Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanoparticle Delivery of Active Traditional Chinese Medicine Ingredients: A New Strategy for the Treatment of Liver Cancer

Author(s): Miaodong Wang, Peichun Peng, Zeshan Chen and Xin Deng*

Volume 24, Issue 13, 2023

Published on: 10 April, 2023

Page: [1630 - 1644] Pages: 15

DOI: 10.2174/1389201024666230313151316

Price: $65

Abstract

The precise treatment of liver cancer is receiving much research attention. Surgery, chemoradiotherapy, and other methods remain the mainstream of this treatment, but many chemotherapeutic drugs used to treat advanced liver cancer cause adverse reactions and have unstable efficiencies. Active ingredients used in traditional Chinese medicine (TCM) have been examined widely in anti-cancer research due to their advantages of multi-pathway targeting and rich pharmacological effects. However, these active components have poor water solubility, bioavailability, and targeting efficiency. Nanomedicine has been applied to improve the efficacy of TCM ingredients in the treatment of liver cancer. Nanoparticles (NPs) show great potential in this context due to their excellent bioavailability, high controlled agent release efficiency, and clear targeting. This paper reviews the application of NPs loaded with active TCM ingredients in the treatment of liver cancer, with the aim of facilitating new vector development and improving the precision treatment of liver cancer.

Keywords: Traditional Chinese medicine, nanoparticle, liver cancer, precise treatment, bioavailability, chemoradiotherapy.

Graphical Abstract
[1]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[2]
McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology, 2021, 73(S1), 4-13.
[http://dx.doi.org/10.1002/hep.31288]
[3]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[4]
Wei, D.; Yang, H.; Zhang, Y.; Zhang, X.; Wang, J.; Wu, X.; Chang, J. Nano-traditional Chinese medicine: A promising strategy and its recent advances. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(16), 2973-2994.
[http://dx.doi.org/10.1039/D2TB00225F] [PMID: 35380567]
[5]
Ma, Z.; Zhang, B.; Fan, Y.; Wang, M.; Kebebe, D.; Li, J.; Liu, Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed. Pharmacother., 2019, 117, 109128.
[http://dx.doi.org/10.1016/j.biopha.2019.109128] [PMID: 31234023]
[6]
Zhang, J.; Zhang, W.; Yang, M.; Zhu, W.; Li, M.; Liang, A.; Zhang, H.; Fang, T.; Zhang, X.E.; Li, F. Passive cancer targeting with a viral nanoparticle depends on the stage of tumorigenesis. Nanoscale, 2021, 13(26), 11334-11342.
[http://dx.doi.org/10.1039/D1NR01619A] [PMID: 34165123]
[7]
Zhang, H.; Dong, S.; Li, Z.; Feng, X.; Xu, W.; Tulinao, C.M.S.; Jiang, Y.; Ding, J. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J. Pharm. Sci., 2020, 15(4), 397-415.
[http://dx.doi.org/10.1016/j.ajps.2019.11.004] [PMID: 32952666]
[8]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[9]
Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 2020, 10(17), 7921-7924.
[http://dx.doi.org/10.7150/thno.49577] [PMID: 32685029]
[10]
Sebak, A.A.; El-Shenawy, B.M.; El-Safy, S.; El-Shazly, M. From passive targeting to personalized nanomedicine: Multidimensional insights on nanoparticles’ interaction with the tumor microenvironment. Curr. Pharm. Biotechnol., 2021, 22(11), 1444-1465.
[http://dx.doi.org/10.2174/1389201021666201211103856] [PMID: 33308126]
[11]
Elnaggar, M.H.; Abushouk, A.I.; Hassan, A.H.E.; Lamloum, H.M.; Benmelouka, A.; Moatamed, S.A.; Abd-Elmegeed, H.; Attia, S.; Samir, A.; Amr, N.; Johar, D.; Zaky, S. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin. Cancer Biol., 2021, 69, 91-99.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.016] [PMID: 31421265]
[12]
He, K.; Wei, Y.; Zhang, Z.; Chen, H.; Yuan, B.; Pang, H.B.; Yang, K. Membrane-curvature-mediated co-endocytosis of bystander and functional nanoparticles. Nanoscale, 2021, 13(21), 9626-9633.
[http://dx.doi.org/10.1039/D1NR01443A] [PMID: 34008687]
[13]
Dutta, B.; Barick, K.C.; Hassan, P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci., 2021, 296, 102509.
[http://dx.doi.org/10.1016/j.cis.2021.102509] [PMID: 34455211]
[14]
Yu, C.; Li, L.; Hu, P.; Yang, Y.; Wei, W.; Deng, X.; Wang, L.; Tay, F.R.; Ma, J. Recent advances in stimulus‐responsive nanocarriers for gene therapy. Adv. Sci., 2021, 8(14), 2100540.
[http://dx.doi.org/10.1002/advs.202100540] [PMID: 34306980]
[15]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[16]
Kiaie, S.H.; Mojarad-Jabali, S.; Khaleseh, F.; Allahyari, S.; Taheri, E.; Zakeri-Milani, P.; Valizadeh, H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int. J. Pharm., 2020, 581, 119269.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[17]
Zhu, M.; Shi, X.; Gong, Z.; Su, Q.; Yu, R.; Wang, B.; Yang, T.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner. Pharmacol. Res., 2020, 158, 104868.
[http://dx.doi.org/10.1016/j.phrs.2020.104868] [PMID: 32407961]
[18]
Zhang, X.; Lin, C.; Lu, A.; Lin, G.; Chen, H.; Liu, Q.; Yang, Z.; Zhang, H. Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Deliv., 2017, 24(1), 986-998.
[http://dx.doi.org/10.1080/10717544.2017.1340361] [PMID: 28644728]
[19]
Yu, L.; Wang, Z.; Mo, Z.; Zou, B.; Yang, Y.; Sun, R.; Ma, W.; Yu, M.; Zhang, S.; Yu, Z. Synergetic delivery of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy. Acta Pharm. Sin. B, 2021, 11(7), 2004-2015.
[http://dx.doi.org/10.1016/j.apsb.2021.02.001] [PMID: 34386334]
[20]
Zheng, Y.; Kong, F.; Liu, S.; Liu, X.; Pei, D.; Miao, X. Membrane protein-chimeric liposome-mediated delivery of triptolide for targeted hepatocellular carcinoma therapy. Drug Deliv., 2021, 28(1), 2033-2043.
[http://dx.doi.org/10.1080/10717544.2021.1983072] [PMID: 34569906]
[21]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[22]
Prozeller, D.; Rosenauer, C.; Morsbach, S.; Landfester, K. Immunoglobulins on the surface of differently charged polymer nanoparticles. Biointerphases, 2020, 15(3), 031009.
[http://dx.doi.org/10.1116/6.0000139] [PMID: 32486649]
[23]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[24]
Chen, X.; Yi, L.; Yu, Z.; Gao-wei, L. Formulation, characterization and evaluation of curcumin-loaded PLGA-TPGS nanoparticles for liver cancer treatment. Drug Des. Devel. Ther., 2019, 13, 3569-3578.
[http://dx.doi.org/10.2147/DDDT.S211748] [PMID: 31802845]
[25]
Han, Z.; Liu, S.; Lin, H.; Trivett, A.L.; Hannifin, S.; Yang, D.; Oppenheim, J.J. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol. Immunother., 2019, 68(7), 1073-1085.
[http://dx.doi.org/10.1007/s00262-019-02338-4] [PMID: 31161238]
[26]
Nie, X.; Liu, Y.; Li, M.; Yu, X.; Yuan, W.; Huang, S.; Ren, D.; Wang, Y.; Wang, Y. SP94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS Pharm. Sci. Tech., 2020, 21(4), 124.
[http://dx.doi.org/10.1208/s12249-020-01655-7] [PMID: 32342227]
[27]
Tian, Y.; Chu, Q.; Xu, H.; Gao, M.; Guan, X.; Liu, H.; Deng, S.; Huo, X.; Liu, K.; Ma, X. Liver-targeting resibufogenin-loaded poly(lactic-co-glycolic acid)-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy. Int. J. Nanomedicine, 2016, 11, 449-463.
[http://dx.doi.org/10.2147/IJN.S93541] [PMID: 26869788]
[28]
Ghosh, B.; Biswas, S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release, 2021, 332, 127-147.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[29]
Inoue, Y.; Matsumoto, Y.; Toh, K.; Miyano, K.; Cabral, H.; Igarashi, K.; Iwasaki, S.; Kataoka, K.; Yamasoba, T. Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. J. Control. Release, 2021, 329, 63-75.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.063] [PMID: 33278478]
[30]
Zhang, Z.; Yang, L.; Hou, J.; Xia, X.; Wang, J.; Ning, Q.; Jiang, S. Promising positive liver targeting delivery system based on arabinogalactan-anchored polymeric micelles of norcantharidin. Artif Cells Nanomed Biotechnol, 2018, 46(S3), S630-S640.
[http://dx.doi.org/10.1080/21691401.2018.1505742]
[31]
Yao, H.; Zhao, J.; Wang, Z.; Lv, J.; Du, G.; Jin, Y.; Zhang, Y.; Song, S.; Han, G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: An effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf. B Biointerfaces, 2020, 196, 111285.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111285] [PMID: 32771818]
[32]
Zhang, D.M.; Liu, J.S.; Deng, L.J.; Chen, M.F.; Yiu, A.; Cao, H.H.; Tian, H.Y.; Fung, K.P.; Kurihara, H.; Pan, J.X.; Ye, W.C. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis, 2013, 34(6), 1331-1342.
[http://dx.doi.org/10.1093/carcin/bgt060] [PMID: 23393227]
[33]
Yuan, X.; Xie, Q.; Su, K.; Li, Z.; Dong, D.; Wu, B. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles. Int. J. Nanomedicine, 2017, 12, 4981-4989.
[http://dx.doi.org/10.2147/IJN.S139128] [PMID: 28761339]
[34]
Dai, T.; He, W.; Yao, C.; Ma, X.; Ren, W.; Mai, Y.; Wu, A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater. Sci., 2020, 8(14), 3784-3799.
[http://dx.doi.org/10.1039/D0BM00196A] [PMID: 32469010]
[35]
Yoon, H.Y.; Jeon, S.; You, D.G.; Park, J.H.; Kwon, I.C.; Koo, H.; Kim, K. Inorganic nanoparticles for image-guided therapy. Bioconjug. Chem., 2017, 28(1), 124-134.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00512] [PMID: 27788580]
[36]
Taghizadeh, S.; Alimardani, V.; Roudbali, P.L.; Ghasemi, Y.; Kaviani, E. Gold nanoparticles application in liver cancer. Photodiagn. Photodyn. Ther., 2019, 25, 389-400.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.027] [PMID: 30684673]
[37]
Liang, J.; Li, H.; Chen, J.; He, L.; Du, X.; Zhou, L.; Xiong, Q.; Lai, X.; Yang, Y.; Huang, S.; Hou, S. Dendrobium officinale polysaccharides alleviate colon tumorigenesis viarestoring intestinal barrier function and enhancing anti-tumor immune response. Pharmacol. Res., 2019, 148, 104417.
[http://dx.doi.org/10.1016/j.phrs.2019.104417] [PMID: 31473343]
[38]
Liu, Y.; Yang, L.; Zhang, Y.; Liu, X.; Wu, Z.; Gilbert, R.G.; Deng, B.; Wang, K. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism viaglucagon-mediated signaling pathways and modifying liver-glycogen structure. J. Ethnopharmacol., 2020, 248, 112308.
[http://dx.doi.org/10.1016/j.jep.2019.112308] [PMID: 31622745]
[39]
Xing, S.; Yu, W.; Zhang, X.; Luo, Y.; Lei, Z.; Huang, D.; Lin, J.; Huang, Y.; Huang, S.; Nong, F.; Zhou, C.; Wei, G. Isoviolanthin extracted from dendrobium officinale reverses TGF-β1-mediated epithelial–mesenchymal transition in hepatocellular carcinoma cells via deactivating the TGF-β/Smad and PI3K/Akt/mTOR signaling pathways. Int. J. Mol. Sci., 2018, 19(6), 1556.
[http://dx.doi.org/10.3390/ijms19061556] [PMID: 29882900]
[40]
Zhao, W.; Li, J.; Zhong, C.; Zhang, X.; Bao, Y. Green synthesis of gold nanoparticles from Dendrobium officinale and its anticancer effect on liver cancer. Drug Deliv., 2021, 28(1), 985-994.
[http://dx.doi.org/10.1080/10717544.2021.1921079] [PMID: 34042555]
[41]
Wang, P.; Yang, J.; Zhu, Z.; Zhang, X. Marsdenia tenacissima: A review of traditional uses, phytochemistry and pharmacology. Am. J. Chin. Med., 2018, 46(7), 1449-1480.
[http://dx.doi.org/10.1142/S0192415X18500751] [PMID: 30284470]
[42]
Wang, X.; Yan, Y.; Chen, X.; Zeng, S.; Qian, L.; Ren, X.; Wei, J.; Yang, X.; Zhou, Y.; Gong, Z.; Xu, Z. The antitumor activities of Marsdenia tenacissima. Front. Oncol., 2018, 8, 473.
[http://dx.doi.org/10.3389/fonc.2018.00473] [PMID: 30406035]
[43]
Lin, S.; Sheng, Q.; Ma, X.; Li, S.; Xu, P.; Dai, C.; Wang, M.; Kang, H.; Dai, Z. Marsdenia tenacissima extract induces autophagy and apoptosis of hepatocellular cells via MIF/mToR signaling. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/7354700] [PMID: 35280512]
[44]
Li, L.; Zhang, W.; Desikan, S.V.D.; Cao, G. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3029-3036.
[http://dx.doi.org/10.1080/21691401.2019.1642902] [PMID: 31328556]
[45]
Zhang, J.; Wen, C.; Duan, Y.; Zhang, H.; Ma, H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol., 2019, 132, 906-914.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.020] [PMID: 30954592]
[46]
Fan, H.B.; Zou, Y.; Han, Q.; Zheng, Q.W.; Liu, Y.L.; Guo, L.Q.; Lin, J.F. Cordyceps militaris Immunomodulatory protein promotes the phagocytic ability of macrophages through the TLR4-NF-κB Pathway. Int. J. Mol. Sci., 2021, 22(22), 12188.
[http://dx.doi.org/10.3390/ijms222212188] [PMID: 34830071]
[47]
Ji, Y.; Cao, Y.; Song, Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2737-2745.
[http://dx.doi.org/10.1080/21691401.2019.1629952] [PMID: 31304798]
[48]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[49]
Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine, 2018, 13(15), 1939-1962.
[http://dx.doi.org/10.2217/nnm-2018-0076] [PMID: 30152253]
[50]
Gisbert-Garzarán, M.; Lozano, D.; Vallet-Regí, M. Mesoporous silica nanoparticles for targeting subcellular organelles. Int. J. Mol. Sci., 2020, 21(24), 9696.
[http://dx.doi.org/10.3390/ijms21249696] [PMID: 33353212]
[51]
Liu, L.; Fan, J.; Ai, G.; Liu, J.; Luo, N.; Li, C.; Cheng, Z. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol. Res., 2019, 52(1), 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[52]
Chen, Y.X.; Gao, Q.Y.; Zou, T.H.; Wang, B.M.; Liu, S.D.; Sheng, J.Q.; Ren, J.L.; Zou, X.P.; Liu, Z.J.; Song, Y.Y.; Xiao, B.; Sun, X.M.; Dou, X.T.; Cao, H.L.; Yang, X.N.; Li, N.; Kang, Q.; Zhu, W.; Xu, H.Z.; Chen, H.M.; Cao, X.C.; Fang, J.Y. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: A multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol. Hepatol., 2020, 5(3), 267-275.
[http://dx.doi.org/10.1016/S2468-1253(19)30409-1] [PMID: 31926918]
[53]
Kim, S.Y.; Hwangbo, H.; Kim, M.Y.; Ji, S.Y.; Lee, H.; Kim, G.Y.; Kwon, C.Y.; Leem, S.H.; Hong, S.H.; Cheong, J.; Choi, Y.H. Coptisine induces autophagic cell death through down-regulation of PI3K/Akt/mTOR signaling pathway and up-regulation of ROS-mediated mitochondrial dysfunction in hepatocellular carcinoma Hep3B cells. Arch. Biochem. Biophys., 2021, 697, 108688.
[http://dx.doi.org/10.1016/j.abb.2020.108688] [PMID: 33227289]
[54]
Li, X.D.; Wang, Z.; Wang, X.R.; Shao, D.; Zhang, X.; Li, L.; Ge, M.F.; Chang, Z.M.; Dong, W.F. Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition. Int. J. Nanomedicine, 2019, 14, 3967-3982.
[http://dx.doi.org/10.2147/IJN.S206044] [PMID: 31239666]
[55]
Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano, 2017, 11(12), 12732-12741.
[http://dx.doi.org/10.1021/acsnano.7b07486] [PMID: 29140684]
[56]
Ren, J.; Li, G.; Zhao, W.; Lin, L.; Ye, T. Norcantharidin combined with ABT-737 for hepatocellular carcinoma: Therapeutic effects and molecular mechanisms. World J. Gastroenterol., 2016, 22(15), 3962-3968.
[http://dx.doi.org/10.3748/wjg.v22.i15.3962] [PMID: 27099439]
[57]
Liu, M.; Tu, J.; Feng, Y.; Zhang, J.; Wu, J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J. Nanobiotechnology, 2020, 18(1), 114.
[http://dx.doi.org/10.1186/s12951-020-00677-4] [PMID: 32811502]
[58]
Murugadoss, S.; Lison, D.; Godderis, L.; Van Den Brule, S.; Mast, J.; Brassinne, F.; Sebaihi, N.; Hoet, P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol., 2017, 91(9), 2967-3010.
[http://dx.doi.org/10.1007/s00204-017-1993-y] [PMID: 28573455]
[59]
Gherasim, O.; Puiu, R.A. Bîrcă, A.C.; Burdușel, A.C.; Grumezescu, A.M. An updated review on silver nanoparticles in biomedicine. Nanomaterials, 2020, 10(11), 2318.
[http://dx.doi.org/10.3390/nano10112318] [PMID: 33238486]
[60]
Gao, X.; Liu, Y.; An, Z.; Ni, J. Active components and pharmacological effects of Cornus officinalis: Literature review. Front. Pharmacol., 2021, 12, 633447.
[http://dx.doi.org/10.3389/fphar.2021.633447] [PMID: 33912050]
[61]
Shen, H.; Li, X.; Fan, W.; Wang, Y.; Huang, F.; Wu, J.; Zhang, W.; Feng, X.; Chao, X. A systematic approach to decode the mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC). Eur. J. Pharmacol., 2021, 909, 174405.
[http://dx.doi.org/10.1016/j.ejphar.2021.174405] [PMID: 34384755]
[62]
He, Y.; Li, X.; Wang, J.; Yang, Q.; Yao, B.; Zhao, Y.; Zhao, A.; Sun, W.; Zhang, Q. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environ. Toxicol. Pharmacol., 2017, 56, 56-60.
[http://dx.doi.org/10.1016/j.etap.2017.08.035] [PMID: 28886426]
[63]
Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[64]
Li, G.; Zhao, M.; Zhao, L. Lysine-mediated hydroxyethyl starch-10-hydroxy camptothecin micelles for the treatment of liver cancer. Drug Deliv., 2020, 27(1), 519-529.
[http://dx.doi.org/10.1080/10717544.2020.1745329] [PMID: 32228107]
[65]
Qi, Y.; Liu, G. Berberine-10-hydroxy camptothecine-loaded lipid microsphere for the synergistic treatment of liver cancer by inhibiting topoisomerase and HIF-1α. Drug Deliv., 2021, 28(1), 171-182.
[http://dx.doi.org/10.1080/10717544.2020.1870020] [PMID: 33427515]
[66]
Huang, X.; Zhang, J.; Song, Y.; Zhang, T.; Wang, B. Combating liver cancer through GO-targeted biomaterials. Biomed. Mater., 2021, 16(6), 065003.
[http://dx.doi.org/10.1088/1748-605X/ac1f72] [PMID: 34412048]
[67]
Perevedentseva, E.; Lin, Y.C.; Cheng, C.L. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin. Drug Deliv., 2021, 18(3), 369-382.
[http://dx.doi.org/10.1080/17425247.2021.1832988] [PMID: 33047984]
[68]
Kong, D.; Jiang, T.; Liu, J.; Jiang, X.; Liu, B.; Lou, C.; Zhao, B.; Carroll, S.L.; Feng, G. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal. Drug Deliv., 2020, 27(1), 1729-1740.
[http://dx.doi.org/10.1080/10717544.2020.1856219] [PMID: 33307843]
[69]
Cui, Z.; Zhang, Y.; Xia, K.; Yan, Q.; Kong, H.; Zhang, J.; Zuo, X.; Shi, J.; Wang, L.; Zhu, Y.; Fan, C. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat. Commun., 2018, 9(1), 4347.
[http://dx.doi.org/10.1038/s41467-018-06749-2] [PMID: 30341298]
[70]
Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules, 2020, 25(1), 185.
[http://dx.doi.org/10.3390/molecules25010185] [PMID: 31906398]
[71]
Li, X.Y.; Guan, Q.X.; Shang, Y.Z.; Wang, Y.H.; Lv, S.W.; Yang, Z.X.; Wang, R.; Feng, Y.F.; Li, W.N.; Li, Y.J. Metal-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to treat liver cancer. World J. Gastroenterol., 2021, 27(26), 4208-4220.
[http://dx.doi.org/10.3748/wjg.v27.i26.4208] [PMID: 34326620]
[72]
Mohanty, A.; Uthaman, S.; Park, I.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules, 2020, 25(19), 4377.
[http://dx.doi.org/10.3390/molecules25194377] [PMID: 32977707]
[73]
Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med., 2019, 14(1), 48.
[http://dx.doi.org/10.1186/s13020-019-0270-9] [PMID: 31719837]
[74]
Li, D.; Cai, H.; Jiang, B.; Liu, G.; Wang, Y.; Wang, L.; Yao, H.; Wu, X.; Sun, Y.; Xu, J. Synthesis of spirolactone-type diterpenoid derivatives from kaurene-type oridonin with improved antiproliferative effects and their apoptosis-inducing activity in human hepatoma Bel-7402 cells. Eur. J. Med. Chem., 2013, 59, 322-328.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.002] [PMID: 23274570]
[75]
Ming, M.; Sun, F.Y.; Zhang, W.T.; Liu, J.K. Therapeutic effect of oridonin on mice with prostate cancer. Asian Pac. J. Trop. Med., 2016, 9(2), 184-187.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.007] [PMID: 26919953]
[76]
Luo, D.; Yi, Y.; Peng, K.; Liu, T.; Yang, J.; Liu, S.; Zhao, W.; Qu, X.; Yu, W.; Gu, Y.; Wan, S. Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. Eur. J. Med. Chem., 2019, 178, 365-379.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.006] [PMID: 31200238]
[77]
Liu, Y.; Liu, J.; Liang, J.; Zhang, M.; Li, Z.; Wang, Z.; Dang, B.; Feng, N. Mucosal transfer of wheat germ agglutinin modified lipid–polymer hybrid nanoparticles for oral delivery of oridonin. Nanomedicine, 2017, 13(7), 2219-2229.
[http://dx.doi.org/10.1016/j.nano.2017.05.003] [PMID: 28539275]
[78]
Galluzzi, L.; Chan, T.A.; Kroemer, G.; Wolchok, J.D.; López-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med., 2018, 10(459), eaat7807.
[http://dx.doi.org/10.1126/scitranslmed.aat7807] [PMID: 30232229]
[79]
Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 525-543.
[http://dx.doi.org/10.1038/s41575-021-00438-0] [PMID: 33850328]
[80]
Petitprez, F.; Meylan, M.; de Reyniès, A.; Sautès-Fridman, C.; Fridman, W.H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol., 2020, 11, 784.
[http://dx.doi.org/10.3389/fimmu.2020.00784] [PMID: 32457745]
[81]
Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol., 2013, 31(1), 51-72.
[http://dx.doi.org/10.1146/annurev-immunol-032712-100008] [PMID: 23157435]
[82]
Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; Draganov, D.; Edelson, R.L.; Formenti, S.C.; Fucikova, J.; Gabriele, L.; Gaipl, U.S.; Gameiro, S.R.; Garg, A.D.; Golden, E.; Han, J.; Harrington, K.J.; Hemminki, A.; Hodge, J.W.; Hossain, D.M.S.; Illidge, T.; Karin, M.; Kaufman, H.L.; Kepp, O.; Kroemer, G.; Lasarte, J.J.; Loi, S.; Lotze, M.T.; Manic, G.; Merghoub, T.; Melcher, A.A.; Mossman, K.L.; Prosper, F.; Rekdal, Ø.; Rescigno, M.; Riganti, C.; Sistigu, A.; Smyth, M.J.; Spisek, R.; Stagg, J.; Strauss, B.E.; Tang, D.; Tatsuno, K.; van Gool, S.W.; Vandenabeele, P.; Yamazaki, T.; Zamarin, D.; Zitvogel, L.; Cesano, A.; Marincola, F.M. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer, 2020, 8(1), e000337.
[http://dx.doi.org/10.1136/jitc-2019-000337] [PMID: 32209603]
[83]
Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis., 2020, 11(11), 1013.
[http://dx.doi.org/10.1038/s41419-020-03221-2] [PMID: 33243969]
[84]
Ziegler, P.K.; Bollrath, J.; Pallangyo, C.K.; Matsutani, T.; Canli, Ö.; De Oliveira, T.; Diamanti, M.A.; Müller, N.; Gamrekelashvili, J.; Putoczki, T.; Horst, D.; Mankan, A.K.; Öner, M.G.; Müller, S.; Müller-Höcker, J.; Kirchner, T.; Slotta-Huspenina, J.; Taketo, M.M.; Reinheckel, T.; Dröse, S.; Larner, A.C.; Wels, W.S.; Ernst, M.; Greten, T.F.; Arkan, M.C.; Korn, T.; Wirth, D.; Greten, F.R. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell, 2018, 174(1), 88-101.e16.
[http://dx.doi.org/10.1016/j.cell.2018.05.028] [PMID: 29909986]
[85]
Poole, L.P.; Macleod, K.F. Mitophagy in tumorigenesis and metastasis. Cell. Mol. Life Sci., 2021, 78(8), 3817-3851.
[http://dx.doi.org/10.1007/s00018-021-03774-1] [PMID: 33580835]
[86]
Fan, Y.; Li, S.; Ding, X.; Yue, J.; Jiang, J.; Zhao, H.; Hao, R.; Qiu, W.; Liu, K.; Li, Y.; Wang, S.; Zheng, L.; Ye, B.; Meng, K.; Xu, B. First-in-class immune-modulating small molecule Icaritin in advanced hepatocellular carcinoma: Preliminary results of safety, durable survival and immune biomarkers. BMC Cancer, 2019, 19(1), 279.
[http://dx.doi.org/10.1186/s12885-019-5471-1] [PMID: 30922248]
[87]
Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano, 2020, 14(4), 4816-4828.
[http://dx.doi.org/10.1021/acsnano.0c00708] [PMID: 32188241]
[88]
Guo, C.; Hou, X.; Liu, Y.; Zhang, Y.; Xu, H.; Zhao, F.; Chen, D. Novel chinese angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine, 2021, 80, 153356.
[http://dx.doi.org/10.1016/j.phymed.2020.153356] [PMID: 33039729]
[89]
Li, H.; Shi, S.; Wu, M.; Shen, W.; Ren, J.; Mei, Z.; Ran, H.; Wang, Z.; Tian, Y.; Gao, J.; Zhao, H. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma. Int. J. Nanomedicine, 2021, 16, 6455-6475.
[http://dx.doi.org/10.2147/IJN.S325891] [PMID: 34584411]
[90]
Zhang, Q.; Wang, W.; Shen, H.; Tao, H.; Wu, Y.; Ma, L.; Yang, G.; Chang, R.; Wang, J.; Zhang, H.; Wang, C.; Zhang, F.; Qi, J.; Mi, C. Low-intensity focused ultrasound-augmented multifunctional nanoparticles for integrating ultrasound imaging and synergistic therapy of metastatic breast cancer. Nanoscale Res. Lett., 2021, 16(1), 73.
[http://dx.doi.org/10.1186/s11671-021-03532-z] [PMID: 33928450]
[91]
Zhang, K.; Li, D.; Zhou, B.; Liu, J.; Luo, X.; Wei, R.; Wang, L.; Hu, X.; Su, Z.; Lin, H.; Gao, J.; Shan, H. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater. Sci., 2021, 10(1), 243-257.
[http://dx.doi.org/10.1039/D1BM01374B] [PMID: 34846385]
[92]
Limmer, S.; Hahn, J.; Schmidt, R.; Wachholz, K.; Zengerle, A.; Lechner, K.; Eibl, H.; Issels, R.D.; Hossann, M.; Lindner, L.H. Gemcitabine treatment of rat soft tissue sarcoma with phosphatidyldiglycerol-based thermosensitive liposomes. Pharm. Res., 2014, 31(9), 2276-2286.
[http://dx.doi.org/10.1007/s11095-014-1322-6] [PMID: 24599802]
[93]
Li, S.; Yin, G.; Pu, X.; Huang, Z.; Liao, X.; Chen, X. A novel tumor-targeted thermosensitive liposomal cerasome used for thermally controlled drug release. Int. J. Pharm., 2019, 570, 118660.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118660] [PMID: 31491484]
[94]
van Elk, M.; van den Dikkenberg, J.B.; Storm, G.; Hennink, W.E.; Vermonden, T.; Heger, M. Preclinical evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy. Int. J. Pharm., 2018, 550(1-2), 190-199.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.027] [PMID: 30130606]
[95]
Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; Carlisle, R.; Wu, F.; Middleton, M.R.; Gleeson, F.V.; Coussios, C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol., 2018, 19(8), 1027-1039.
[http://dx.doi.org/10.1016/S1470-2045(18)30332-2] [PMID: 30001990]
[96]
Tak, W.Y.; Lin, S.M.; Wang, Y.; Zheng, J.; Vecchione, A.; Park, S.Y.; Chen, M.H.; Wong, S.; Xu, R.; Peng, C.Y.; Chiou, Y.Y.; Huang, G.T.; Cai, J.; Abdullah, B.J.J.; Lee, J.S.; Lee, J.Y.; Choi, J.Y.; Gopez-Cervantes, J.; Sherman, M.; Finn, R.S.; Omata, M.; O’Neal, M.; Makris, L.; Borys, N.; Poon, R.; Lencioni, R. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions. Clin. Cancer Res., 2018, 24(1), 73-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2433] [PMID: 29018051]
[97]
Hashimoto, A.; Sarker, D.; Reebye, V.; Jarvis, S.; Sodergren, M.H.; Kossenkov, A.; Sanseviero, E.; Raulf, N.; Vasara, J.; Andrikakou, P.; Meyer, T.; Huang, K.W.; Plummer, R.; Chee, C.E.; Spalding, D.; Pai, M.; Khan, S.; Pinato, D.J.; Sharma, R.; Basu, B.; Palmer, D.; Ma, Y.T.; Evans, J.; Habib, R.; Martirosyan, A.; Elasri, N.; Reynaud, A.; Rossi, J.J.; Cobbold, M.; Habib, N.A.; Gabrilovich, D.I. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin. Cancer Res., 2021, 27(21), 5961-5978.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0986] [PMID: 34407972]
[98]
Voutila, J.; Reebye, V.; Roberts, T.C.; Protopapa, P.; Andrikakou, P.; Blakey, D.C.; Habib, R.; Huber, H.; Saetrom, P.; Rossi, J.J.; Habib, N.A. Development and mechanism of small activating RNA targeting cebpa, a novel therapeutic in clinical trials for liver cancer. Mol. Ther., 2017, 25(12), 2705-2714.
[http://dx.doi.org/10.1016/j.ymthe.2017.07.018] [PMID: 28882451]
[99]
Sarker, D.; Plummer, R.; Meyer, T.; Sodergren, M.H.; Basu, B.; Chee, C.E.; Huang, K.W.; Palmer, D.H.; Ma, Y.T.; Evans, T.R.J.; Spalding, D.R.C.; Pai, M.; Sharma, R.; Pinato, D.J.; Spicer, J.; Hunter, S.; Kwatra, V.; Nicholls, J.P.; Collin, D.; Nutbrown, R.; Glenny, H.; Fairbairn, S.; Reebye, V.; Voutila, J.; Dorman, S.; Andrikakou, P.; Lloyd, P.; Felstead, S.; Vasara, J.; Habib, R.; Wood, C.; Saetrom, P.; Huber, H.E.; Blakey, D.C.; Rossi, J.J.; Habib, N. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α in patients with advanced liver cancer: A first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res., 2020, 26(15), 3936-3946.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0414] [PMID: 32357963]
[100]
Ickenstein, L.M.; Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv., 2019, 16(11), 1205-1226.
[http://dx.doi.org/10.1080/17425247.2019.1669558] [PMID: 31530041]
[101]
Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.S.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Burris, H.A. III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0429] [PMID: 23358650]
[102]
Wang, Y.; Zhao, L.; Yuan, W.; Liang, L.; Li, M.; Yu, X.; Wang, Y. A natural membrane vesicle exosome-based sinomenine delivery platform for hepatic carcinoma therapy. Curr. Top. Med. Chem., 2021, 21(14), 1224-1234.
[http://dx.doi.org/10.2174/1568026621666210612032004] [PMID: 34126903]
[103]
Liang, P.; Wu, H.; Zhang, Z.; Jiang, S.; Lv, H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int. J. Pharm., 2020, 583, 119375.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119375] [PMID: 32344021]
[104]
Chen, X.; Huang, Y.; Chen, H.; Chen, Z.; Chen, J.; Wang, H.; Li, D.; Su, Z. Augmented EPR effect post IRFA to enhance the therapeutic efficacy of arsenic loaded ZIF-8 nanoparticles on residual HCC progression. J. Nanobiotechnology, 2022, 20(1), 34.
[http://dx.doi.org/10.1186/s12951-021-01161-3] [PMID: 35033089]
[105]
Luan, X.; Yuan, H.; Song, Y.; Hu, H.; Wen, B.; He, M.; Zhang, H.; Li, Y.; Li, F.; Shu, P.; Burnett, J.P.; Truchan, N.; Palmisano, M.; Pai, M.P.; Zhou, S.; Gao, W.; Sun, D. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials, 2021, 275, 120910.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120910] [PMID: 34144373]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy