Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Cancer Proteomics for Cellular Dysfunction: Insights and Trends

Author(s): Anjna Rani, Veena Devi Singh, Rupa Mazumder* and Kamal Dua

Volume 29, Issue 9, 2023

Published on: 31 March, 2023

Page: [697 - 712] Pages: 16

DOI: 10.2174/1381612829666230316110932

Price: $65

Abstract

Background: Cancer is an ailment with having a very low survival rate globally. Poor cancer prognosis is primarily caused by the fact that people are found to have the disease when it is already well advanced. The goal of this study is to compile information on new avenues of investigation into biomarkers that may facilitate the routine detection of cancer. Proteomic analysis has recently developed into a crucial technique for cancer biology research, working in tandem with genomic analysis. Mass spectrometry techniques are one of several proteome analysis techniques that allow for the highly precise quantitative and qualitative recognition of hundreds of proteins in small quantities from various biological materials. These findings might soon serve as the foundation for better cancer diagnostic techniques.

Methods: An exhaustive literature survey has been conducted using electronic databases such as Google Scholar, Science Direct, and PubMed with keywords of proteomics, applications of proteomics, the technology of proteomics, biomarkers, and patents related to biomarkers.

Result: Studies reported till 2021 focusing on cancer proteomics and the related patents have been included in the present review to obtain concrete findings, highlighting the applications of proteomics in cancer.

Conclusion: The present review aims to present the overview and insights into cancer proteomics, recent breakthroughs in proteomics techniques, and applications of proteomics with technological advancements, ranging from searching biomarkers to the characterization of molecular pathways, though the entire process is still in its infancy.

Keywords: Proteomics, applications, the technology of proteomics, biomarkers, molecular pathways, patents related to cancer proteomics.

[1]
Mishra NC. Introduction to Proteomics: Principles and Applications. John Wiley & Sons 2011; pp. 1-38.
[2]
[3]
Anderson NG, Anderson NL. Twenty years of two-dimensional electrophoresis: Past, present and future. Electrophoresis 1996; 17(3): 443-53.
[http://dx.doi.org/10.1002/elps.1150170303] [PMID: 8740157]
[4]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995; 16(1): 1090-4.
[http://dx.doi.org/10.1002/elps.11501601185] [PMID: 7498152]
[5]
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13(1): 19-50.
[http://dx.doi.org/10.1080/02648725.1996.10647923] [PMID: 8948108]
[6]
Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 1975; 26(3): 231-43.
[http://dx.doi.org/10.1007/BF00281458] [PMID: 1093965]
[7]
O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250(10): 4007-21.
[http://dx.doi.org/10.1016/S0021-9258(19)41496-8] [PMID: 236308]
[8]
Scheele GA. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem 1975; 250(14): 5375-85.
[http://dx.doi.org/10.1016/S0021-9258(19)41192-7] [PMID: 1141235]
[9]
Anderson NL, Edwards JJ, Giometti CS, et al. Advanced methods, biochemical and clinical applications. Proceedings of the Second International Conference on Electrophoresis. Munich, Germany. October 15–17, 1979; 313-28.Berlin, Boston.
[http://dx.doi.org/10.1515/9783111713625-029]
[10]
Edman P. A method for the determination of amino acid sequence in peptides. Arch Biochem 1949; 22(3): 475.
[PMID: 18134557]
[11]
Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 1987; 84(20): 6970-4.
[http://dx.doi.org/10.1073/pnas.84.20.6970] [PMID: 3313383]
[12]
Aebersold RH, Pipes G, Hood LE, Kent SBH. N-terminal and internal sequence determination of microgram amounts of proteins separated by isoelectric focusing in immobilized pH gradients. Electrophoresis 1988; 9(9): 520-30.
[http://dx.doi.org/10.1002/elps.1150090912] [PMID: 3243248]
[13]
Aebersold RH, Teplow DB, Hood LE, Kent SB. Electroblotting onto activated glass. High efficiency preparation of proteins from analytical sodium dodecyl sulfate-polyacrylamide gels for direct sequence analysis. J Biol Chem 1986; 261(9): 4229-38.
[http://dx.doi.org/10.1016/S0021-9258(17)35652-1] [PMID: 3949810]
[14]
Celis JE, Ratz GP, Celis A. Secreted proteins from normal and SV40 transformed human MRC-5 fibroblasts: Toward establishing a database of human secreted proteins. Leukemia 1987; 1(10): 707-17.
[PMID: 2823013]
[15]
Andersen JS, Mann M. Functional genomics by mass spectrometry. FEBS Lett 2000; 480(1): 25-31.
[http://dx.doi.org/10.1016/S0014-5793(00)01773-7] [PMID: 10967324]
[16]
Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000; 405(6788): 837-46.
[http://dx.doi.org/10.1038/35015709] [PMID: 10866210]
[17]
Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312(5771): 212-7.
[http://dx.doi.org/10.1126/science.1124619] [PMID: 16614208]
[18]
Krishna RG, Wold F. Post-translational modification of proteins. Adv Enzymol Relat Areas Mol Biol 2006; 67: 265-98.
[http://dx.doi.org/10.1002/9780470123133.ch3] [PMID: 8322616]
[19]
Blackstock WP, Weir MP. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol 1999; 17(3): 121-7.
[http://dx.doi.org/10.1016/S0167-7799(98)01245-1] [PMID: 10189717]
[20]
Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. The yeast nuclear pore complex: Composition, architecture, and transport mechanism. J Cell Biol 2000; 148(4): 635-52.
[http://dx.doi.org/10.1083/jcb.148.4.635] [PMID: 10684247]
[21]
Jung E, Heller M, Sanchez JC, Hochstrasser DF. Proteomics meets cell biology: The establishment of subcellular proteomes. Electrophoresis 2000; 21(16): 3369-77.
[http://dx.doi.org/10.1002/1522-2683(20001001)21:16<3369::AID-ELPS3369>3.0.CO;2-7] [PMID: 11079557]
[22]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[23]
Canales RD, Luo Y, Willey JC, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 2006; 24(9): 1115-22.
[http://dx.doi.org/10.1038/nbt1236] [PMID: 16964225]
[24]
Cox J, Mann M. Is proteomics the new genomics. Cell 2007; 130(3): 395-8.
[http://dx.doi.org/10.1016/j.cell.2007.07.032] [PMID: 17693247]
[25]
Jungbauer A, Hahn R. Ion-Exchange Chromatography. Methods Enzymol 2009; 463: 349-71.
[http://dx.doi.org/10.1016/S0076-6879(09)63022-6] [PMID: 19892182]
[26]
Voedisch B, Thie H. Size exclusion chromatography InAntibody Engineering. Berlin, Heidelberg: Springer 2010; pp. 607-12.
[27]
Hage DS, Anguizola JA, Bi C, et al. Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments. J Pharm Biomed Anal 2012; 69: 93-105.
[http://dx.doi.org/10.1016/j.jpba.2012.01.004] [PMID: 22305083]
[28]
Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 2005; 51(12): 2415-8.
[http://dx.doi.org/10.1373/clinchem.2005.051532] [PMID: 16179424]
[29]
Kurien B, Scofield R. Western blotting. Methods 2006; 38(4): 283-93.
[http://dx.doi.org/10.1016/j.ymeth.2005.11.007] [PMID: 16483794]
[30]
Dunn MJ. Gel Electrophoresis of Proteins. (1st ed.), Oxford, UK: Elsevier BV, Butterworth Heinemann 1986.
[31]
Issaq HJ, Veenstra TD. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): Advances and perspectives. Biotechniques 2008; 44(5): 697-700, 700.
[http://dx.doi.org/10.2144/000112823] [PMID: 18474047]
[32]
Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005; 382(3): 669-78.
[http://dx.doi.org/10.1007/s00216-005-3126-3] [PMID: 15900442]
[33]
Sutandy FX, Qian J, Chen CS, Zhu H. Overview of protein microarrays. Curr Protoc Protein Sci. (1)Unit 27.1. 2013; Chapter 27: p.
[http://dx.doi.org/10.1002/0471140864.ps2701s72]
[34]
Yates JR III. A century of mass spectrometry: From atoms to proteomes. Nat Methods 2011; 8(8): 633-7.
[http://dx.doi.org/10.1038/nmeth.1659]
[35]
Smith JB. Peptide sequencing by Edman degradation.Encyclopedia of Life Sciences. Hoboken, NJ, USA: Wiley-Blackwell 2001.
[http://dx.doi.org/10.1038/npg.els.0002688]
[36]
Shiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 2006; 1(1): 139-45.
[http://dx.doi.org/10.1038/nprot.2006.22] [PMID: 17406225]
[37]
Ong SE, Mann M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol 2007; 359: 37-52.
[http://dx.doi.org/10.1007/978-1-59745-255-7_3] [PMID: 17484109]
[38]
Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007; 7(3): 340-50.
[http://dx.doi.org/10.1002/pmic.200600422] [PMID: 17177251]
[39]
Kroksveen AC, Jaffe JD, Aasebø E, et al. Quantitative proteomics suggests decrease in the secretogranin-1 cerebrospinal fluid levels during the disease course of multiple sclerosis. Proteomics 2015; 15(19): 3361-9.
[http://dx.doi.org/10.1002/pmic.201400142] [PMID: 26152395]
[40]
Lilley KS, Friedman DB. All about DIGE: Quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 2004; 1(4): 401-9.
[http://dx.doi.org/10.1586/14789450.1.4.401] [PMID: 15966837]
[41]
Minden JS. Two-dimensional difference gel electrophoresis. Methods Mol Biol 2012; 869: 287-304.
[http://dx.doi.org/10.1007/978-1-61779-821-4_24] [PMID: 22585495]
[42]
Han X, Aslanian A, Yates JR III. Mass spectrometry for proteomics. Curr Opin Chem Biol 2008; 12(5): 483-90.
[http://dx.doi.org/10.1016/j.cbpa.2008.07.024] [PMID: 18718552]
[43]
Chan JCY, Zhou L, Chan ECY. The isotope-coded affinity tag method for quantitative protein profile comparison and relative quantitation of cysteine redox modifications. Curr Protoc Protein Sci 21(1): 90-117.2015;
[http://dx.doi.org/10.1002/0471140864.ps2302s82]
[44]
Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1(5): 376-86.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200] [PMID: 12118079]
[45]
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry‐based protein–protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17(1): e8792.
[http://dx.doi.org/10.15252/msb.20188792] [PMID: 33434350]
[46]
Smyth MS, Martin JH. x Ray crystallography. Mol Pathol 2000; 53(1): 8-14.
[http://dx.doi.org/10.1136/mp.53.1.8] [PMID: 10884915]
[47]
Vihinen M. Bioinformatics in proteomics. Biomol Eng 2001; 18(5): 241-8.
[http://dx.doi.org/10.1016/S1389-0344(01)00099-5] [PMID: 11911091]
[48]
Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaíno JA. Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics 2015; 15(5-6): 930-50.
[http://dx.doi.org/10.1002/pmic.201400302] [PMID: 25158685]
[49]
Meric-Bernstam F, Akcakanat A, Chen H, et al. Influence of biospecimen variables on proteomic biomarkers in breast cancer. Clin Cancer Res 2014; 20(14): 3870-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1507] [PMID: 24895461]
[50]
Poste G. Bring on the biomarkers. Nature 2011; 469(7329): 156-7.
[http://dx.doi.org/10.1038/469156a] [PMID: 21228852]
[51]
Ellis MJ, Gillette M, Carr SA, et al. Connecting genomic alterations to cancer biology with proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov 2013; 3(10): 1108-12.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0219] [PMID: 24124232]
[52]
Faria SS, Morris CF, Silva AR, et al. A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front Oncol 2017.
[http://dx.doi.org/10.3389/fonc.2017.00013]
[53]
Lin YH, Eguez RV, Torralba MG, et al. Self-Assembled STrap for Global Proteomics and Salivary Biomarker Discovery. J Proteome Res 2019; 18(4): 1907-15.
[http://dx.doi.org/10.1021/acs.jproteome.9b00037] [PMID: 30848925]
[54]
Hanash S, Taguchi A. Application of proteomics to cancer early detection. Cancer J 2011; 17(6): 423-8.
[http://dx.doi.org/10.1097/PPO.0b013e3182383cab] [PMID: 22157286]
[55]
Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014; 515(7528): 572-6.
[http://dx.doi.org/10.1038/nature14001] [PMID: 25428506]
[56]
Chen F, Chandrashekar DS, Varambally S, Creighton CJ. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun 2019; 10(1): 5679.
[http://dx.doi.org/10.1038/s41467-019-13528-0] [PMID: 31831737]
[57]
Enroth S, Berggrund M, Lycke M, et al. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol 2019; 2(1): 221.
[http://dx.doi.org/10.1038/s42003-019-0464-9] [PMID: 31240259]
[58]
Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC. Proteomic analysis for the early detection and rational treatment of cancer—realistic hope. Ann Oncol 2005; 16(1): 16-22.
[http://dx.doi.org/10.1093/annonc/mdi004] [PMID: 15598930]
[59]
Nanjundan M, Byers LA, Carey MS, et al. Proteomic profiling identifies pathways dysregulated in non-small cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. J Thorac Oncol 2010; 5(12): 1894-904.
[http://dx.doi.org/10.1097/JTO.0b013e3181f2a266] [PMID: 21124077]
[60]
Shruthi B, Vinodhkumar P, Selvamani M. Proteomics: A new perspective for cancer. Adv Biomed Res 2016; 5(1): 67.
[http://dx.doi.org/10.4103/2277-9175.180636] [PMID: 27169098]
[61]
Chang L, Ni J, Beretov J, et al. Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach. Sci Rep 2017; 7(1): 41834.
[http://dx.doi.org/10.1038/srep41834] [PMID: 28225015]
[62]
Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. J Chromatogr Sci 2017; 55(2): 182-96.
[http://dx.doi.org/10.1093/chromsci/bmw167] [PMID: 28087761]
[63]
Reem M. Proteomics in cancer biomarkers discovery: Challenges and applications. Dis Markers 2015: 321370.2015;
[http://dx.doi.org/10.1155/2015/321370]
[64]
Donnelly N, Storchová Z. Dynamic karyotype, dynamic proteome: Buffering the effects of aneuploidy. Biochim Biophys Acta Mol Cell Res 2014; 1843(2): 473-81.
[http://dx.doi.org/10.1016/j.bbamcr.2013.11.017] [PMID: 24295790]
[65]
Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. science 319(5865): 916-9.2008;
[http://dx.doi.org/10.1126/science.1141448]
[66]
Adams J. The proteasome: A suitable antineoplastic target. Nat Rev Cancer 2004; 4(5): 349-60.
[http://dx.doi.org/10.1038/nrc1361] [PMID: 15122206]
[67]
Mosca R, Céol A, Aloy P. Interactome3D: Adding structural details to protein networks. Nat Methods 2013; 10(1): 47-53.
[http://dx.doi.org/10.1038/nmeth.2289] [PMID: 23399932]
[68]
Gulati S, Cheng TM, Bates PA. Cancer networks and beyond: Interpreting mutations using the human interactome and protein structure. Seminars in cancer biology 23(4): 219-26.2013;
[http://dx.doi.org/10.1016/j.semcancer.2013.05.002]
[69]
Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013; 310(17): 1842-50.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[70]
Zhang BL, Dong FL, Guo TW, Gu XH, Huang LY, Gao DS. MiRNAs mediate GDNF-induced proliferation and migration of glioma cells. Cell Physiol Biochem 2017; 44(5): 1923-38.
[http://dx.doi.org/10.1159/000485883] [PMID: 29224008]
[71]
Müller Bark J, Kulasinghe A, Chua B, Day BW, Punyadeera C. Circulating biomarkers in patients with glioblastoma. Br J Cancer 2020; 122(3): 295-305.
[http://dx.doi.org/10.1038/s41416-019-0603-6] [PMID: 31666668]
[72]
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11(7): 3425-44.
[PMID: 34354853]
[73]
Jobim FC, Schwartsmann G, Xavier NL, Uchoa DM, Saciloto M, Chemello N. [Expression of MMP-9 and VEGF in breast cancer: Correlation with other prognostic indicators]. Rev Bras Ginecol Obstet 2008; 30(6): 287-93.
[http://dx.doi.org/10.1590/S0100-72032008000600004] [PMID: 19142506]
[74]
Di H, Zhang X, Guo Y, et al. Silencing LDHA inhibits proliferation, induces apoptosis and increases chemosensitivity to temozolomide in glioma cells. Oncol Lett 2018; 15(4): 5131-6.
[http://dx.doi.org/10.3892/ol.2018.7932] [PMID: 29552147]
[75]
Eckerdt FD, Bell JB, Gonzalez C, et al. Combined PI3Kα-mTOR targeting of glioma stem cells. Sci Rep 10(1): 21873.2020;
[http://dx.doi.org/10.1038/s41598-020-78788-z]
[76]
McCarroll JA, Gan PP, Erlich RB, et al. TUBB3/βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res 2015; 75(2): 415-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2740] [PMID: 25414139]
[77]
Chen X, Yu C, Gao J, et al. A novel USP9X substrate TTK contributes to tumorigenesis in non-small-cell lung cancer. Theranostics 8(9): 2348-60.2018;
[http://dx.doi.org/10.7150/thno.22901]
[78]
Thu KL, Silvester J, Elliott MJ, et al. Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. Proc Natl Acad Sci USA 2018; 115(7): E1570-7.
[http://dx.doi.org/10.1073/pnas.1719577115] [PMID: 29378962]
[79]
Satpathy S, Krug K, Jean Beltran PM, et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021; 184(16): 4348-4371.e40.
[http://dx.doi.org/10.1016/j.cell.2021.07.016] [PMID: 34358469]
[80]
Boccellino M, Pinto F, Ieluzzi V, et al. Proteomics analysis of human serum of patients with non‐small‐cell lung cancer reveals proteins as diagnostic biomarker candidates. J Cell Physiol 2019; 234(12): 23798-806.
[http://dx.doi.org/10.1002/jcp.28948] [PMID: 31180588]
[81]
Patz EF Jr, Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE II. Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol 2007; 25(35): 5578-83.
[http://dx.doi.org/10.1200/JCO.2007.13.5392] [PMID: 18065730]
[82]
Zhou Tran Y, Minozada R, Cao X, et al. Immediate Adaptation Analysis Implicates BCL6 as an EGFR-TKI Combination Therapy Target in NSCLC. Mol Cell Proteomics 2020; 19(6): 928-43.
[http://dx.doi.org/10.1074/mcp.RA120.002036] [PMID: 32234966]
[83]
Araki K, Mikami T, Yoshida T, et al. High expression of HSP47 in ulcerative colitis-associated carcinomas: Proteomic approach. Br J Cancer 2009; 101(3): 492-7.
[http://dx.doi.org/10.1038/sj.bjc.6605163] [PMID: 19603022]
[84]
Berney CR, Fisher RJ, Yang J, Russell PJ, Crowe PJ. Protein markers in colorectal cancer: Predictors of liver metastasis. Ann Surg 1999; 230(2): 179-84.
[http://dx.doi.org/10.1097/00000658-199908000-00007] [PMID: 10450731]
[85]
Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful. Clin Chem 2001; 47(4): 624-30.
[http://dx.doi.org/10.1093/clinchem/47.4.624] [PMID: 11274010]
[86]
Hatakeyama K, Wakabayashi-Nakao K, Ohshima K, Sakura N, Yamaguchi K, Mochizuki T. Novel protein isoforms of carcinoembryonic antigen are secreted from pancreatic, gastric and colorectal cancer cells. BMC Res Notes 6: 381.2013;
[http://dx.doi.org/10.1186/1756-0500-6-381]
[87]
Offenberg H, Brünner N, Mansilla F, Ørntoft Torben F, Birkenkamp-Demtroder K. TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles. Mol Oncol 2008; 2(3): 233-40.
[http://dx.doi.org/10.1016/j.molonc.2008.06.003] [PMID: 19383344]
[88]
Pan S, Aebersold R, Chen R, et al. Mass spectrometry based targeted protein quantification: Methods and applications. J Proteome Res 2009; 8(2): 787-97.
[http://dx.doi.org/10.1021/pr800538n] [PMID: 19105742]
[89]
Ghosh D, Yu H, Tan XF, et al. Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 2011; 10(10): 4373-87.
[http://dx.doi.org/10.1021/pr2005617] [PMID: 21854069]
[90]
McIntosh GH. Influence of selenised dairy proteins on biomarkers of colon cancer risk. Nutr Diet 2008; 65: S33-6.
[http://dx.doi.org/10.1111/j.1747-0080.2008.00258.x]
[91]
Bi X, Lin Q, Foo TW, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: Mechanism of tumorigenesis. Mol Cell Proteomics 2006; 5(6): 1119-30.
[http://dx.doi.org/10.1074/mcp.M500432-MCP200] [PMID: 16554294]
[92]
Coppedè F. Epigenetic biomarkers of colorectal cancer: Focus on DNA methylation. Cancer Lett 2014; 342(2): 238-47.
[http://dx.doi.org/10.1016/j.canlet.2011.12.030] [PMID: 22202641]
[93]
Zhang Y, Ye Y, Shen D, et al. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Sci 2010; 101(2): 523-9.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01424.x] [PMID: 19930159]
[94]
Saleem S, Tariq S, Aleem I, et al. Proteomics analysis of colon cancer progression. Clin Proteomics 2019; 16(1): 44.
[http://dx.doi.org/10.1186/s12014-019-9264-y] [PMID: 31889941]
[95]
Quesada-Calvo F, Massot C, Bertrand V, et al. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages. Clin Proteomics 2017; 14(1): 9.
[http://dx.doi.org/10.1186/s12014-017-9143-3] [PMID: 28344541]
[96]
Besson D, Pavageau AH, Valo I, et al. A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol Cell Proteomics 10(12): M111.009712.2011;
[http://dx.doi.org/10.1074/mcp.M111.009712]
[97]
Yamamoto T, Kudo M, Peng WX, et al. Identification of aldolase A as a potential diagnostic biomarker for colorectal cancer based on proteomic analysis using formalin-fixed paraffin-embedded tissue. Tumour Biol 2016; 37(10): 13595-606.
[http://dx.doi.org/10.1007/s13277-016-5275-8] [PMID: 27468721]
[98]
Torres S, García-Palmero I, Marín-Vicente C, et al. Proteomic Characterization of Transcription and Splicing Factors Associated with a Metastatic Phenotype in Colorectal Cancer. J Proteome Res 2018; 17(1): 252-64.
[http://dx.doi.org/10.1021/acs.jproteome.7b00548] [PMID: 29131639]
[99]
Michels BE, Mosa MH, Grebbin BM, et al. Human colon organoids reveal distinct physiologic and oncogenic Wnt responses. J Exp Med 2019; 216(3): 704-20.
[http://dx.doi.org/10.1084/jem.20180823] [PMID: 30792186]
[100]
Rahman SMJ, Ji X, Zimmerman LJ, et al. The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer. JCI Insight 1(19): e88814.2016;
[http://dx.doi.org/10.1172/jci.insight.88814]
[101]
Chang YH, Lee SH, Liao IC, Huang SH, Cheng HC, Liao PC. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol Cell Proteomics 2012; 11(11): 1320-39.
[http://dx.doi.org/10.1074/mcp.M112.017384] [PMID: 22896658]
[102]
Min H, Han D, Kim Y, Cho JY, Jin J, Kim Y. Label-free quantitative proteomics and N-terminal analysis of human metastatic lung cancer cells. Mol Cells 2014; 37(6): 457-66.
[http://dx.doi.org/10.14348/molcells.2014.0035] [PMID: 24805778]
[103]
Pal J, Becker AC, Dhamija S, et al. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non‐small cell lung cancer. Mol Oncol 2021; 15(7): 1797-817.
[http://dx.doi.org/10.1002/1878-0261.12973] [PMID: 33934493]
[104]
Mischak H, Ioannidis JPA, Argiles A, et al. Implementation of proteomic biomarkers: Making it work. Eur J Clin Invest 2012; 42(9): 1027-36.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02674.x] [PMID: 22519700]
[105]
Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 2011; 8(3): 142-50.
[http://dx.doi.org/10.1038/nrclinonc.2010.220] [PMID: 21364687]
[106]
Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin Proteomics 2013; 10(1): 13.
[http://dx.doi.org/10.1186/1559-0275-10-13] [PMID: 24088261]
[107]
Armstrong PB, Armstrong MT. Intercellular invasion and the organizational stability of tissues: A role for fibronectin. Biochim Biophys Acta Rev Cancer 2000; 1470(2): O9-O20.
[http://dx.doi.org/10.1016/S0304-419X(00)00003-2] [PMID: 10722930]
[108]
Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med 2002; 347(20): 1593-603.
[http://dx.doi.org/10.1056/NEJMra021902] [PMID: 12432047]
[109]
Soto AM, Sonnenschein C. The somatic mutation theory of cancer: Growing problems with the paradigm. BioEssays 2004; 26(10): 1097-107.
[http://dx.doi.org/10.1002/bies.20087] [PMID: 15382143]
[110]
Brabletz T, Jung A, Reu S, et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98(18): 10356-61.
[http://dx.doi.org/10.1073/pnas.171610498] [PMID: 11526241]
[111]
Gupta GP, Massagué J. Cancer metastasis: Building a framework. Cell 2006; 127(4): 679-95.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[112]
Lee SI, Kim DK, Seo EJ, et al. Role of Krüppel-like factor 4 in the maintenance of Chemoresistance of anaplastic thyroid Cancer. Thyroid 2017; 27(11): 1424-32.
[http://dx.doi.org/10.1089/thy.2016.0414] [PMID: 28920531]
[113]
Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 2019; 179(2): 561-577.e22.
[http://dx.doi.org/10.1016/j.cell.2019.08.052] [PMID: 31585088]
[114]
Kottakis F, Nicolay BN, Roumane A, et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 2016; 539(7629): 390-5.
[http://dx.doi.org/10.1038/nature20132] [PMID: 27799657]
[115]
Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 2019; 569(7758): 723-8.
[http://dx.doi.org/10.1038/s41586-019-1173-8] [PMID: 31043742]
[116]
Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano S. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 2008; 27(5): 684-93.
[http://dx.doi.org/10.1038/sj.onc.1210697] [PMID: 17684486]
[117]
Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014; 508(7494): 113-7.
[http://dx.doi.org/10.1038/nature13187] [PMID: 24695311]
[118]
Koren S, Bentires-Alj M. Breast tumor heterogeneity: Source of fitness, hurdle for therapy. Mol Cell 2015; 60(4): 537-46.
[http://dx.doi.org/10.1016/j.molcel.2015.10.031] [PMID: 26590713]
[119]
Obradovic MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM. Glucocorticoids promote breast cancer metastasis. Nature 2019; 567: 540-4.
[http://dx.doi.org/10.1038/s41586-019-1019-4]
[120]
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 2019; 178(2): 316-29.
[http://dx.doi.org/10.1016/j.cell.2019.06.003]
[121]
Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS. Drug rechallenge and treatment beyond progression–implications for drug resistance. Nat Rev Clin Oncol 2013; 10(10): 571-87.
[http://dx.doi.org/10.1038/nrclinonc.2013.158]
[122]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2(2): 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10]
[123]
Le Large TYS, El Hassouni B, Funel N, et al. Proteomic analysis of gemcitabine-resistant pancreatic cancer cells reveals that microtubule-associated protein 2 upregulation associates with taxane treatment. Ther Adv Med Oncol 2019; 11
[http://dx.doi.org/10.1177/1758835919841233] [PMID: 31205498]
[124]
Shenoy A, Belugali Nataraj N, Perry G, et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol 2020; 16(9): e9443.
[http://dx.doi.org/10.15252/msb.20209443] [PMID: 32960509]
[125]
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro CM. Alterations in the global proteome and phosphoproteome in third generation EGFR TKI resistance reveal drug targets to circumvent resistance. Cancer Res 2021; 81(11): 3051-66.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2435]
[126]
Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 2018: 1-16.
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[127]
Jeon SA, Kim DW, Lee DB, Cho JY. NEDD4 plays roles in the maintenance of breast cancer stem cell characteristics. Front Oncol 2020; 10: 1680.
[http://dx.doi.org/10.3389/fonc.2020.01680] [PMID: 33014839]
[128]
Koh EY, You JE, Jung SH, Kim PH. Biological functions and identification of novel biomarker expressed on the surface of breast cancer-derived cancer stem cells viaproteomic analysis. Mol Cells 2020; 43(4): 384-96.
[http://dx.doi.org/10.14348/molcells.2020.2230]
[129]
Raffel S, Klimmeck D, Falcone M, Demir A, Pouya A. Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood 2020; 136(13): 1507-19.
[http://dx.doi.org/10.1182/blood.2019003654]
[130]
Brandi J, Dando I, Pozza ED, Biondani G, Jenkins R. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. J Proteomics 2017; 150: 310-22.
[http://dx.doi.org/10.1016/j.jprot.2016.10.002]
[131]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z]
[132]
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: Microenvironment-targeting combinations. 2020; 30(6): 507-19.
[http://dx.doi.org/10.1038/s41422-020-0337-2]
[133]
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 2020; 17: 807-21.
[http://dx.doi.org/10.1038/s41423-020-0488-6]
[134]
Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 2019; 179(1): 236-50.
[http://dx.doi.org/10.1016/j.cell.2019.08.012]
[135]
Chae YK, Kim WB, Davis AA, Park LC, Anker JF, Simon NI. Mass spectrometry-based serum proteomic signature as a potential biomarker for survival in patients with non-small cell lung cancer receiving immunotherapy. Transl Lung Cancer Res 2020; 9(4): 1015-28.
[http://dx.doi.org/10.21037/tlcr-20-148]
[136]
Peng DH, Rodriguez BL, Diao L, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat Commun 2020; 11(1): 4520.
[http://dx.doi.org/10.1038/s41467-020-18298-8] [PMID: 32908154]
[137]
Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 2018; 46(D1): D956-63.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[138]
Erhart F, Hackl M, Hahne H, et al. Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. NPJ Vaccines 2020; 5(1): 5.
[http://dx.doi.org/10.1038/s41541-019-0149-x] [PMID: 31969991]
[139]
Clark DJ, Dhanasekaran SM, Petralia F, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 2019; 179(4): 964-983.e31.
[http://dx.doi.org/10.1016/j.cell.2019.10.007] [PMID: 31675502]
[140]
Dou Y, Kawaler EA, Cui Zhou D, et al. Proteogenomic characterization of endometrial carcinoma. Cell 2020; 180(4): 729-748.e26.
[http://dx.doi.org/10.1016/j.cell.2020.01.026] [PMID: 32059776]
[141]
Ahn Gook Pharmaceutical Co Ltd. Predictive markers for ovarian cancer. CN101855553B, 2014.
[142]
Private placement protein body Operation Co.,Ltd.. Cancer of pancreas biomarker and application thereof. CN106198980B, 2018.
[143]
Patel P, Peterson AC, Yauch RL, Zha J. Biomarkers and methods of treatment. EP2612151B1, 2017.
[144]
Tajana Turnogorats-Jasvicta Jana Turnogorats-Jasvicto Mash Radon't Mash Radon. Pancreatic cancer biomarker. JP6786499B2, 2020.
[145]
Valorai Dorman Yukhtasilo Hornungheader O'Neill Mark MyglarisDavid SpezlerDavid Spegler. Oligonucleotide probes and uses thereof. KR20190008843A, 2019.
[146]
Valdimir Podust Zhen Zhang Eric T. Fung Robert Bast Daniel W. Chan Jin Song. Biomarker for ovarian and endometrial cancer: Hepcidin. US7510842, 2009.
[147]
Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform 2018; 19(2): 286-302.
[http://dx.doi.org/10.1093/bib/bbw114] [PMID: 27881428]
[148]
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to discover regulators in diseases. Int J Mol Sci 2019; 20(16): 3893.
[http://dx.doi.org/10.3390/ijms20163893] [PMID: 31405033]
[149]
Kim M, Tagkopoulos I. Data integration and predictive modeling methods for multi-omics datasets. Mol Omics 2018; 14: 8-25.
[http://dx.doi.org/10.1039/C7MO00051K]
[150]
Pinu FR, Beale DJ, Paten AM, et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 2019; 9(4): 76.
[http://dx.doi.org/10.3390/metabo9040076] [PMID: 31003499]
[151]
Wu C, Zhou F, Ren J, Li X, Jiang Y, Ma S. A selective review of multi-level omics data integration using variable selection. High Throughput 2019; 8(1): 4.
[http://dx.doi.org/10.3390/ht8010004] [PMID: 30669303]
[152]
Béal J, Montagud A, Traynard P, Barillot E, Calzone L. Personalization of logical models with multi-omics data allows clinical stratification of patients. Front Physiol 2019; 9: 1965.
[http://dx.doi.org/10.3389/fphys.2018.01965] [PMID: 30733688]
[153]
Kellogg RA, Dunn J, Snyder MP. Personal omics for precision health. Circ Res 2018; 122(9): 1169-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310909]
[154]
Hudson TJ, Anderson W, Artez A, Barker AD, Bell C. International network of cancer genome projects. Nature 2010; 464(7291): 993-8.
[http://dx.doi.org/10.1038/nature08987]
[155]
Zhang J, Baran J, Cros A, et al. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford) 2011; 2011(0): bar026.
[http://dx.doi.org/10.1093/database/bar026] [PMID: 21930502]
[156]
Myers SA, Rhoads A, Cocco AR, Peckner R, Haber AL, Schweitzer LD. Streamlined protocol for deep proteomic profiling of FAC-sorted cells and its application to freshly isolated murine immune cells. Mol Cell Proteomics 2019; 18(5): 995-1009.
[http://dx.doi.org/10.1074/mcp.RA118.001259]
[157]
Yi L, Tsai CF, Dirice E, Swensen AC, Chen J. Boosting to Amplify Signal with Isobaric Labeling (BASIL) strategy for comprehensive quantitative phosphoproteomic characterization of small populations of cells. Anal Chem 2019; 91(9): 5794-801.
[http://dx.doi.org/10.1021/acs.analchem.9b00024]
[158]
Eltahir M, Isaksson J, Mattsson JSM, et al. Plasma Proteomic Analysis in Non-Small Cell Lung Cancer Patients Treated with PD-1/PD-L1 Blockade. Cancers 2021; 13(13): 3116.
[http://dx.doi.org/10.3390/cancers13133116] [PMID: 34206510]
[159]
Berggrund M, Enroth S, Lundberg M, et al. Identification of Candidate Plasma Protein Biomarkers for Cervical Cancer Using the Multiplex Proximity Extension Assay. Mol Cell Proteomics 2019; 18(4): 735-43.
[http://dx.doi.org/10.1074/mcp.RA118.001208] [PMID: 30692274]
[160]
Le Cun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539]
[161]
Shen J, Qi L, Zou Z, et al. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases. Sci Rep 2020; 10(1): 4435.
[http://dx.doi.org/10.1038/s41598-020-61298-3] [PMID: 32157118]
[162]
Altschuler SJ, Wu LF. Cellular heterogeneity: Do differences make a difference? Cell 2010; 141(4): 559-63.
[http://dx.doi.org/10.1016/j.cell.2010.04.033]
[163]
Wang D, Bodovitz S. Single cell analysis: The new frontier in omics. Trends Biotechnol 2010; 28(6): 281-90.
[http://dx.doi.org/10.1016/j.tibtech.2010.03.002]
[164]
Hughes AJ, Spelke DP, Xu Z, Kang CC, Schaffer DV, Herr AE. Single-cell western blotting. Nat Methods 2014; 11(7): 749-55.
[http://dx.doi.org/10.1038/nmeth.2992]
[165]
Lo CA, Kays I, Emran F, Lin TJ, Cvetkovska V. Quantification of protein levels in single living cells. Cell Rep 2015; 13(11): 2634-44.
[http://dx.doi.org/10.1016/j.celrep.2015.11.048]
[166]
Budnik B, Levy E, Harmange G, Slavov N. SCoPE-MS: Mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 2018; 19(1): 161.
[http://dx.doi.org/10.1186/s13059-018-1547-5] [PMID: 30343672]
[167]
Zhang L, Xiao H, Zhou H, Santiago S, Lee JM. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 2012; 69(19): 3341-50.
[http://dx.doi.org/10.1007/s00018-012-1027-0]
[168]
Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41(Database issue): D955-61.
[http://dx.doi.org/10.1093/nar/gks1111]
[169]
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57-63.
[http://dx.doi.org/10.1038/nrg2484]
[170]
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct Target Ther 2020; 5(1): 90.
[http://dx.doi.org/10.1038/s41392-020-0196-9] [PMID: 32532965]
[171]
Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM. Metadegradomics: Toward in vivoquantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol Cell Proteomics 2008; 7(10): 1925-51.
[http://dx.doi.org/10.1074/mcp.R800012-MCP200]
[172]
Mun DG, Bhin J, Kim S, Kim H, Jung JH. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 2019; 35(1): 111-24.
[http://dx.doi.org/10.1016/j.ccell.2018.12.003]
[173]
Sinha A, Huang V, Livingstone J, Wang J, Fox NS. The proteogenomic landscape of curable prostate cancer. Cancer Cell 2019; 35(3): 414-27.
[http://dx.doi.org/10.1016/j.ccell.2019.02.005]
[174]
Boja E, Težak Ž, Zhang B, et al. Right data for right patient—a precisionFDA NCI–CPTAC Multi-omics Mislabeling Challenge. Nat Med 2018; 24(9): 1301-2.
[http://dx.doi.org/10.1038/s41591-018-0180-x] [PMID: 30194412]
[175]
Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 2019; 177(4): 1035-1049.e19.
[http://dx.doi.org/10.1016/j.cell.2019.03.030] [PMID: 31031003]
[176]
Office IDAC, Committee IIDA. Analysis of five years of controlled access and data sharing compliance at the international cancer genome consortium. Nat Genet 2016; 48(3): 224-5.
[http://dx.doi.org/10.1038/ng.34article-title99]
[177]
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495: 611-24.
[http://dx.doi.org/10.1016/j.cca.2019.06.006]
[178]
Tong M, Yu C, Zhan D, Zhang M, Zhen B. Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: reanalysis of CPTAC ovarian cancer. EBioMedicine 2019; 40: 305-17.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.039]
[179]
Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A. The international cancer genome consortium data portal. Nat Biotechnol 2019; 37(4): 367-9.
[http://dx.doi.org/10.1038/s41587-019-0055-9]
[180]
Kwon YW, Jo HS, Bae S, et al. Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery. Front Med 2021; 8: 747333.
[http://dx.doi.org/10.3389/fmed.2021.747333] [PMID: 34631760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy