Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

LINC00461敲低增强Ixazomib对多发性骨髓瘤细胞的作用

卷 23, 期 8, 2023

发表于: 27 April, 2023

页: [643 - 652] 页: 10

弟呕挨: 10.2174/1568009623666230316152713

价格: $65

摘要

背景:LINC00461与几种类型的癌症有关,但其在多发性骨髓瘤中的作用尚不清楚。我们的研究旨在探讨LINC00461在多发性骨髓瘤中的作用,并探讨其对伊唑唑米治疗的影响。 方法:构建了LINC00461和小核糖核蛋白多肽(SNRP) B2敲低稳定细胞系。进行细胞活力测定,包括MTT、细胞计数和菌落形成。采用rna拉下和免疫印迹法测定分子内相互作用。采用qRT-PCR和western blotting检测靶基因的表达水平。Kaplan-Meier分析评估总生存率。 结果:LINC00461或SNRPB2的敲低增强了ixazomib的细胞毒性,并影响了其对细胞凋亡和细胞周期分布的调节作用。进一步的结果表明,LINC00461基因敲低通过相互作用降低SNRPB2的表达水平。此外,在多发性骨髓瘤患者中发现LINC00461和SNRPB2呈正相关。SNRPB2的低表达与多发性骨髓瘤患者的高生存率相关。 结论:LINC00461的敲低在一定程度上通过调控SNRPB2增强了ixazomib对多发性骨髓瘤的治疗效果。

关键词: 多发性骨髓瘤,ixazomib,细胞凋亡,LINC00461, SNRPB2, B2敲低。

图形摘要
[1]
Wood, A.J.J.; Alexanian, R.; Dimopoulos, M. The treatment of multiple myeloma. N. Engl. J. Med., 1994, 330(7), 484-489.
[http://dx.doi.org/10.1056/NEJM199402173300709] [PMID: 8289856]
[2]
Bird, S. A.; Boyd, K. Multiple myeloma: An overview of management. Palliative care and social practice, 2019, 13, 1178224219868235.
[http://dx.doi.org/10.1177/1178224219868235] [PMID: 32215370]
[3]
Becker, N. Epidemiology of multiple myeloma. Recent Results Cancer Res., 2011, 183, 25-35.
[http://dx.doi.org/10.1007/978-3-540-85772-3_2] [PMID: 21509679]
[4]
Rajkumar, S.V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol., 2016, 91(7), 719-734.
[http://dx.doi.org/10.1002/ajh.24402] [PMID: 27291302]
[5]
Ludwig, H.; Novis Durie, S.; Meckl, A.; Hinke, A.; Durie, B. Multiple myeloma incidence and mortality around the Globe; interrelations between health access and quality, economic resources, and patient empowerment. Oncologist, 2020, 25(9), e1406-e1413.
[http://dx.doi.org/10.1634/theoncologist.2020-0141] [PMID: 32335971]
[6]
Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126.
[PMID: 22247839]
[7]
Greipp, P.R.; Miguel, J.S.; Durie, B.G.M.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; Lahuerta, J.J.; Ludwig, H.; Morgan, G.; Powles, R.; Shimizu, K.; Shustik, C.; Sonneveld, P.; Tosi, P.; Turesson, I.; Westin, J. International staging system for multiple myeloma. J. Clin. Oncol., 2005, 23(15), 3412-3420.
[http://dx.doi.org/10.1200/JCO.2005.04.242] [PMID: 15809451]
[8]
Barlogie, B.; Shaughnessy, J.; Tricot, G.; Jacobson, J.; Zangari, M.; Anaissie, E.; Walker, R.; Crowley, J. Treatment of multiple myeloma. Blood, 2004, 103(1), 20-32.
[http://dx.doi.org/10.1182/blood-2003-04-1045] [PMID: 12969978]
[9]
Anderson, K. C. Lenalidomide and thalidomide: mechanisms of action-similarities and differences. Semin. Hematol., 2005, 42(4 Suppl 4), S3-8.
[http://dx.doi.org/10.1053/j.seminhematol.2005.10.001] [PMID: 16344099]
[10]
Mahindra, A.; Laubach, J.; Raje, N.; Munshi, N.; Richardson, P.G.; Anderson, K. Latest advances and current challenges in the treatment of multiple myeloma. Nat. Rev. Clin. Oncol., 2012, 9(3), 135-143.
[http://dx.doi.org/10.1038/nrclinonc.2012.15] [PMID: 22349016]
[11]
Naymagon, L.; Abdul-Hay, M. Novel agents in the treatment of multiple myeloma: A review about the future. J. Hematol. Oncol., 2016, 9(1), 52.
[http://dx.doi.org/10.1186/s13045-016-0282-1] [PMID: 27363832]
[12]
Muz, B.; Ghazarian, R.N.; Ou, M.; Luderer, M.J.; Kusdono, H.D.; Azab, A.K. Spotlight on ixazomib: Potential in the treatment of multiple myeloma. Drug Des. Devel. Ther., 2016, 10, 217-226.
[PMID: 26811670]
[13]
Spizzo, R.; Almeida, M.I.; Colombatti, A.; Calin, G.A. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene, 2012, 31(43), 4577-4587.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[14]
Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277.
[http://dx.doi.org/10.1016/j.molmed.2018.01.001] [PMID: 29449148]
[15]
Do, H.; Kim, W. Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform., 2018, 16(4), e18.
[http://dx.doi.org/10.5808/GI.2018.16.4.e18] [PMID: 30602079]
[16]
Majidinia, M.; Yousefi, B. Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst.), 2016, 45, 25-33.
[http://dx.doi.org/10.1016/j.dnarep.2016.06.003] [PMID: 27427176]
[17]
Yang, Y.; Ren, M.; Song, C.; Li, D.; Soomro, S.H.; Xiong, Y.; Zhang, H.; Fu, H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget, 2017, 8(48), 84123-84139.
[http://dx.doi.org/10.18632/oncotarget.20340] [PMID: 29137410]
[18]
Ji, D.; Wang, Y.; Li, H.; Sun, B.; Luo, X. Long non-coding RNA LINC00461/miR-149-5p/LRIG2 axis regulates hepatocellular carcinoma progression. Biochem. Biophys. Res. Commun., 2019, 512(2), 176-181.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.049] [PMID: 30879766]
[19]
Yu, H.; Ma, J.; Chen, J.; Yang, Y.; Liang, J.; Liang, Y. LncRNA LINC00461 promotes colorectal cancer progression via miRNA-323b-3p/NFIB Axis. OncoTargets Ther., 2019, 12, 11119-11129.
[http://dx.doi.org/10.2147/OTT.S228798]
[20]
Hou, J.; Wang, Y.; Zhang, H.; Hu, Y.; Xin, X.; Li, X. Silencing of LINC00461 enhances radiosensitivity of lung adenocarcinoma cells by down‐regulating HOXA10 via microRNA‐195. J. Cell. Mol. Med., 2020, 24(5), 2879-2890.
[http://dx.doi.org/10.1111/jcmm.14859] [PMID: 31967713]
[21]
Dong, L.; Qian, J.; Chen, F.; Fan, Y.; Long, J. LINC00461 promotes cell migration and invasion in breast cancer through miR‐30a‐5p/integrin β3 axis. J. Cell. Biochem., 2019, 120(4), 4851-4862.
[http://dx.doi.org/10.1002/jcb.27435] [PMID: 30623482]
[22]
Yang, Y.; Lei, H.; Qiang, Y.; Wang, B. Ixazomib enhances parathyroid hormone–induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor. Mol. Biol. Cell, 2017, 28(13), 1792-1803.
[http://dx.doi.org/10.1091/mbc.e17-02-0096] [PMID: 28495797]
[23]
Clemens, J.; Welti, L.; Schäfer, J.; Seckinger, A.; Burhenne, J.; Theile, D.; Weiss, J. Bortezomib, carfilzomib and ixazomib do not mediate relevant transporter-based drug-drug interactions. Oncol. Lett., 2017, 14(3), 3185-3192.
[http://dx.doi.org/10.3892/ol.2017.6560] [PMID: 28927064]
[24]
Wang, Q.; Dong, Z.; Su, J.; Huang, J.; Xiao, P.; Tian, L.; Chen, Y.; Ma, L.; Chen, X. Ixazomib inhibits myeloma cell proliferation by targeting UBE2K. Biochem. Biophys. Res. Commun., 2021, 549, 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.048] [PMID: 33647537]
[25]
Naudin, C.; Hattabi, A.; Michelet, F.; Miri-Nezhad, A.; Benyoucef, A.; Pflumio, F.; Guillonneau, F.; Fichelson, S.; Vigon, I.; Dusanter-Fourt, I.; Lauret, E. PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood, 2017, 129(18), 2493-2506.
[http://dx.doi.org/10.1182/blood-2016-10-747436] [PMID: 28232582]
[26]
Liu, C.; Shen, Y.J.; Tu, Q.B.; Zhao, Y.R.; Guo, H.; Wang, J.; Zhang, L.; Shi, H.W.; Sun, Y. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed. Pharmacother., 2018, 101, 608-616.
[http://dx.doi.org/10.1016/j.biopha.2018.02.131] [PMID: 29518607]
[27]
Guo, H.; Qi, R.Q.; Sheng, J.; Liu, C.; Ma, H.; Wang, H.X.; Li, J.H.; Gao, X.H.; Wan, Y.S.; Chen, H.D. MiR-155, a potential serum marker of extramammary Paget’s disease. BMC Cancer, 2018, 18(1), 1078.
[http://dx.doi.org/10.1186/s12885-018-4994-1] [PMID: 30458743]
[28]
Deng, M.; Yuan, H.; Liu, S.; Hu, Z.; Xiao, H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy, 2019, 21(1), 96-106.
[http://dx.doi.org/10.1016/j.jcyt.2018.10.006] [PMID: 30409700]
[29]
Deng, M.; Yuan, H.; Peng, H.; Liu, S.; Xiao, X.; Wang, Z.; Zhang, G.; Xiao, H. Mesenchymal stem cells inhibit the effects of dexamethasone in multiple myeloma cells. Stem Cells Int., 2022, 2022, 4855517.
[http://dx.doi.org/10.1155/2022/4855517] [PMID: 35419059]
[30]
Wu, Y.; Zhang, Z.; Wu, J.; Hou, J.; Ding, G. The exosomes containing LINC00461 originated from multiple myeloma inhibit the osteoblast differentiation of bone mesenchymal stem cells via sponging miR-324-3p. J. Healthcare Eng., 2022, 2022, 3282860.
[http://dx.doi.org/10.1155/2022/3282860] [PMID: 35126917]
[31]
Tsai, M.C.; Spitale, R.C.; Chang, H.Y. Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res., 2011, 71(1), 3-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2483] [PMID: 21199792]
[32]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[33]
Kyle, R. A. Targeted therapy of multiple myeloma. Hematology, 2012, 17(Suppl. 1), s125-s128.
[http://dx.doi.org/10.1179/102453312X13336169156339]
[34]
Moreau, P.; Richardson, P.G.; Cavo, M.; Orlowski, R.Z.; San Miguel, J.F.; Palumbo, A.; Harousseau, J.L. Proteasome inhibitors in multiple myeloma: 10 years later. Blood, 2012, 120(5), 947-959.
[http://dx.doi.org/10.1182/blood-2012-04-403733] [PMID: 22645181]
[35]
Brayer, J.; Baz, R. The potential of ixazomib, a second-generation proteasome inhibitor, in the treatment of multiple myeloma. Ther. Adv. Hematol., 2017, 8(7), 209-220.
[http://dx.doi.org/10.1177/2040620717710171] [PMID: 28694935]
[36]
Turunen, J.J.; Niemelä, E.H.; Verma, B.; Frilander, M.J. The significant other: Splicing by the minor spliceosome. Wiley Interdiscip. Rev. RNA, 2013, 4(1), 61-76.
[http://dx.doi.org/10.1002/wrna.1141] [PMID: 23074130]
[37]
Luo, Y.; Lin, J.; Zhang, Y.; Dai, G.; Li, A.; Liu, X. LncRNA PCAT6 predicts poor prognosis in hepatocellular carcinoma and promotes proliferation through the regulation of cell cycle arrest and apoptosis. Cell Biochem. Funct., 2020, 38(7), 895-904.
[http://dx.doi.org/10.1002/cbf.3510] [PMID: 32064636]
[38]
Huang, H.H.; Ferguson, I.D.; Thornton, A.M.; Bastola, P.; Lam, C.; Lin, Y.H.T.; Choudhry, P.; Mariano, M.C.; Marcoulis, M.D.; Teo, C.F.; Malato, J.; Phojanakong, P.J.; Martin, T.G., III; Wolf, J.L.; Wong, S.W.; Shah, N.; Hann, B.; Brooks, A.N.; Wiita, A.P. Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma. Nat. Commun., 2020, 11(1), 1931.
[http://dx.doi.org/10.1038/s41467-020-15521-4] [PMID: 32321912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy