Oh, S.B.; Tran, P.B.; Gillard, S.E.; Hurley, R.W.; Hammond, D.L.; Miller, R.J. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci., 2001, 21(14), 5027-5035.
[http://dx.doi.org/10.1523/JNEUROSCI.21-14-05027.2001] [PMID: 11438578]
[36]
Wegner, M.; Araszkiewicz, A.; Piorunska-Stolzmann, M.; Wierusz-Wysocka, B.; Zozulinska-Ziolkiewicz, D. Association between IL-6 concentration and diabetes-related variables in DM1 patients with and without microvascular complications. Inflammation, 2013, 36(3), 723-728.
[http://dx.doi.org/10.1007/s10753-013-9598-y] [PMID: 23371411]
[37]
Saleh, A.; Roy Chowdhury, S.K.; Smith, D.R.; Balakrishnan, S.; Tessler, L.; Schartner, E.; Bilodeau, A.; Van Der Ploeg, R.; Fernyhough, P. Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol. Brain, 2013, 6(1), 45.
[http://dx.doi.org/10.1186/1756-6606-6-45] [PMID: 24152426]
[38]
Bishnoi, M.; Bosgraaf, C.A.; Abooj; Zhong, L.; Premkumar, L.S. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators. Mol. Pain, 2011, 7, 1744-8069-7-52.
[http://dx.doi.org/10.1186/1744-8069-7-52] [PMID: 21794120]
[39]
Sallam, A.A.W.; El-Sharawy, A.M.H. Role of interleukin-6 (IL-6) and indicators of inflammation in the pathogenesis of diabetic foot ulcers. Aust. J. Basic Appl. Sci., 2012, 6, 430-435.
[40]
Wu, K.K. Inducible cyclooxygenase and nitric oxide synthase. In: Advances in Pharmacology 33; August, J.T.; Anders, M.W.; Murad, F.; Coyle, J.T., Eds.; Academic Press, 1995; pp. 179-207.
[41]
Cohn, J.N.; Tognoni, G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med., 2001, 345(23), 1667-1675.
[http://dx.doi.org/10.1056/NEJMoa010713] [PMID: 11759645]
[42]
Cosentino, F.; Eto, M.; De Paolis, P.; van der Loo, B.; Bachschmid, M.; Ullrich, V.; Kouroedov, A.; Delli Gatti, C.; Joch, H.; Volpe, M.; Lüscher, T.F. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: Role of protein kinase C and reactive oxygen species. Circulation, 2003, 107(7), 1017-1023.
[http://dx.doi.org/10.1161/01.CIR.0000051367.92927.07] [PMID: 12600916]
[43]
Pop-Busui, R.; Marinescu, V.; Van Huysen, C.; Li, F.; Sullivan, K.; Greene, D.A.; Larkin, D.; Stevens, M.J. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes, 2002, 51(8), 2619-2628.
[http://dx.doi.org/10.2337/diabetes.51.8.2619] [PMID: 12145179]
[44]
Harris, R.E. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell. Biochem., 2007, 42, 93-126.
[http://dx.doi.org/10.1007/1-4020-5688-5_4] [PMID: 17612047]
[45]
Kellogg, A.P.; Wiggin, T.D.; Larkin, D.D.; Hayes, J.M.; Stevens, M.J.; Pop-Busui, R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes, 2007, 56(12), 2997-3005.
[http://dx.doi.org/10.2337/db07-0740] [PMID: 17720896]
[46]
Kellogg, A.P.; Pop-Busui, R. Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress. Antioxid. Redox Signal., 2005, 7(11-12), 1521-1529.
[http://dx.doi.org/10.1089/ars.2005.7.1521] [PMID: 16356116]
[47]
Xu, S.; Mueser, T.C.; Marnett, L.J.; Funk, M.O., Jr Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure, 2012, 20(9), 1490-1497.
[http://dx.doi.org/10.1016/j.str.2012.06.003] [PMID: 22795085]
[48]
Reilly, K.B.; Srinivasan, S.; Hatley, M.E.; Patricia, M.K.; Lannigan, J.; Bolick, D.T.; Vandenhoff, G.; Pei, H.; Natarajan, R.; Nadler, J.L.; Hedrick, C.C. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J. Biol. Chem., 2004, 279(10), 9440-9450.
[http://dx.doi.org/10.1074/jbc.M303857200] [PMID: 14676201]
[49]
Natarajan, R.; Nadler, J.L. Lipid inflammatory mediators in diabetic vascular disease. Arterioscler. Thromb. Vasc. Biol., 2004, 24(9), 1542-1548.
[http://dx.doi.org/10.1161/01.ATV.0000133606.69732.4c] [PMID: 15166011]
[50]
Natarajan, R.; Nadler, J.L. Lipoxygenases and lipid signaling in vascular cells in diabetes. Front. Biosci., 2003, 8(6), 1144.
[http://dx.doi.org/10.2741/1144] [PMID: 12957878]
[51]
Kang, S.W.; Natarajan, R.; Shahed, A.; Nast, C.C.; LaPage, J.; Mundel, P.; Kashtan, C.; Adler, S.G. Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. J. Am. Soc. Nephrol., 2003, 14(12), 3178-3187.
[http://dx.doi.org/10.1097/01.ASN.0000099702.16315.DE] [PMID: 14638916]
[52]
Bolick, D.T.; Orr, A.W.; Whetzel, A.; Srinivasan, S.; Hatley, M.E.; Schwartz, M.A.; Hedrick, C.C. 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB. Arterioscler. Thromb. Vasc. Biol., 2005, 25(11), 2301-2307.
[http://dx.doi.org/10.1161/01.ATV.0000186181.19909.a6] [PMID: 16166569]
[53]
Obrosova, I.G.; Drel, V.R.; Oltman, C.L.; Mashtalir, N.; Tibrewala, J.; Groves, J.T.; Yorek, M.A. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am. J. Physiol. Endocrinol. Metab., 2007, 293(6), E1645-E1655.
[http://dx.doi.org/10.1152/ajpendo.00479.2007] [PMID: 17911342]
[54]
Reddy, M.A.; Thimmalapura, P.R.; Lanting, L.; Nadler, J.L.; Fatima, S.; Natarajan, R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J. Biol. Chem., 2002, 277(12), 9920-9928.
[http://dx.doi.org/10.1074/jbc.M111305200] [PMID: 11786549]
[55]
Natarajan, R.; Reddy, M.A.; Malik, K.U.; Fatima, S.; Khan, B.V. Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2001, 21(9), 1408-1413.
[http://dx.doi.org/10.1161/hq0901.095278] [PMID: 11557664]
[56]
Obrosova, I.G.; Maksimchyk, Y.; Pacher, P.; Agardh, E.; Smith, M.L.; El-Remessy, A.B.; Agardh, C.D. Evaluation of the aldose reductase inhibitor fidarestat on ischemia-reperfusion injury in rat retina. Int. J. Mol. Med., 2010, 26(1), 135-142.
[http://dx.doi.org/10.3892/ijmm_00000445] [PMID: 20514433]
[57]
Kühn, H.; O’Donnell, V.B. Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res., 2006, 45(4), 334-356.
[http://dx.doi.org/10.1016/j.plipres.2006.02.003] [PMID: 16678271]
[58]
Henriques, A.; Pitzer, C.; Schneider, A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: Where do we stand? Front. Neurosci., 2010, 4, 32.
[http://dx.doi.org/10.3389/fnins.2010.00032] [PMID: 20592948]
[59]
Apfel, S.C. Neurotrophic factors in peripheral neuropathies: Tissueherapeutic implications. Brain Pathol., 1999, 9(2), 393-413.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00234.x] [PMID: 10219753]
[60]
Apfel, S.C. Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold? Int. Rev. Neurobiol., 2002, 50, 393-413.
[http://dx.doi.org/10.1016/S0074-7742(02)50083-0] [PMID: 12198818]
[61]
Steinbacher, B.C., Jr; Nadelhaft, I. Increased levels of nerve growth factor in the urinary bladder and hypertrophy of dorsal root ganglion neurons in the diabetic rat. Brain Res., 1998, 782(1-2), 255-260.
[http://dx.doi.org/10.1016/S0006-8993(97)01287-0] [PMID: 9519271]
[62]
Diemel, L.T.; Stevens, E.J.; Willars, G.B.; Tomlinson, D.R. Depletion of substance P and calcitonin gene-related peptide in sciatic nerve of rats with experimental diabetes; effects of insulin and aldose reductase inhibition. Neurosci. Lett., 1992, 137(2), 253-256.
[http://dx.doi.org/10.1016/0304-3940(92)90416-5] [PMID: 1374869]
[63]
Garrett, N.E.; Kidd, B.L.; CruWys, S.C.; Tomlinson, D.R. Streptozotocin-induced diabetes decreases substance P levels in experimental arthritis in the rat knee. Neurosci. Lett., 1995, 187(3), 201-204.
[http://dx.doi.org/10.1016/0304-3940(95)11376-8] [PMID: 7542756]
[64]
Tomlinson, D.R.; Fernyhough, P.; Diemel, L.T. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes, 1997, 46(Suppl. 2), S43-S49.
[http://dx.doi.org/10.2337/diab.46.2.S43] [PMID: 9285498]
[65]
Himes, B.T.; Tessler, A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. J. Comp. Neurol., 1989, 284(2), 215-230.
[http://dx.doi.org/10.1002/cne.902840206] [PMID: 2474003]
[66]
Robinson, J.P.; Willars, G.B.; Tomlinson, D.R.; Keen, P. Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effects of the aldose reductase inhibitor ‘statil’. Brain Res., 1987, 426(2), 339-348.
[http://dx.doi.org/10.1016/0006-8993(87)90887-0] [PMID: 2446712]
[67]
Ordoñez, G.; Fernandez, A.; Perez, R.; Sotelo, J. Low contents of nerve growth factor in serum and submaxillary gland of diabetic mice. J. Neurol. Sci., 1994, 121(2), 163-166.
[http://dx.doi.org/10.1016/0022-510X(94)90346-8] [PMID: 8158209]
[68]
Hellweg, R.; Wöhrle, M.; Hartung, H.D.; Stracke, H.; Hock, C.; Federlin, K. Diabetes mellitus-associated decrease in nerve growth factor levels is reversed by allogeneic pancreatic islet transplantation. Neurosci. Lett., 1991, 125(1), 1-4.
[http://dx.doi.org/10.1016/0304-3940(91)90114-9] [PMID: 1857552]
[69]
Anand, P.; Terenghi, G.; Warner, G.; Kopelman, P.; Williams-Chestnut, R.E.; Sinicropi, D.V. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat. Med., 1996, 2(6), 703-707.
[http://dx.doi.org/10.1038/nm0696-703] [PMID: 8640566]
[70]
Ieda, M.; Kanazawa, H.; Ieda, Y.; Kimura, K.; Matsumura, K.; Tomita, Y.; Yagi, T.; Onizuka, T.; Shimoji, K.; Ogawa, S.; Makino, S.; Sano, M.; Fukuda, K. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation, 2006, 114(22), 2351-2363.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.627588] [PMID: 17101855]
[71]
Sposato, V.; Manni, L.; Chaldakov, G.N.; Aloe, L. Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain. Arch. Ital. Biol., 2007, 145(2), 87-97.
[PMID: 17639781]
[72]
Terenghi, G.; Mann, D.; Kopelman, P.G.; Anand, P. trkA and trkC expression is increased in human diabetic skin. Neurosci. Lett. 228, 33–36. Tesfaye, S., 2006. Neuropathy in diabetes. Medicine, 1997, 34, 91-94.
[73]
Janssen, J.A.; Lamberts, S.W. Circulating IGF-I and its protective role in the pathogenesis of diabetic angiopathy. Clin. Endocrinol., 2000, 52(1), 1-9.
[http://dx.doi.org/10.1046/j.1365-2265.2000.00922.x] [PMID: 10651746]
[74]
Kazanis, I.; Giannakopoulou, M.; Philippidis, H.; Stylianopoulou, F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp. Neurol., 2004, 186(2), 221-234.
[http://dx.doi.org/10.1016/j.expneurol.2003.12.004] [PMID: 15026258]
[75]
Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol., 2004, 20(1), 781-810.
[http://dx.doi.org/10.1146/annurev.cellbio.20.010403.113126] [PMID: 15473860]
[76]
Kühl, M.; Sheldahl, L.C.; Malbon, C.C.; Moon, R.T. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem., 2000, 275(17), 12701-12711.
[http://dx.doi.org/10.1074/jbc.275.17.12701] [PMID: 10777564]
[77]
Nusse, R. Wnt signaling and stem cell control. Cell Res., 2008, 18(5), 523-527.
[http://dx.doi.org/10.1038/cr.2008.47] [PMID: 18392048]
[78]
Folestad, A.; Ålund, M.; Asteberg, S.; Fowelin, J.; Aurell, Y.; Göthlin, J.; Cassuto, J. Role of Wnt/β-catenin and RANKL/OPG in bone healing of diabetic Charcot arthropathy patients. Acta Orthop., 2015, 86(4), 415-425.
[http://dx.doi.org/10.3109/17453674.2015.1033606] [PMID: 25811776]
[79]
Rowland, T.J.; Sweet, M.E.; Mestroni, L.; Taylor, M.R.G. Danon disease-dysregulation of autophagy in a multisystem disorder with cardiomyopathy. J. Cell Sci., 2016, 129(11), jcs.184770.
[http://dx.doi.org/10.1242/jcs.184770] [PMID: 27165304]
[80]
Ching, J.K.; Elizabeth, S.V.; Ju, J.S.; Lusk, C.; Pittman, S.K.; Weihl, C.C. mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum. Mol. Genet., 2013, 22(6), 1167-1179.
[http://dx.doi.org/10.1093/hmg/dds524] [PMID: 23250913]
[81]
Ju, J.S.; Fuentealba, R.A.; Miller, S.E.; Jackson, E.; Piwnica-Worms, D.; Baloh, R.H.; Weihl, C.C. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol., 2009, 187(6), 875-888.
[http://dx.doi.org/10.1083/jcb.200908115] [PMID: 20008565]
[82]
Sridhar, S.; Patel, B.; Aphkhazava, D.; Macian, F.; Santambrogio, L.; Shields, D.; Cuervo, A.M. The lipid kinase PI4KIIIβ preserves lysosomal identity. EMBO J., 2012, 32(3), 324-339.
[http://dx.doi.org/10.1038/emboj.2012.341] [PMID: 23258225]
[83]
Kon, M.; Cuervo, A.M. Chaperone-mediated autophagy in health and disease. FEBS Lett., 2010, 584(7), 1399-1404.
[http://dx.doi.org/10.1016/j.febslet.2009.12.025] [PMID: 20026330]
[84]
Yu, L.Y.; Jokitalo, E.; Sun, Y.F.; Mehlen, P.; Lindholm, D.; Saarma, M.; Arumäe, U. GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway. J. Cell Biol., 2003, 163(5), 987-997.
[http://dx.doi.org/10.1083/jcb.200305083] [PMID: 14657232]
[85]
Osman, A.A.M.; Dahlin, L.B.; Thomsen, N.O.B.; Mohseni, S. Autophagy in the posterior interosseous nerve of patients with type 1 and type 2 diabetes mellitus: an ultrastructural study. Diabetologia, 2015, 58(3), 625-632.
[http://dx.doi.org/10.1007/s00125-014-3477-4] [PMID: 25523623]
[86]
Gonzalez, C.D.; Lee, M.S.; Marchetti, P.; Pietropaolo, M.; Towns, R.; Vaccaro, M.I.; Watada, H.; Wiley, J.W. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 2011, 7(1), 2-11.
[http://dx.doi.org/10.4161/auto.7.1.13044] [PMID: 20935516]
[87]
Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C.S.; Veltri, R.W.; Grishin, N.V.; Peyton, M.; Minna, J.; Bhagat, G.; Levine, B. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013, 154(6), 1269-1284.
[http://dx.doi.org/10.1016/j.cell.2013.08.015] [PMID: 24034250]
[88]
Mohseni, S. Autophagy in insulin-induced hypoglycaemic neuropathy. Pathology, 2011, 43(3), 254-260.
[http://dx.doi.org/10.1097/PAT.0b013e328343c992] [PMID: 21436636]
[89]
Towns, R.; Guo, C.; Shangguan, Y.; Hong, S.; Wiley, J.W. Type 2 diabetes with neuropathy: Autoantibody stimulation of autophagy via Fas. Neuroreport, 2008, 19(3), 265-269.
[http://dx.doi.org/10.1097/WNR.0b013e3282f4cb50] [PMID: 18303564]
[90]
Sedeek, M.; Hébert, R.L.; Kennedy, C.R.; Burns, K.D.; Touyz, R.M. Molecular mechanisms of hypertension: Role of nox family NADPH oxidases. Curr. Opin. Nephrol. Hypertens., 2009, 18(2), 122-127.
[http://dx.doi.org/10.1097/MNH.0b013e32832923c3] [PMID: 19430333]
[91]
Jones, S.A.; Hancock, J.T.; Jones, O.T.; Neubauer, A.; Topley, N. The expression of NADPH oxidase components in human glomerular mesangial cells. J. Am. Soc. Nephrol., 1995, 5(7), 1483-1491.
[http://dx.doi.org/10.1681/ASN.V571483] [PMID: 7703387]
[92]
Babior, B.M. NADPH oxidase. Curr. Opin. Immunol., 2004, 16(1), 42-47.
[http://dx.doi.org/10.1016/j.coi.2003.12.001] [PMID: 14734109]
[93]
Shiose, A.; Kuroda, J.; Tsuruya, K.; Hirai, M.; Hirakata, H.; Naito, S.; Hattori, M.; Sakaki, Y.; Sumimoto, H. A novel superoxide-producing NAD(P)H oxidase in kidney. J. Biol. Chem., 2001, 276(2), 1417-1423.
[http://dx.doi.org/10.1074/jbc.M007597200] [PMID: 11032835]
[94]
Gorin, Y.; Ricono, J.M.; Kim, N.H.; Bhandari, B.; Choudhury, G.G.; Abboud, H.E. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am. J. Physiol. Renal Physiol., 2003, 285(2), F219-F229.
[http://dx.doi.org/10.1152/ajprenal.00414.2002] [PMID: 12842860]
[95]
Li, J.M.; Shah, A.M. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy. J. Am. Soc. Nephrol., 2003, 14(8)(Suppl. 3), S221-S226.
[http://dx.doi.org/10.1097/01.ASN.0000077406.67663.E7] [PMID: 12874435]
[96]
Etoh, T.; Inoguchi, T.; Kakimoto, M.; Sonoda, N.; Kobayashi, K.; Kuroda, J.; Sumimoto, H.; Nawata, H. Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia, 2003, 46(10), 1428-1437.
[http://dx.doi.org/10.1007/s00125-003-1205-6] [PMID: 13680125]
[97]
Xia, L.; Wang, H.; Goldberg, H.J.; Munk, S.; Fantus, I.G.; Whiteside, C.I. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am. J. Physiol. Renal Physiol., 2006, 290(2), F345-F356.
[http://dx.doi.org/10.1152/ajprenal.00119.2005] [PMID: 16131649]
[98]
Lee, H.B.; Yu, M.R.; Yang, Y.; Jiang, Z.; Ha, H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol., 2003, 14(8 Suppl 3), S241-S245.
[http://dx.doi.org/10.1097/01.ASN.0000077410.66390.0F] [PMID: 12874439]
[99]
Vásquez-Vivar, J.; Kalyanaraman, B. Generation of superoxide from nitric oxide synthase. FEBS Lett., 2000, 481(3), 305-306.
[http://dx.doi.org/10.1016/S0014-5793(00)02001-9] [PMID: 11041680]
[100]
Asaba, K.; Tojo, A.; Onozato, M.L.; Goto, A.; Quinn, M.T.; Fujita, T.; Wilcox, C.S. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int., 2005, 67(5), 1890-1898.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00287.x] [PMID: 15840036]
[101]
Nam, S.M.; Lee, M.Y.; Koh, J.H.; Park, J.H.; Shin, J.Y.; Shin, Y.G.; Koh, S.B.; Lee, E.Y.; Chung, C.H. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: The role of reducing oxidative stress in its protective property. Diabetes Res. Clin. Pract., 2009, 83(2), 176-182.
[http://dx.doi.org/10.1016/j.diabres.2008.10.007] [PMID: 19111363]
[102]
Sedeek, M.; Callera, G.; Montezano, A.; Gutsol, A.; Heitz, F.; Szyndralewiez, C.; Page, P.; Kennedy, C.R.J.; Burns, K.D.; Touyz, R.M.; Hébert, R.L. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2010, 299(6), F1348-F1358.
[http://dx.doi.org/10.1152/ajprenal.00028.2010] [PMID: 20630933]
[103]
Kitada, M.; Koya, D.; Sugimoto, T.; Isono, M.; Araki, S.; Kashiwagi, A.; Haneda, M. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 2003, 52(10), 2603-2614.
[http://dx.doi.org/10.2337/diabetes.52.10.2603] [PMID: 14514646]
[104]
Ribaldo, P.D.B.; Souza, D.S.; Biswas, S.K.; Block, K.; Lopes de Faria, J.M.; Lopes de Faria, J.B. Green tea (Camellia sinensis) attenuates nephropathy by downregulating Nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J. Nutr., 2009, 139(1), 96-100.
[http://dx.doi.org/10.3945/jn.108.095018] [PMID: 19056645]
[105]
Gorin, Y.; Block, K.; Hernandez, J.; Bhandari, B.; Wagner, B.; Barnes, J.L.; Abboud, H.E. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem., 2005, 280(47), 39616-39626.
[http://dx.doi.org/10.1074/jbc.M502412200] [PMID: 16135519]
[106]
Tabet, F.; Schiffrin, E.L.; Callera, G.E.; He, Y.; Yao, G.; Östman, A.; Kappert, K.; Tonks, N.K.; Touyz, R.M. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ. Res., 2008, 103(2), 149-158.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.178608] [PMID: 18566342]
[107]
Zhang, S.; Zhang, Y.; Wei, X.; Zhen, J.; Wang, Z.; Li, M.; Miao, W.; Ding, H.; Du, P.; Zhang, W.; He, M.; Yi, F. Expression and regulation of a novel identified TNFAIP8 family is associated with diabetic nephropathy. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(11), 1078-1086.
[http://dx.doi.org/10.1016/j.bbadis.2010.08.003] [PMID: 20699119]
[108]
Yamagishi, S.; Inagaki, Y.; Okamoto, T.; Amano, S.; Koga, K.; Takeuchi, M.; Makita, Z. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J. Biol. Chem., 2002, 277(23), 20309-20315.
[http://dx.doi.org/10.1074/jbc.M202634200] [PMID: 11912219]
[109]
Schlondorff, D. The glomerular mesangial cell: An expanding role for a specialized pericyte. FASEB J., 1987, 1(4), 272-281.
[http://dx.doi.org/10.1096/fasebj.1.4.3308611] [PMID: 3308611]
[110]
De Vriese, S.; Tilton, R.G.; Elger, M.; Stephan, C.C.; Kriz, W.; Lameire, N.H. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J. Am. Soc. Nephrol., 2001, 12(5), 993-1000.
[http://dx.doi.org/10.1681/ASN.V125993] [PMID: 11316858]
[111]
Schrijvers, B.F.; Flyvbjerg, A.; Tilton, R.G.; Lameire, N.H.; De Vriese, A.S. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol. Dial. Transplant., 2006, 21(2), 324-329.
[http://dx.doi.org/10.1093/ndt/gfi217] [PMID: 16249198]
[112]
Kim, N.H.; Oh, J.H.; Seo, J.A.; Lee, K.W.; Kim, S.G.; Choi, K.M.; Baik, S.H.; Choi, D.S.; Kang, Y.S.; Han, S.Y.; Han, K.H.; Ji, Y.H.; Cha, D.R. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney Int., 2005, 67(1), 167-177.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00067.x] [PMID: 15610240]
[113]
Yamagishi, S.I.; Inagaki, Y.; Okamoto, T.; Amano, S.; Koga, K.; Takeuchi, M. Advanced glycation end products inhibit de novo protein synthesis and induce TGF-β overexpression in proximal tubular cells. Kidney Int., 2003, 63(2), 464-473.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00752.x] [PMID: 12631112]
[114]
Banba, N.; Nakamura, T.; Matsumura, M.; Kuroda, H.; Hattori, Y.; Kasai, K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int., 2000, 58(2), 684-690.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00214.x] [PMID: 10916091]
[115]
Chiarelli, F.; Cipollone, F.; Mohn, A.; Marini, M.; Iezzi, A.; Fazia, M.; Tumini, S.; De Cesare, D.; Pomilio, M.; Pierdomenico, S.D.; Di Gioacchino, M.; Cuccurullo, F.; Mezzetti, A. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care, 2002, 25(10), 1829-1834.
[http://dx.doi.org/10.2337/diacare.25.10.1829] [PMID: 12351486]
[116]
Silbiger, S.; Crowley, S.; Shan, Z.; Brownlee, M.; Satriano, J.; Schlondorff, D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int., 1993, 43(4), 853-864.
[http://dx.doi.org/10.1038/ki.1993.120] [PMID: 8479121]
[117]
Mott, J.D.; Khalifah, R.G.; Nagase, H.; Shield, C.F., III; Hudson, J.K.; Hudson, B.G. Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int., 1997, 52(5), 1302-1312.
[http://dx.doi.org/10.1038/ki.1997.455] [PMID: 9350653]
[118]
Brownlee, M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes, 1994, 43(6), 836-841.
[http://dx.doi.org/10.2337/diab.43.6.836] [PMID: 8194672]
[119]
Yamagishi, S.; Imaizumi, T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des., 2005, 11(18), 2279-2299.
[http://dx.doi.org/10.2174/1381612054367300] [PMID: 16022668]
[120]
Wendt, T.M.; Tanji, N.; Guo, J.; Kislinger, T.R.; Qu, W.; Lu, Y.; Bucciarelli, L.G.; Rong, L.L.; Moser, B.; Markowitz, G.S.; Stein, G.; Bierhaus, A.; Liliensiek, B.; Arnold, B.; Nawroth, P.P.; Stern, D.M.; D’Agati, V.D.; Schmidt, A.M. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am. J. Pathol., 2003, 162(4), 1123-1137.
[http://dx.doi.org/10.1016/S0002-9440(10)63909-0] [PMID: 12651605]
[121]
Ziyadeh, F.N.; Hoffman, B.B.; Han, D.C.; Iglesias-de la Cruz, M.C.; Hong, S.W.; Isono, M.; Chen, S.; McGowan, T.A.; Sharma, K. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 8015-8020.
[http://dx.doi.org/10.1073/pnas.120055097] [PMID: 10859350]
[122]
Yang, C.W.; Vlassara, H.; Peten, E.P.; He, C.J.; Striker, G.E.; Striker, L.J. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc. Natl. Acad. Sci. USA, 1994, 91(20), 9436-9440.
[http://dx.doi.org/10.1073/pnas.91.20.9436] [PMID: 7937785]
[123]
Vlassara, H.; Striker, L.J.; Teichberg, S.; Fuh, H.; Li, Y.M.; Steffes, M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11704-11708.
[http://dx.doi.org/10.1073/pnas.91.24.11704] [PMID: 7972128]
[124]
Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126.
[http://dx.doi.org/10.1172/JCI119503] [PMID: 9202063]
[125]
Whiteside, C.I.; Dlugosz, J.A. Mesangial cell protein kinase C isozyme activation in the diabetic milieu. Am. J. Physiol. Renal Physiol., 2002, 282(6), F975-F980.
[http://dx.doi.org/10.1152/ajprenal.00014.2002] [PMID: 11997313]
[126]
Rasmussen, H.; Forder, J.; Kojima, I.; Scriabine, A. TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem. Biophys. Res. Commun., 1984, 122(2), 776-784.
[http://dx.doi.org/10.1016/S0006-291X(84)80101-1] [PMID: 6431975]
[127]
Huhtala, P.; Chow, L.T.; Tryggvason, K. Structure of the human type IV collagenase gene. J. Biol. Chem., 1990, 265(19), 11077-11082.
[http://dx.doi.org/10.1016/S0021-9258(19)38559-X] [PMID: 2162831]
[128]
Yao, L.; Wang, J.; Mao, Y.; Zhu, H.; Deng, A.; Zhu, Z. Different expressions of protein kinase C-α, βI and βII in glomeruli of diabetic nephropathy patients. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2006, 26(6), 651-653.
[http://dx.doi.org/10.1007/s11596-006-0605-5] [PMID: 17357479]
[129]
Ohshiro, Y.; Ma, R.C.; Yasuda, Y.; Hiraoka-Yamamoto, J.; Clermont, A.C.; Isshiki, K.; Yagi, K.; Arikawa, E.; Kern, T.S.; King, G.L. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes, 2006, 55(11), 3112-3120.
[http://dx.doi.org/10.2337/db06-0895] [PMID: 17065350]
[130]
Xia, L.; Wang, H.; Munk, S.; Frecker, H.; Goldberg, H.J.; Fantus, I.G.; Whiteside, C.I. Reactive oxygen species, PKC-β 1, and PKC-ζ mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am. J. Physiol. Endocrinol. Metab., 2007, 293(5), E1280-E1288.
[http://dx.doi.org/10.1152/ajpendo.00223.2007] [PMID: 17711990]
[131]
Kolczynska, K.; Loza-Valdes, A.; Hawro, I.; Sumara, G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: A review. Lipids Health Dis., 2020, 19(1), 113.
[http://dx.doi.org/10.1186/s12944-020-01286-8] [PMID: 32466765]
[132]
Hayashida, T.; Schnaper, H.W. High ambient glucose enhances sensitivity to TGF-β1 via extracellular signal--regulated kinase and protein kinase Cdelta activities in human mesangial cells. J. Am. Soc. Nephrol., 2004, 15(8), 2032-2041.
[http://dx.doi.org/10.1097/01.ASN.0000133198.74973.60] [PMID: 15284289]
[133]
Menne, J.; Park, J.K.; Boehne, M.; Elger, M.; Lindschau, C.; Kirsch, T.; Meier, M.; Gueler, F.; Fiebeler, A.; Bahlmann, F.H.; Leitges, M.; Haller, H. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes, 2004, 53(8), 2101-2109.
[http://dx.doi.org/10.2337/diabetes.53.8.2101] [PMID: 15277392]
[134]
Meier, M.; Park, J.K.; Overheu, D.; Kirsch, T.; Lindschau, C.; Gueler, F.; Leitges, M.; Menne, J.; Haller, H. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model. Diabetes, 2007, 56(2), 346-354.
[http://dx.doi.org/10.2337/db06-0891] [PMID: 17259378]
[135]
Tuttle, K.R.; Bakris, G.L.; Toto, R.D.; McGill, J.B.; Hu, K.; Anderson, P.W. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care, 2005, 28(11), 2686-2690.
[http://dx.doi.org/10.2337/diacare.28.11.2686] [PMID: 16249540]
[136]
Thallas-Bonke, V.; Thorpe, S.R.; Coughlan, M.T.; Fukami, K.; Yap, F.Y.T.; Sourris, K.C.; Penfold, S.A.; Bach, L.A.; Cooper, M.E.; Forbes, J.M. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes, 2008, 57(2), 460-469.
[http://dx.doi.org/10.2337/db07-1119] [PMID: 17959934]
[137]
Darnell, J.E., Jr; Kerr, M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264(5164), 1415-1421.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[138]
Wang, X.; Shaw, S.; Amiri, F.; Eaton, D.C.; Marrero, M.B. Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells. Diabetes, 2002, 51(12), 3505-3509.
[http://dx.doi.org/10.2337/diabetes.51.12.3505] [PMID: 12453907]
[139]
Amiri, F.; Shaw, S.; Wang, X.; Tang, J.; Waller, J.L.; Eaton, D.C.; Marrero, M.B. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int., 2002, 61(5), 1605-1616.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00311.x] [PMID: 11967010]
[140]
Huang, J.S.; Guh, J.Y.; Hung, W.C.; Yang, M.L.; Lai, Y.H.; Chen, H.C.; Chuang, L.Y. Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. Biochem. J., 1999, 342(1), 231-238.
[http://dx.doi.org/10.1042/bj3420231] [PMID: 10432321]
[141]
Wang, H.; Li, Y.; Liu, H.; Liu, S.; Liu, Q.; Wang, X.M.; Shi, Y.; Duan, H. Peroxynitrite mediates glomerular lesion of diabetic rat via JAK/STAT signaling pathway. J. Endocrinol. Invest., 2009, 32(10), 844-851.
[http://dx.doi.org/10.1007/BF03345756] [PMID: 19636222]
[142]
Lu, T.C.; Wang, Z.H.; Feng, X.; Chuang, P.Y.; Fang, W.; Shen, Y.; Levy, D.E.; Xiong, H.; Chen, N.; He, J.C. Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney Int., 2009, 76(1), 63-71.
[http://dx.doi.org/10.1038/ki.2009.98] [PMID: 19357722]
[143]
Berthier, C.C.; Zhang, H.; Schin, M.; Henger, A.; Nelson, R.G.; Yee, B.; Boucherot, A.; Neusser, M.A.; Cohen, C.D.; Carter-Su, C.; Argetsinger, L.S.; Rastaldi, M.P.; Brosius, F.C.; Kretzler, M. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes, 2009, 58(2), 469-477.
[http://dx.doi.org/10.2337/db08-1328] [PMID: 19017763]
[144]
DiStefano, P.S.; Friedman, B.; Radziejewski, C.; Alexander, C.; Boland, P.; Schick, C.M.; Lindsay, R.M.; Wiegand, S.J. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron, 1992, 8(5), 983-993.
[http://dx.doi.org/10.1016/0896-6273(92)90213-W] [PMID: 1375039]
[145]
Bilir, B.; Tulubas, F.; Bilir, B.E.; Atile, N.S.; Kara, S.P.; Yildirim, T.; Gumustas, S.A.; Topcu, B.; Kaymaz, O.; Aydin, M. The association of vitamin D with inflammatory cytokines in diabetic peripheral neuropathy. J. Phys. Ther. Sci., 2016, 28(7), 2159-2163.
[http://dx.doi.org/10.1589/jpts.28.2159] [PMID: 27512288]
[146]
Yamakawa, I.; Kojima, H.; Terashima, T.; Katagi, M.; Oi, J.; Urabe, H.; Sanada, M.; Kawai, H.; Chan, L.; Yasuda, H.; Maegawa, H.; Kimura, H. Inactivation of TNF-α ameliorates diabetic neuropathy in mice. Am. J. Physiol. Endocrinol. Metab., 2011, 301(5), E844-E852.
[http://dx.doi.org/10.1152/ajpendo.00029.2011] [PMID: 21810933]
[147]
Ameenudeen, S.; Kashif, M.; Banerjee, S.; Srinivasan, H.; Pandurangan, A.K.; Waseem, M. Cellular and molecular machinery of neuropathic pain: An emerging insight. Curr. Pharmacol. Rep., 2022, 8(4), 227-235.
[http://dx.doi.org/10.1007/s40495-022-00294-9] [PMID: 35646513]
[148]
Sloan, G.; Selvarajah, D.; Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol., 2021, 17(7), 400-420.
[http://dx.doi.org/10.1038/s41574-021-00496-z] [PMID: 34050323]

© 2024 Bentham Science Publishers | Privacy Policy